Tyrosine Hydroxylase-Expressing Neurons in the Vagal Ganglia: Characterization and Implications
Abstract
1. Introduction
2. Methods
2.1. Ethical Approval
2.2. Tissue Collection and Processing
2.3. Immunohistochemical Staining, Imaging, and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jänig, W. The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0-511-54166-7. [Google Scholar]
- van Weperen, V.Y.H.; Vaseghi, M. Cardiac Vagal Afferent Neurotransmission in Health and Disease: Review and Knowledge Gaps. Front. Neurosci. 2023, 17, 1192188. [Google Scholar] [CrossRef]
- Armour, J.A.; Huang, M.H.; Pelleg, A.; Sylvén, C. Responsiveness of in Situ Canine Nodose Ganglion Afferent Neurones to Epicardial Mechanical or Chemical Stimuli. Cardiovasc. Res. 1994, 28, 1218–1225. [Google Scholar] [CrossRef]
- Salavatian, S.; Hoang, J.D.; Yamaguchi, N.; Lokhandwala, Z.A.; Swid, M.A.; Armour, J.A.; Ardell, J.L.; Vaseghi, M. Myocardial Infarction Reduces Cardiac Nociceptive Neurotransmission through the Vagal Ganglia. JCI Insight 2022, 7, e155747. [Google Scholar] [CrossRef]
- van Weperen, V.Y.H.; Ripplinger, C.M.; Vaseghi, M. Autonomic Control of Ventricular Function in Health and Disease: Current State of the Art. Clin. Auton. Res. 2023, 33, 491–517. [Google Scholar] [CrossRef]
- Zipes, D.P.; Rubart, M. Neural Modulation of Cardiac Arrhythmias and Sudden Cardiac Death. Heart Rhythm 2006, 3, 108–113. [Google Scholar] [CrossRef]
- Rubart, M.; Zipes, D.P. Mechanisms of Sudden Cardiac Death. J. Clin. Investig. 2005, 115, 2305–2315. [Google Scholar] [CrossRef]
- Shen, M.J.; Zipes, D.P. Role of the Autonomic Nervous System in Modulating Cardiac Arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef]
- de Ferrari, G.M.; Sanzo, A.; Bertoletti, A.; Specchia, G.; Vanoli, E.; Schwartz, P.J. Baroreflex Sensitivity Predicts Long-Term Cardiovascular Mortality After Myocardial Infarction Even in Patients with Preserved Left Ventricular Function. J. Am. Coll. Cardiol. 2007, 50, 2285–2290. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Specchia, G.; Mortara, A.; Schwartz, P.J. Baroreflex Sensitivity, Clinical Correlates, and Cardiovascular Mortality among Patients with a First Myocardial Infarction. A Prospective Study. Circulation 1988, 78, 816–824. [Google Scholar] [CrossRef]
- Vaseghi, M.; Salavatian, S.; Rajendran, P.S.; Yagishita, D.; Woodward, W.R.; Hamon, D.; Yamakawa, K.; Irie, T.; Habecker, B.A.; Shivkumar, K. Parasympathetic Dysfunction and Antiarrhythmic Effect of Vagal Nerve Stimulation Following Myocardial Infarction. JCI Insight 2017, 2, e86715. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Yamakawa, K.; Rajendran, P.S.; Takamiya, T.; Vaseghi, M. Antiarrhythmic Effects of Vagal Nerve Stimulation after Cardiac Sympathetic Denervation in the Setting of Chronic Myocardial Infarction. Heart Rhythm 2018, 15, 1214–1222. [Google Scholar] [CrossRef]
- Ando, M.; Katare, R.G.; Kakinuma, Y.; Zhang, D.; Yamasaki, F.; Muramoto, K.; Sato, T. Efferent Vagal Nerve Stimulation Protects Heart Against Ischemia-Induced Arrhythmias by Preserving Connexin43 Protein. Circulation 2005, 112, 164–170. [Google Scholar] [CrossRef]
- Li, M.; Zheng, C.; Kawada, T.; Inagaki, M.; Uemura, K.; Sugimachi, M. Chronic Vagal Nerve Stimulation Exerts Additional Beneficial Effects on the Beta-Blocker-Treated Failing Heart. J. Physiol. Sci. 2019, 69, 295–303. [Google Scholar] [CrossRef]
