New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
WC | Waist circumference |
IDF | International Diabetes Federation |
HOMA index | Homeostatic model assessment index |
MetS | Metabolic syndrome |
HDL-cholesterol | HDL-C = high-density lipoprotein cholesterol |
LDL-cholesterol | LDL-C = low-density lipoprotein cholesterol |
Total-C | Total cholesterol |
DM | Diabetes mellitus |
AUROC | Area under the receiver operating characteristic |
MuHOB | Metabolically UnHealthy Obesity |
MONW | Metabolically Obese Normal Weight (MONW |
MHOB | Metabolically Healthy Obesity |
SD | Standard deviation |
References
- Atas, U.; Erin, N.; Tazegul, G.; Elpek, G.O.; Yildirim, B. Changes in ghrelin, substance P and vasoactive intestinal peptide levels in the gastroduodenal mucosa of patients with morbid obesity. Neuropeptides 2021, 89, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Cozma, A.; Sitar-Taut, A.; Urian, L.; Fodor, A.; Suharoschi, R.; Muresan, C.; Negrean, V.; Sampelean, D.; Zdrenghea, D.; Pop, D.; et al. Unhealthy lifestyle and the risk of metabolic syndrome—The Romanian experience. JMMS 2018, 5, 218–229. [Google Scholar] [CrossRef]
- Ahima, R.S.; Lazar, M.A. The health risk of obesity—Better metrics imperative. Science 2013, 341, 856–858. [Google Scholar] [CrossRef] [PubMed]
- Internation Diabetes Federation. IDF Diabetes Atlas Ninth. In Atlas de la Diabetes de la FID 2019; Internation Diabetes Federation: Bruselas, Belgium, 2019; ISBN 9782930229874. [Google Scholar]
- Romacho, T.; Elsen, M.; Röhrborn, D.; Eckel, J. Adipose tissue and its role in organ crosstalk. Acta Physiol. 2014, 210, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Poher, A.L.; Tschöp, M.H.; Müller, T.D. Ghrelin regulation of glucose metabolism. Peptides 2018, 100, 236–242. [Google Scholar] [CrossRef]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef]
- Frühbeck, G.; Toplak, H.; Woodward, E.; Yumuk, V.; Maislos, M.; Oppert, J.M. Obesity: The gateway to ill health—An EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 2013, 6, 117–120. [Google Scholar] [CrossRef]
- Fodor, A.; Cozma, A.; Suharoschi, R.; Sitar-Taut, A.; Roman, G. Clinical and genetic predictors of diabetes drug’s response. Drug Metab. Rev. 2019, 51, 408–427. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Budak, E.; Fernández Sánchez, M.; Bellver, J.; Cerveró, A.; Simón, C.; Pellicer, A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil. Steril. 2006, 85, 1563–1581. [Google Scholar] [CrossRef]
- Derosa, G.; Catena, G.; Gaudio, G.; D’Angelo, A.; Maffioli, P. Adipose tissue dysfunction and metabolic disorders: Is it possible to predict who will develop type 2 diabetes mellitus? Role of markers in the progression of dIabetes in obese patients (The RESISTIN trial). Cytokine 2020, 127, 154947. [Google Scholar] [CrossRef]
- Vecchié, A.; Dallegri, F.; Carbone, F.; Bonaventura, A.; Liberale, L.; Portincasa, P.; Frühbeck, G.; Montecucco, F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018, 48, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Catoi, A.; Parvu, A.; Andreicut, A.; Mironiuc, A.; Craciun, A.; Catoi, C.; Pop, I. Metabolically Healthy versus Unhealthy Morbidly Obese: Chronic Inflammation, Nitro-Oxidative Stress, and Insulin Resistance. Nutrients 2018, 10, 1199. [Google Scholar] [CrossRef]