- Vanoli, E.; de Ferrari, G.M.; Stramba-Badiale, M.; Hull, S.S.; Foreman, R.D.; Schwartz, P.J. Vagal Stimulation and Prevention of Sudden Death in Conscious Dogs with a Healed Myocardial Infarction. Circ. Res. 1991, 68, 1471–1481. [Google Scholar] [CrossRef]
- Yoon, M.S.; Han, J.; Tse, W.W.; Rogers, R. Effects of Vagal Stimulation, Atropine, and Propranolol on Fibrillation Threshold of Normal and Ischemic Ventricles. Am. Heart J. 1977, 93, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Brack, K.E.; Patel, V.H.; Coote, J.H.; Ng, G.A. Nitric Oxide Mediates the Vagal Protective Effect on Ventricular Fibrillation via Effects on Action Potential Duration Restitution in the Rabbit Heart. J. Physiol. Sci. 2007, 583, 695–704. [Google Scholar] [CrossRef]
- Nasi-Er, B.G.; Wenhui, Z.; HuaXin, S.; Xianhui, Z.; Yaodong, L.; Yanmei, L.; Hongli, W.; TuEr-Hong, Z.; Qina, Z.; BaoPeng, T. Vagus Nerve Stimulation Reduces Ventricular Arrhythmias and Increases Ventricular Electrical Stability. Pacing Clin. Electrophysiol. 2019, 42, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.R.; van Veldhuisen, D.J.; Hauptman, P.J.; Borggrefe, M.; Kubo, S.H.; Lieberman, R.A.; Milasinovic, G.; Berman, B.J.; Djordjevic, S.; Neelagaru, S.; et al. Vagus Nerve Stimulation for the Treatment of Heart Failure: The INOVATE-HF Trial. J. Am. Coll. Cardiol. 2016, 68, 149–158. [Google Scholar] [CrossRef]
- Premchand, R.K.; Sharma, K.; Mittal, S.; Monteiro, R.; Dixit, S.; Libbus, I.; DiCarlo, L.A.; Ardell, J.L.; Rector, T.S.; Amurthur, B.; et al. Autonomic Regulation Therapy via Left or Right Cervical Vagus Nerve Stimulation in Patients with Chronic Heart Failure: Results of the ANTHEM-HF Trial. J. Card. Fail. 2014, 20, 808–816. [Google Scholar] [CrossRef]
- de Ferrari, G.M.; Stolen, C.; Tuinenburg, A.E.; Wright, D.J.; Brugada, J.; Butter, C.; Klein, H.; Neuzil, P.; Botman, C.; Castel, M.A.; et al. Long-Term Vagal Stimulation for Heart Failure: Eighteen Month Results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) Trial. Int. J. Cardiol. 2017, 244, 229–234. [Google Scholar] [CrossRef]
- Kumar, H.U.; Nearing, B.D.; Mittal, S.; Premchand, R.K.; Libbus, I.; DiCarlo, L.A.; Amurthur, B.; KenKnight, B.H.; Anand, I.S.; Verrier, R.L. Autonomic Regulation Therapy in Chronic Heart Failure with Preserved/Mildly Reduced Ejection Fraction: ANTHEM-HFpEF Study Results. Int. J. Cardiol. 2023, 381, 37–44. [Google Scholar] [CrossRef]
- Iversen, L.L. Biochemistry of Biogenic Amines; Handbook of Psychopharmacology Series; Springer: New York, NY, USA, 1975; ISBN 978-1-4684-3171-1. [Google Scholar]
- Nguyen, B.L.; Li, H.; Fishbein, M.C.; Lin, S.F.; Gaudio, C.; Chen, P.S.; Chen, L.S. Acute Myocardial Infarction Induces Bilateral Stellate Ganglia Neural Remodeling in Rabbits. Cardiovasc. Pathol. 2012, 21, 143–148. [Google Scholar] [CrossRef]
- Li, W.; Knowlton, D.; van Winkle, D.M.; Habecker, B.A. Infarction Alters Both the Distribution and Noradrenergic Properties of Cardiac Sympathetic Neurons. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H2229–H2236. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.T.; Wang, L.; Lang, B.T.; Cregg, J.M.; Dunbar, C.L.; Woodward, W.R.; Silver, J.; Ripplinger, C.M.; Habecker, B.A. Targeting Protein Tyrosine Phosphatase σ after Myocardial Infarction Restores Cardiac Sympathetic Innervation and Prevents Arrhythmias. Nat. Commun. 2015, 6, 6235. [Google Scholar] [CrossRef] [PubMed]
- Onkka, P.; Maskoun, W.; Rhee, K.S.; Hellyer, J.; Patel, J.; Tan, J.; Chen, L.S.; Vinters, H.V.; Fishbein, M.C.; Chen, P.S. Sympathetic Nerve Fibers and Ganglia in Canine Cervical Vagus Nerves: Localization and Quantitation. Heart Rhythm 2013, 10, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Seki, A.; Green, H.R.; Lee, T.D.; Hong, L.; Tan, J.; Vinters, H.V.; Chen, P.S.; Fishbein, M.C. Sympathetic Nerve Fibers in Human Cervical and Thoracic Vagus Nerves. Heart Rhythm 2014, 11, 1411–1417. [Google Scholar] [CrossRef]
- Berod, A.; Hartman, B.K.; Keller, A.; Joh, T.H.; Pujol, J.F. A New Double Labeling Technique Using Tyrosine Hydroxylase and Dopamine-Beta-Hydroxylase Immunohistochemistry: Evidence for Dopaminergic Cells Lying in the Pons of the Beef Brain. Brain Res. 1982, 240, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Sakayori, N.; Katakura, M.; Hamazaki, K.; Higuchi, O.; Fujii, K.; Fukabori, R.; Iguchi, Y.; Setogawa, S.; Takao, K.; Miyazawa, T.; et al. Maternal Dietary Imbalance between Omega-6 and Omega-3 Fatty Acids Triggers the Offspring’s Overeating in Mice. Commun. Biol. 2020, 3, 473. [Google Scholar] [CrossRef]
- Crisóstomo, V.; Sun, F.; Maynar, M.; Báez-Díaz, C.; Blanco, V.; Garcia-Lindo, M.; Usón-Gargallo, J.; Sánchez-Margallo, F.M. Common Swine Models of Cardiovascular Disease for Research and Training. Lab. Anim. 2016, 45, 67–74. [Google Scholar] [CrossRef]
- Suzuki, Y.; Yeung, A.C.; Ikeno, F. The Representative Porcine Model for Human Cardiovascular Disease. BioMed Res. Int. 2011, 2011, 195483. [Google Scholar] [CrossRef]
- Katz, D.M.; Markey, K.A.; Goldstein, M.; Black, I.B. Expression of Catecholaminergic Characteristics by Primary Sensory Neurons in the Normal Adult Rat in Vivo. Proc. Natl. Acad. Sci. USA 1983, 80, 3526–3530. [Google Scholar] [CrossRef]
- Gordan, R.; Gwathmey, J.K.; Xie, L.H. Autonomic and Endocrine Control of Cardiovascular Function. World J. Cardiol. 2015, 7, 204–214. [Google Scholar] [CrossRef]
- Habecker, B.A.; Bers, D.M.; Birren, S.J.; Chang, R.; Herring, N.; Kay, M.W.; Li, D.; Mendelowitz, D.; Mongillo, M.; Montgomery, J.M.; et al. Molecular and Cellular Neurocardiology in Heart Disease. J. Physiol. 2025, 603, 1689–1728. [Google Scholar] [CrossRef] [PubMed]
- Herring, N.; Kalla, M.; Paterson, D.J. The Autonomic Nervous System and Cardiac Arrhythmias: Current Concepts and Emerging Therapies. Nat. Rev. Cardiol. 2019, 16, 707–726. [Google Scholar] [CrossRef] [PubMed]
- Herring, N.; Lokale, M.N.; Danson, E.J.; Heaton, D.A.; Paterson, D.J. Neuropeptide Y Reduces Acetylcholine Release and Vagal Bradycardia via a Y2 Receptor-Mediated, Protein Kinase C-Dependent Pathway. J. Mol. Cell. Cardiol. 2008, 44, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Jani, N.R.; van Weperen, V.Y.H.; Ayagam, T.; Hoang, J.D.; Emamimeybodi, M.; Mothibe, B.; Bal, S.; Kumar, A.; Khaky, A.; Hamon, D.; et al. Sympathovagal Crosstalk: Y2-Receptor Blockade Enhances Vagal Effects Which in Turn Reduce NPY Levels via Muscarinic Receptor Activation. Cardiovasc. Res. 2025, in press.