- Kyrou, I.; Mattu, H.S.; Chatha, K.; Randeva, H.S. Fat Hormones, Adipokines. In Endocrinology of the Heart in Health and Disease; Academic Press: Cambridge, MA, USA, 2017; ISBN 9780128031117. [Google Scholar]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur. J. Clin. Investig. 2018, 48, 1–11. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Flehmig, G.; Scholz, M.; Kloting, N.; Fasshauer, M.; Tonjes, A.; Stumvoll, M.; Youn, B.S.; Bluher, M. Identification of adipokine clusters related to the parameters of fat mass, insulin sensitivity and inflammation. PLoS ONE 2014, 9, e99785. [Google Scholar]
- Abd El-Kader, S.M.; Al-Jiffri, O.H. Impact of weight reduction on insulin resistance, adhesive molecules and adipokines dysregulation among obese type 2 diabetic patients. Afr. Health Sci. 2018, 18, 873–883. [Google Scholar] [CrossRef]
- Alzaim, I.; Hammoud, S.H.; Al-Koussa, H.; Ghazi, A.; Eid, A.H.; El-Yazbi, A.F. Adipose tissue immunomodulation: A novel therapeutic approach in cardiovascular and metabolic diseases. Front. Cardiovasc. Med. 2020, 7, 1–40. [Google Scholar] [CrossRef]
- Feijóo-Bandín, S.; Aragón-Herrera, A.; Moraña-Fernández, S.; Anido-Varela, L.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Moscoso, I.; Gualillo, O.; González-Juanatey, J.R.; et al. Adipokines and inflammation: Focus on cardiovascular diseases. Int. J. Mol. Sci. 2020, 21, 7711. [Google Scholar] [CrossRef]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar] [CrossRef]
- Collazo, P.; Martínez-Sánchez, N.; Milbank, E.; Contreras, C. Incendiary leptin. Nutrients 2020, 12, 472. [Google Scholar] [CrossRef]
- Kim, W.K.; Bae, K.-H.; Lee, S.C.; Oh, K.-J. The Latest Insights into Adipokines in Diabetes. J. Clin. Med. 2019, 8, 1874. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Jawdat, D.; Al-Dorzi, H.M.; Tamim, H.; Tamimi, W.; Bouchama, A.; Sadat, M.; Afesh, L.; Abdullah, M.L.; Mashaqbeh, W.; et al. Leptin, ghrelin, and leptin/ghrelin ratio in critically ill patients. Nutrients 2020, 12, 36. [Google Scholar] [CrossRef]
- Miljković, M.; Šaranac, L.; Bašić, J.; Ilić, M.; Djindjić, B.; Stojiljković, M.; Kocić, G.; Cvetanović, G.; Dimitrijević, N. Evaluation of ghrelin and leptin levels in obese, lean and undernourished children. Vojnosanit. Pregl. 2017, 74, 963–969. [Google Scholar] [CrossRef]
- Al-Amodi, H.S.; Abdelbasit, N.A.; Fatani, S.H.; Babakr, A.T.; Mukhtar, M.M. The effect of obesity and components of metabolic syndrome on leptin levels in Saudi women. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 357–364. [Google Scholar] [CrossRef]
- Pico, C.; Palou, M.; Pomar, C.; Rodriguez, A.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Disord. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ouerghi, N.; Feki, M.; Bragazzi, N.L.; Knechtle, B.; Hill, L.; Nikolaidis, P.T.; Bouassida, A. Ghrelin Response to Acute and Chronic Exercise: Insights and Implications from a Systematic Review of the Literature. Sport. Med. 2021, 51, 2389–2410. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Zhang, Y.; Sharma, P.; Covassin, N.; Soucek, F. Statins decrease leptin expression in human white adipocytes. Physiological reports 2018, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Takahash, Y.; Satoh, M.; Tabuchi, T.; Nakamura, M. Prospective, randomized, single-blind comparison of effects of 6 months’ treatment with atorvastatin versus pravastatin on leptin and angiogenic factors in patients with coronary artery disease. Heart Vessel. 2012, 27, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzam, S.I.; Alkhateeb, A.M.; Alzoubi, K.H.; Alzayadeen, R.N.; Ababneh, M.A.; Khabour, O.F. Atorvastatin treatment modulates the interaction between leptin and adiponectin, and the clinical parameters in patients with type II diabetes. Exp. Ther. Med. 2013, 6, 1565–1569. [Google Scholar] [CrossRef] [PubMed]
- Szotowska, M.; Czerwienska, B.; Adamczak, M.; Chudek, J.; Wiecek, A. Effect of low-dose atorvastatin on plasma concentrations of adipokines in patients with metabolic syndrome. Kidney Blood Press. Res. 2012, 35, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Sahebkar, A.; Giua, R.; Pedone, C. Impact of Statin Therapy on Plasma Leptin Concentrations: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Trials. Br. J. Clin. Pharmacol. 2016, 82, 1674–1684. [Google Scholar] [CrossRef]
- Yorulmaz, H.; Ozkok, E.; Erguven, M.; Ates, G.; Aydın, I.; Tamer, S. Effect of simvastatin on mitochondrial enzyme activities, ghrelin, hypoxia-inducible factor 1α in hepatic tissue during early phase of sepsis. Int. J. Clin. Exp. Med. 2015, 8, 3640–3650. [Google Scholar] [PubMed]
- Gruzdeva, O.; Uchasova, E.; Dyleva, Y.; Akbasheva, O.; Karetnikova, V.; Shilov, A.; Barbarash, O. Effect of different doses of statins on the development of type 2 diabetes mellitus in patients with myocardial infarction. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 481–489. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pothiwala, P.; Jain, S.K.; Subhashini, Y. Metabolic syndrome and cancer. Metab. Syndr. Relat. Disord. 2009, 7, 279–287. [Google Scholar] [CrossRef]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Frühbeck, G. Adipose tissue immunity and cancer. Front. Physiol. 2013, 4, 1–13. [Google Scholar] [CrossRef]
- Alexescu, T.G.; Cozma, A.; Sitar-Tăut, A.; Negrean, V.; Handru, M.I.; Motocu, M.; Tohănean, N.; Lencu, C.; Para, I. Cardiac Changes in Overweight and Obese Patients. Rom. J. Intern. Med. 2016, 54, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Cooper, I.; Brookler, K.; Crofts, C. Rethinking Fragility Fractures in Type 2 Diabetes: The Link between Hyperinsulinaemia and Osteofragilitas. Biomedicines 2021, 9, 1165. [Google Scholar] [CrossRef]
- Sitar Taut, A.V.; Pop, D.; Zdrenghea, D.T. NT-proBNP values in elderly heart failure patients with atrial fibrillation and diabetes. J. Diabetes Complicat. 2015, 29, 1119–1123. [Google Scholar] [CrossRef]