- Hoang, J.D.; van Weperen, V.Y.H.; Kang, K.W.; Jani, N.R.; Swid, M.A.; Chan, C.A.; Lokhandwala, Z.A.; Lux, R.L.; Vaseghi, M. Antiarrhythmic Mechanisms of Epidural Blockade After Myocardial Infarction. Circ. Res. 2024, 135, e57–e75. [Google Scholar] [CrossRef]
- van Weperen, V.Y.H.; Hoang, J.D.; Chan, C.; Jani, N.R.; Lokhandwala, Z.A.; Emamimeybodi, M.; Vaseghi, M. BS-469619-001 Spinal Afferent Denervation Ameliorates Pathological Autonomic Remodeling and Reduces Ventricular Arrhythmias After Chronic Myocardial Infarction. Heart Rhythm 2024, 21, S51–S52. [Google Scholar] [CrossRef]
- Wang, H.J.; Rozanski, G.J.; Zucker, I.H. Cardiac Sympathetic Afferent Reflex Control of Cardiac Function in Normal and Chronic Heart Failure States. J. Physiol. 2017, 595, 2519–2534. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, W.; Cornish, K.G.; Rozanski, G.J.; Zucker, I.H. Cardiac Sympathetic Afferent Denervation Attenuates Cardiac Remodeling and Improves Cardiovascular Dysfunction in Rats with Heart Failure. Hypertension 2014, 64, 745–755. [Google Scholar] [CrossRef]
- Devarajan, A.; Wang, K.; Lokhandwala, Z.A.; Emamimeybodi, M.; Shannon, K.; Tompkins, J.D.; Hevener, A.L.; Lusis, A.J.; Abel, E.D.; Vaseghi, M. Myocardial Infarction Causes Sex-Dependent Dysfunction in Vagal Sensory Glutamatergic Neurotransmission that is Mitigated by 17β-Estradiol. JCI Insight 2024, 9, e181042. [Google Scholar] [CrossRef]
- Lombardi, F.; Patton, C.P.; Bella, P.D.; Pagani, M.; Malliani, A. Cardiovascular and Sympathetic Responses Reflexly Elicited through the Excitation with Bradykinin of Sympathetic and Vagal Cardiac Sensory Endings in the Cat. Cardiovasc. Res. 1982, 16, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Salavatian, S.; Beaumont, E.; Longpré, J.P.; Armour, J.A.; Vinet, A.; Jacquemet, V.; Shivkumar, K.; Ardell, J.L. Vagal Stimulation Targets Select Populations of Intrinsic Cardiac Neurons to Control Neurally Induced Atrial Fibrillation. Am. J Physiol. Heart. Circ. Physiol. 2016, 311, H1311–H1320. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, Y.; Wong, B.; Mahajan, A.; Salavatian, S. Pharmacologic, Surgical, and Device-Based Cardiac Neuromodulation. Card. Electrophysiol. Clin. 2024, 16, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; de Ferrari, G.M.; Sanzo, A.; Landolina, M.; Rordorf, R.; Raineri, C.; Campana, C.; Revera, M.; Ajmone-Marsan, N.; Tavazzi, L.; et al. Long Term Vagal Stimulation in Patients with Advanced Heart Failure: First Experience in Man. Eur. J. Heart Fail. 2008, 10, 884–891. [Google Scholar] [CrossRef]
- Kummer, W.; Bachmann, S.; Neuhuber, W.L.; Hänze, J.; Lang, R.E. Tyrosine-Hydroxylase-Containing Vagal Afferent Neurons in the Rat Nodose Ganglion Are Independent from Neuropeptide-Y-Containing Populations and Project to Esophagus and Stomach. Cell Tissue Res. 1993, 271, 135–144. [Google Scholar] [CrossRef]