- Dadarlat-Pop, A.; Sitar-Taut, A.-V.; Zdrenghea, D.; Caloian, B.; Tomoaia, R.; Pop, D.; Buzoianu, A. Profile of Obesity and Comorbidities in Elderly Patients with Heart Failure. Clin. Interv. Aging 2020, 15, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.C.; Sinal, C.J. Chemerin: At the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 2010, 21, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Gateva, A.; Assyov, Y.; Tsakova, A.; Kamenov, Z. Classical (adiponectin, leptin, resistin) and new (chemerin, vaspin, omentin) adipocytokines in patients with prediabetes. Horm. Mol. Biol. Clin. Investig. 2018, 34, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.; Golia, E.; Maddaloni, V.; Malvezzi, M.; Casillo, B.; Marotta, C.; Calabrò, R.; Golino, P. Adipose tissue-mediated inflammation: The missing link between obesity and cardiovascular disease? Intern. Emerg. Med. 2009, 4, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef]
- Weinstein, A.R.; Sesso, H.D.; Lee, I.M.; Cook, N.R.; Manson, J.A.E.; Buring, J.E.; Gaziano, J.M. Relationship of physical activity vs body mass index with type 2 diabetes in women. J. Am. Med. Assoc. 2004, 292, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Minciună, I.A.; Orășan, O.H.; Minciună, I.; Lazar, A.L.; Sitar-Tăut, A.V.; Oltean, M.; Tomoaia, R.; Puiu, M.; Sitar-Tăut, D.A.; Pop, D.; et al. Assessment of subclinical diabetic cardiomyopathy by speckle-tracking imaging. Eur. J. Clin. Investig. 2021, 51, e13475. [Google Scholar] [CrossRef] [PubMed]
- Capparelli, R.; Iannelli, D. Role of epigenetics in type 2 diabetes and obesity. Biomedicines 2021, 9, 977. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, J.S.; Park, J.H.; Lee, E.Y.; Moon, J.S.; Lee, S.K.; Lee, J.S.; Kim, J.H.; Kim, H.S. Identification of novel biomarker for early detection of diabetic nephropathy. Biomedicines 2021, 9, 457. [Google Scholar] [CrossRef]
- Fringu, F.; Sitar-Taut, A.; Caloian, B.; Zdrenghea, D.; Comsa, D.; Gusetu, G.; Pop, D. The role of NT pro-BNP in the evaluation of diabetic patients with heart failure. Endocr. Care 2020, XVI, 183–191. [Google Scholar] [CrossRef]
- Sitar-Taut, D.-A.; Mocean, L.; Sitar-Taut, A.-V. Research about implementing E-PROCORD—New medical and modeling approaches in IT & C age applied on cardiovascular profile evaluation at molecular level. J. Appl. Quant. Methods 2009, 4, 175–189. [Google Scholar]
- Crujeiras, A.B.; Díaz-Lagares, A.; Abete, I.; Goyenechea, E.; Amil, M.; Martínez, J.A.; Casanueva, F.F. Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J. Endocrinol. Investig. 2014, 37, 119–126. [Google Scholar] [CrossRef]
- Perakakis, N.; Farr, O.M.; Mantzoros, C.S. Leptin in Leanness and Obesity. J. Am. Coll. Cardiol. 2021, 77, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-W.; Lee, M.; Oh, K.-J. Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J. Clin. Med. 2019, 8, 854. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019, 1, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Dadarlat-Pop, A.; Pop, D.; Procopciuc, L.; Sitar-Taut, A.; Zdrenghea, D.; Bodizs, G.; Tomoaia, R.; Gurzau, D.; Fringu, F.; Susca-Hojda, S.; et al. Leptin, galectin-3 and angiotensin II type 1 receptor polymorphism in overweight and obese patients with heart failure—Role and functional interplay. Int. J. Gen. Med. 2021, 14, 1727–1737. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, S.E.; Gee, L.L.; Wachtel, M.S.; Frezza, E.E. Adipose tissue: The new endocrine organ? A review article. Dig. Dis. Sci. 2009, 54, 1847–1856. [Google Scholar] [CrossRef]