- Madadi Asl, M.; Vahabie, A.H.; Valizadeh, A. Dopaminergic Modulation of Synaptic Plasticity, Its Role in Neuropsychiatric Disorders, and Its Computational Modeling. Basic Clin. Neurosci. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Speranza, L.; di Porzio, U.; Viggiano, D.; de Donato, A.; Volpicelli, F. Dopamine: The Neuromodulator of Long-Term Synaptic Plasticity, Reward and Movement Control. Cells 2021, 10, 735. [Google Scholar] [CrossRef]
Antibody | Host | Dilution | Vendor and Catalog # |
---|---|---|---|
Primary Antibody | Sheep Anti-TH | 1:1000 | MilliporeSigma, Burlington, MA, USA; ab1542 |
Rabbit Anti-DBH | 1:2000 | Immunostar, Hudson, WI, USA; 22806 | |
Secondary Antibody | Donkey Anti-Sheep IgG—AF647 | 1:200 | Jackson Immunoresearch, West Grove, PA, USA; 713-605-147 |
Donkey Anti-Rabbit IgG—AF555 | 1:200 | Jackson Immunoresearch, West Grove, PA, USA; 711-565-152 |
Ganglion | Animal Number | Total Neurons | TH+ | % TH+ | DBH+ | % DBH+ |
---|---|---|---|---|---|---|
Stellate Ganglia | Animal 1 | 2619 | 2470 | 94.31 | 2248 | 85.83 |
Animal 2 | 2913 | 2740 | 94.06 | 2436 | 83.63 | |
Animal 3 | 1126 | 935 | 83.04 | 835 | 74.16 | |
Animal 4 | 2059 | 1910 | 92.76 | 1712 | 83.15 | |
Average | 2179 | 2013 | 91.04 | 1807 | 81.69 | |
Nodose Ganglia | Animal 3 | 982 | 118 | 12.02 | 0 | 0.00 |
Animal 4 | 1116 | 116 | 10.39 | 0 | 0.00 | |
Animal 5 | 832 | 50 | 6.01 | 0 | 0.00 | |
Animal 6 | 1498 | 97 | 6.48 | 0 | 0.00 | |
Average | 1107 | 95.25 | 8.73 | 0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaky, A.; Yang, N.L.; van Weperen, V.; Avasthi, S.; Jani, N.; Vaseghi, M. Tyrosine Hydroxylase-Expressing Neurons in the Vagal Ganglia: Characterization and Implications. Biomedicines 2025, 13, 2126. https://doi.org/10.3390/biomedicines13092126
Khaky A, Yang NL, van Weperen V, Avasthi S, Jani N, Vaseghi M. Tyrosine Hydroxylase-Expressing Neurons in the Vagal Ganglia: Characterization and Implications. Biomedicines. 2025; 13(9):2126. https://doi.org/10.3390/biomedicines13092126
Chicago/Turabian StyleKhaky, Artin, Nicole Lee Yang, Valerie van Weperen, Shail Avasthi, Neil Jani, and Marmar Vaseghi. 2025. "Tyrosine Hydroxylase-Expressing Neurons in the Vagal Ganglia: Characterization and Implications" Biomedicines 13, no. 9: 2126. https://doi.org/10.3390/biomedicines13092126
APA StyleKhaky, A., Yang, N. L., van Weperen, V., Avasthi, S., Jani, N., & Vaseghi, M. (2025). Tyrosine Hydroxylase-Expressing Neurons in the Vagal Ganglia: Characterization and Implications. Biomedicines, 13(9), 2126. https://doi.org/10.3390/biomedicines13092126