- Hajimohammadi, M.; Shab-Bidar, S.; Neyestani, T.R. Consumption of vitamin D-fortified yogurt drink increased leptin and ghrelin levels but reduced leptin to ghrelin ratio in type 2 diabetes patients: A single blind randomized controlled trial. Eur. J. Nutr. 2017, 56, 2029–2036. [Google Scholar] [CrossRef]
- Daghestani, M.H.; Daghestani, M.; Daghistani, M.; El-Mazny, A.; Bjørklund, G.; Chirumbolo, S.; Al Saggaf, S.H.; Warsy, A. A study of ghrelin and leptin levels and their relationship to metabolic profiles in obese and lean Saudi women with polycystic ovary syndrome (PCOS). Lipids Health Dis. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Sitar-Taut, A.-V.; Coste, S.C.; Tarmure, S.; Orasan, O.H.; Fodor, A.; Negrean, V.; Pop, D.; Zdrenghea, D.; Login, C.; Tiperciuc, B.; et al. Diabetes and Obesity-Cumulative or Complementary Effects On Adipokines, Inflammation, and Insulin Resistance. J. Clin. Med. 2020, 9, 2767. [Google Scholar] [CrossRef]
- Yamada, C. Relationship between orexigenic peptide ghrelin signal, gender difference and disease. Int. J. Mol. Sci. 2021, 22, 3763. [Google Scholar] [CrossRef] [PubMed]
- Alamri, B.N.; Shin, K.; Chappe, V.; Anini, Y. The role of ghrelin in the regulation of glucose homeostasis. Horm. Mol. Biol. Clin. Investig. 2016, 26, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kadoglou, N.P.E.; Lampropoulos, S.; Kapelouzou, A.; Gkontopoulos, A.; Theofilogiannakos, E.K.; Fotiadis, G.; Kottas, G. Serum levels of apelin and ghrelin in patients with acute coronary syndromes and established coronary artery disease-KOZANI STUDY. Transl. Res. 2010, 155, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci. Rep. 2018, 38, BSR20181061. [Google Scholar] [CrossRef]
- Tuero, C.; Valenti, V.; Rotellar, F.; Landecho, M.F.; Cienfuegos, J.A.; Frühbeck, G. Revisiting the Ghrelin Changes Following Bariatric and Metabolic Surgery. Obes. Surg. 2020, 30, 2763–2780. [Google Scholar] [CrossRef]
- Rodríguez, A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes. Facts 2014, 7, 82–95. [Google Scholar] [CrossRef]
- Pop, D.; Peter, P.; Dădârlat, A.; Sitar-Tăut, A.; Zdrenghea, D. Serum ghrelin level is associated with cardiovascular risk score. Rom. J. Intern. Med. 2015, 53, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Poykko, S. Ghrelin, Metabolic Risk Factors and Carotid Artery Atherosclerosis; University of Oulu: Oulu, Finland, 2005; ISBN 9514276558. [Google Scholar]
- Poykko, S.; Kellokoski, E.; Horkko, S.; Kauma, H.; Kesaniemi, Y.; Ukkola, O. Low plasma ghrelin is associated with insulin resistance, hypertension and the prevalence of type 2 diabetes. Diabetes 2003, 52, 2546–2553. [Google Scholar] [CrossRef]
- Razzaghy-Azar, M.; Nourbakhsh, M.; Pourmoteabed, A.; Nourbakhsh, M.; Ilbeigi, D.; Khosravi, M. An Evaluation of Acylated Ghrelin and Obestatin Levels in Childhood Obesity and Their Association with Insulin Resistance, Metabolic Syndrome, and Oxidative Stress. J. Clin. Med. 2016, 5, 61. [Google Scholar] [CrossRef]
- Verdeş, G.; Duţă, C.C.; Popescu, R.; Mituleţu, M.; Ursoniu, S.; Lazăr, O.F. Correlation between leptin and ghrelin expression in adipose visceral tissue and clinical-biological features in malignant obesity. Rom. J. Morphol. Embryol. 2017, 58, 923–929. [Google Scholar]
- Korek, E.; Krauss, H.; Gibas-Dorna, M.; Kupsz, J.; Piątek, M.; Piątek, J. Fasting and postprandial levels of ghrelin, leptin and insulin in lean, obese and anorexic subjects. Prz. Gastroenterol. 2013, 8, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, W.S.; Hassanien, M.; Abokhosheim, K. Role of Ghrelin, Leptin and Insulin Resistance in Development of Metabolic Syndrome in Obese Patients. Endocrinol. Metab. Syndr. 2014, 3, 1–6. [Google Scholar] [CrossRef]
- Dzaja, A.; Dalal, M.A.; Himmerich, H.; Uhr, M.; Pollmächer, T.; Schuld, A. Sleep enhances nocturnal plasma ghrelin levels in healthy subjects. Am. J. Physiol. Endocrinol. Metab. 2004, 286, 963–967. [Google Scholar] [CrossRef]
- Motivala, S.J.; Tomiyama, A.J.; Ziegler, M.; Khandrika, S.; Irwin, M.R. Nocturnal levels of ghrelin and leptin and sleep in chronic insomnia. Psychoneuroendocrinology 2009, 34, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, A.; Shcherbina, L.; Prasad, R.B.; Miskelly, M.G.; Abels, M.; Martínez-Lopéz, J.A.; Fred, R.G.; Nergård, B.J.; Hedenbro, J.; Groop, L.; et al. Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels. Mol. Cell. Endocrinol. 2020, 511, 110835. [Google Scholar] [CrossRef] [PubMed]
- Labayen, I.; Ortega, F.B.; Ruiz, J.R.; Lasa, A.; Simón, E.; Margareto, J. Role of baseline leptin and ghrelin levels on body weight and fat mass changes after an energy-restricted diet intervention in obese women: Effects on energy metabolism. J. Clin. Endocrinol. Metab. 2011, 96, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Pickhardt, P.J.; Graffy, P.M.; Zea, R.; Lee, S.J.; Liu, J.; Sandfort, V.; Summers, R.M. Utilizing fully automated abdominal CT-based biomarkers for opportunistic screening for metabolic syndrome in adults without symptoms. Am. J. Roentgenol. 2021, 216, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Park, J.K.; Oh, S.S.; Lee, K.H.; Kim, S.K.; Cho, I.J.; Kim, J.K.; Kang, H.T.; Ahn, S.G.; Lee, J.W.; et al. The ratio of serum leptin to adiponectin provides adjunctive information to the risk of metabolic syndrome beyond the homeostasis model assessment insulin resistance: The Korean Genomic Rural Cohort Study. Clin. Chim. Acta 2011, 412, 2199–2205. [Google Scholar] [CrossRef]
- Cozma, A.; Fodor, A.; Orăsan, O.H.; Suharoschi, R.; Muresan, C.; Vulturar, R.; Sampelean, D.; Negrean, V.; Pop, D.; Sitar-Tăut, A. A comparison between insulin resistance scores parameters in identifying patients with metabolic syndrome. Stud. Univ. Babes-Bolyai Chem. 2019, 64, 147–159. [Google Scholar] [CrossRef]
- Blum, M.R.; Popat, R.A.; Nagy, A.; Cataldo, N.A.; McLaughlin, T.L. Using metabolic markers to identify insulin resistance in premenopausal women with and without polycystic ovary syndrome. J. Endocrinol. Investig. 2021, 44, 2123–2130. [Google Scholar] [CrossRef]
Normal Weight | Overweight | Obese | p-Value | MetS− | MetS+ | p*-Value | ||
---|---|---|---|---|---|---|---|---|
Patients | 12 (20) | 31 (51.7) | 17 (28.3) | 17 (28.3) | 43 (71.7) | |||
Age | 64.58 ± 8.09 | 63.29 ± 10.79 | 57.41 ± 9.01 | p = 0.08 | 59.88 ± 9.17 | 62.67 ± 10.42 | p = 0.33 | |
Gender | Female | 10 (83.33) | 22 (70.96) | 12 (70.58) | p = 0.48 | 14 (82.35) | 30 (69.76) | p = 0.50 |
Male | 2 (16.66) | 9 (29.03) | 5 (29.41) | 3 (17.64) | 13 (30.23) | |||
WC | 85.16 ± 9.59 | 97.48 ± 7.16 | 107.70 ± 6.88 | p < 0.001 | 91.76 ± 11.73 | 100.34 ± 9.5 | p = 0.0046 | |
BMI (kg/m2) | 23.22 ± 1.89 | 27.68 ± 1.52 | 33.59 ± 2.35 | p < 0.001 | 25.98 ± 3.99 | 29.44 ± 3.75 | p = 0.0025 | |
Systolic blood pressure | 126.25 ± 17.46 (120) | 133.22 ± 16.66 (130) | 134.41 ± 17.84 130) | p = 0.40 | 120.58 ± 14.45 | 136.74 ± 16.03 | p = 0.0006 | |
Diastolic blood pressure * | 75.41 ± 5.82 (80) | 86.45 ± 20.46 (80) | 84.41 ± 13.67 (80) | p = 0.049 | 77.94 ± 10.16 (80) | 85.93 ± 18.62 (80) | p = 0.072 | |
Diabetes | Yes | 1(8.33) | 5 (16.12) | 8 (47.05) | p = 0.0099 | 0 (0) | 14 (32.55) | p = 0.0189 |
No | 11 (91.66) | 26 (83.87) | 9(52.94) | 17 (100) | 29 (67.44) | |||
Hypertension | Yes | 7 (58.33) | 25 (80.64) | 15 (88.23) | p = 0.06 | 8 (47.05) | 39 (90.69) | p = 0.0008 |
No | 5(41.66) | 6 (19.35) | 2 (11.76) | 9 (52.94) | 4 (9.3) | |||
Current smokers | Yes | 2 (16.66) | 5 (16.12) | 4 (23.52) | p = 0.60 | 3 (17.64) | 8 (18.60) | p = 0.77 |
No | 10 (83.33) | 26 (83.87) | 13 (76.47) | 14 (82.35) | 35 (81.39) | |||
Glycemia * (mg/dL) | 86.50 ± 6.54 (86) | 101.12 ± 45.77 (91) | 110.76 ± 30.31 (105) | p = 0.016 | 85.94 ± 8.09 (86) | 106.86 ± 42.48 (97) | p = 0.005 | |
Dyslipidemia | Yes | 9 (75) | 20 (64.51) | 12 (70.58) | p = 0.86 | 12 (70.58) | 29 (67.44) | p = 0.94 |
No | 3 (25) | 11 (35.48) | 5 (29.41) | 5 (29.41) | 14 (32.55) | |||
Total-C (mg/dL) | 224.5 ± 51.60 | 207.83 ± 40.86 | 210.82 ± 61 | p = 0.60 | 220.94 ± 41.63 | 208.48 ± 51.58 | p = 0.37 | |
LDL-C (mg/dL) | 146 ± 42.13 | 134.67 ± 30.87 | 129.58 ± 47.03 | p = 0.52 | 143.76 ± 35.84 | 132.23 ± 38.81 | p = 0.29 | |
Triglycerides (mg/dL) | 165.08 ± 68.23 | 149.77 ± 67.05 | 171.70 ± 89.11 | p = 0.59 | 122.76 ± 47.64 | 173.39 ± 77.37 | p = 0.003 | |
HDL-C (mg/dL) | 45.50 ± 8.67 | 43.22 ± 10.42 | 40.82 ± 9.37 | p = 0.44 | 52.70 ± 8.32 | 39.16 ± 7.41 | p < 0.0001 | |
Leptin * (pg/mL) | 13,004 ± 8955 (14,350) | 24,134 ± 23,769 (18,000) | 39,284 ± 26,063 (34,360) | p = 0.0049 | 19,132 ± 19,904 (13,640) | 28,995 ± 25,027 (21,500) | p = 0.11 | |
Insulin (μU/mL) * | 7.19 ± 0.28 (7.05) | 7.97 ± 1.35 (7.4) | 9.02 ± 3.43 (7.5) | p = 0.008 | 7.35 ± 0.41 (7.3) | 8.41 ± 2.45 (7.4) | p = 0.08 | |
HOMA index * | 1.53 ± 0.15 (1.51) | 2.06 ± 1.41 (1.73) | 2.46 ± 1.07 (2.18) | p = 0.003 | 1.56 ± 0.19 (1.57) | 2.27 ± 1.36 (1.83) | p = 0.0040 | |
Ghrelin * (pg/mL) | 37.16 ± 9.49 (36) | 39.11 ± 21.81 (33) | 42.02 ± 18.76 (36) | p = 0.70 | 42.91 ± 25.07 (36) | 38.22 ± 15.99 (33) | p = 0.37 | |
Leptin/ghrelin ratio | 370.70 ± 257 (448) | 771.36 ± 921 (396.46) | 1055.31 ± 681.64 (985) | p = 0.0228 | 525.03 ± 584.30 (368) | 869.19 ± 845 (564) | p = 0.0797 |
DM + | DM− | p Global | p Women | p Men | |||||
---|---|---|---|---|---|---|---|---|---|
Global | Women | Men | Global | Women | Men | ||||
14 (23.3%) patients | 9 | 5 | 46 (76.7%) patients | 35 | 11 | ||||
Leptin * (pg/mL) | 36,309 ± 30,848 (27,190) | 51,488 ± 28,168 (36,650) | 8986 ± 7366 (8500) | 23,124 ± 20,867 (18,270) | 27,942 ± 21,395 (22,200) | 7797.27 ± 7971 (5150) | p = 0.13 | p = 0.0074 | p = 0.58 |
Insulin (μU/mL) * | 9.2 ± 3.28 (7.75) | 10.17 ± 3.79 (9.3) | 7.44 ± 0.35 (7.5) | 7.78 ± 1.55 (7.4) | 7.93 ± 1.75 (7.4) | 7.32 ± 0.40 (7.2) | p = 0.0253 | p = 0.0118 | p = 0.58 |
HOMA index * | 3.06 ± 2.04 (2.39) | 3.62 ± 2.36 (2.69) | 2.04 ± 0.58 (2.12) | 1.77 ± 0.53 (1.64) | 1.79 ± 0.59 (1.64) | 1.71 ± 0.29 (1.67) | p = 0.0002 | p = 0.0002 | p = 0.26 |
Ghrelin * (pg/mL) | 34.14 ± 16.54 (25.7) | 34.16 ± 16.92 (26) | 34.10 ± 17.79 (25) | 41.19 ± 19.42 (35.5) | 42.67 ± 21.35 (36) | 36.50 ± 10.79 (33) | p = 0.0409 | p = 0.0626 | p = 0.44 |
Leptin/ghrelin ratio | 1224.71 ± 1114 (1035) | 1742.93 ± 1072 (1409) | 291.93 ± 213 (326.45) | 633.80 ± 615.7 (450.99) | 762.04 ± 644 (564) | 225.79 ± 228 (110) | p = 0.0131 | p = 0.0055 | p = 0.58 |
Global | Normal Weight | Overweight | Obese | p | MetS− | MetS+ | p* | DM− | DM+ | p+ | |
---|---|---|---|---|---|---|---|---|---|---|---|
L/BMI ratio * | 894.15 ± 781 (710) | 564.48 ± 381 (660.24) | 868.03 ± 845 (618.61) | 1174.49 ± 803 (1039.12) | p = 0.0717 | 687.47 ± 589 (570.82) | 975.86 ± 837 (741.97) | p = 0.25 | 808.3 ± 661 (680) | 1176 ± 1070 (818.96) | p=0.33 |
G/BMI ratio | 1.41 ± 0.68 | 1.59 ± 0.35 | 1.41 ± 0.8 | 1.26 ± 0.58 | p = 0.44 | 1.66 ± 0.92 | 1.31 ± 0.53 | p = 0.07 | 1.49 ± 0.68 | 1.12 ± 0.57 | p = 0.06 |
L/G/BMI ratio | 26.47 ± 26.83 | 16.28 ± 11.48 | 27.82 ± 33.3 | 31.20 ± 19.47 | p = 0.31 | 18.98 ± 17.84 | 29.43 ± 29.29 | p = 0.09 | 22.47 ± 20.5 | 39.62 ± 39.58 | p = 0.03 |
Women | Men | |||||||
---|---|---|---|---|---|---|---|---|
AUROC | Se | Sp | Criterion | AUROC | Se | Sp | Criterion | |
L/G ratio | 0.690 | 60 | 78.6 | >600.54 | 0.923 | 76.9 | 100 | >101.98 |
L | 0.706 | 83.3 | 57.1 | >17,910 | 0.821 | 53.8 | 100 | >5150 |
G | 0.536 | 53.3 | 71.4 | ≤33 | 0.718 | 84.6 | 66.7 | ≤43 |
HOMA | 0.752 | 53.33 | 100 | 1.83 | 0.654 | 38.46 | 100 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitar-Tǎut, A.-V.; Cozma, A.; Fodor, A.; Coste, S.-C.; Orasan, O.H.; Negrean, V.; Pop, D.; Sitar-Tǎut, D.-A. New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines 2021, 9, 1657. https://doi.org/10.3390/biomedicines9111657
Sitar-Tǎut A-V, Cozma A, Fodor A, Coste S-C, Orasan OH, Negrean V, Pop D, Sitar-Tǎut D-A. New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines. 2021; 9(11):1657. https://doi.org/10.3390/biomedicines9111657
Chicago/Turabian StyleSitar-Tǎut, Adela-Viviana, Angela Cozma, Adriana Fodor, Sorina-Cezara Coste, Olga Hilda Orasan, Vasile Negrean, Dana Pop, and Dan-Andrei Sitar-Tǎut. 2021. "New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes" Biomedicines 9, no. 11: 1657. https://doi.org/10.3390/biomedicines9111657
APA StyleSitar-Tǎut, A.-V., Cozma, A., Fodor, A., Coste, S.-C., Orasan, O. H., Negrean, V., Pop, D., & Sitar-Tǎut, D.-A. (2021). New Insights on the Relationship between Leptin, Ghrelin, and Leptin/Ghrelin Ratio Enforced by Body Mass Index in Obesity and Diabetes. Biomedicines, 9(11), 1657. https://doi.org/10.3390/biomedicines9111657