Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
2.4. Findings
2.4.1. Study Flow
2.4.2. Study Characteristics
Author | Animal Model | Heart Failure Model | Sample Size | Drug Regime | Drug Control | Mechanism | Beneficial or Harmful | Myocardial Fibrosis | Altered Lipid Metabolism | Cardiac Insulin Resistance | Altered Gene Expression | Diastolic Dysfunction | Altered Mitochondrial Homeostasis | Cardiac Inflammation | Brief Description |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Young et al., 2001 [18] | M SD 200–255 g rats and mice PPARα −/− | Cardiac workload was either increased (pressure overload by AC) or decreased (mechanical unloading by heterotopic transplantation) | n = 5–10 observations | WY-14643 (0.01% w/w) was added to standard powdered Purina rodent chow fed to rats for 4 days | Regular chow diet | Altered mitochondrial homeostasis | B | N/A | Y | N/A | Y | Y | Y | N/A | UCP3 expression is regulated by PPARα, proposed to have an antioxidant role. |
Young et al., 2001 [19] | M SD 225 g rats | Pressure overload (ascending AC for 7 days) resulted in cardiac hypertrophy | n = 9–13 observations | WY-14643 (0.01% w/w) in powdered chow | Regular chow diet | Diastolic dysfunction | H | Y | N/A | N/A | Y | Y | N/A | N/A | Reactivation of PPARα in the hypertrophied heart is linked to contractile dysfunction. |
Aasum et al., 2003 [20] | F db/db 6–11 weeks mice | db/db mice (non-diabetic littermate controls) | Non-diabetic n = 10, db/db untreated n = 23, db/db treated n = 27 | At 8 weeks given BM 17.0744 for 4–5 week (dose calculated from daily water intake between 24.5 +/− 1.35 and 37.9 +/− 2.5 mg/kg/day) | No drug | Altered lipid metabolism | B | N/A | Y | Y | N/A | N/A | N/A | N/A | Chronic PPARα agonist treatment reduced fatty acid oxidation and increased glycolysis and glucose oxidation, correcting diabetes-induced abnormalities. There was no improvement in LV contractile function. |
Ichihara et al., 2006 [21] | M DS 7–18 weeks rats | Heart failure secondary to chronic hypertension induced by salt sensitivity | Low salt = n = 12, high salt + vehicle n = 24, high salt + fenofibrate 30 mg/kg n= 12, high salt + fenofibrate 50 mg/kg n = 12 | Two groups: low dose of fenofibrate (30 mg/kg/day), and high dose of fenofibrate (50 mg/kg/day) administered orally by gastric gavage once daily from 7–18 weeks of age | DS rats maintained on a diet of 0.3% NaCl until 18 weeks and 3% gum arabic vehicle | Reduced cardiac inflammation and fibrosis | B | Y | N/A | N/A | Y | Y | N | Y | Fenofibrate reduced cardiac hypertrophy, inflammation, fibrosis, diastolic and systolic dysfunction. |
Morgan et al., 2006 [22] | M Wistar-Kyoto 8–20-week 250 g rats | Heart failure was induced by coronary artery ligation | Infarct-induced HF n = 38, sham operated n = 10, untreated n = 10, high fat n = 15, fenofibrate n = 13 | Fenofibrate (150 mg/kg, milled into the food) | Regular chow diet | Altered lipid metabolism | B | N/A | Y | N/A | Y | Y | Y | N/A | Prolonged administration of a PPARα agonist increases fatty acid oxidation capacity, although this beneficial effect can be reduced by a high-fat diet. |
Pruimboom Brees et al., 2006 [23] | WT and PPAR-null 9–12-week mice on an SV 129 background | None | Each group n = 8 | PPAR- fibric acid derivative (most selective for PPARα) | Water (vehicle) | Increased cardiac oxidative stress and necrosis | H | Y | Y | N/A | Y | N/A | Y | N/A | Activation of PPARα leads to increased cardiac fatty acid oxidation and oxidative stress intermediates resulting in cardiomyocyte necrosis. |
King et al., 2007 [24] | M Wistar < 16 weeks rats | None | Diabetes n = 9, control n = 8, standard diet n = 12, fenofibrate n = 12, untreated or treated with fenofibrate n = 9 | Fenofibrate (300 mg/kg/day in the chow) for 4 weeks | Regular chow diet | Mitochondrial homeostasis | B | N/A | Y | N/A | Y | N/A | Y | N/A | PPARα agonist upregulates MTE1 to regulate fatty acid accumulation in the mitochondrial matrix when the heart is exposed to elevated levels. |
Anne D. Hafstad et al., 2009 [25] | M BALB/cA Bom 12 weeks mice | 40 min low-flow ischaemia followed by 35 min reperfusion (5 min in Langendorff and 30 min in working mode) | n = 22–25 mice in total | Mice treated with TTA (0.5% w/w) for 8 days | Age matched untreated | Altered lipid metabolism | H | N/A | R | N/A | Y | Y | N/A | N/A | In vivo administration of synthetic PPARα ligand increased FAO and decreased glucose oxidation, associated with decreased cardiac efficiency and reduced post-ischaemic functional recovery. |
Chen et al., 2010 [26] | F Diabetic KKAy 38–42 g mice | Inoculated with encephalomyocarditis virus | Vehicle group n = 45, early agonist group n = 39, late group agonist n = 18 | 2 groups: WY-14643-early—received daily dose 50 mg/kg starting 3 days before viral inoculation, WY1463-late—received simultaneously at viral inoculation | Vehicle (dimethyl sulfoxide) | Reduced cardiac inflammation | B | Y | Y | N/A | Y | N/A | Y | Y | PPARα agonist was cardioprotective, perhaps due to reduced inflammation. |
Haemmerle et al., 2011 [27] | M+F Atlg KO < 10 weeks mice | None | n = 4 mRNA Glycogen content n = 9 in each group Mitochondria analysis n = 4–6 in each group Oxygen consumption n = 6 KO n = 5–7 depending on experiment | WY-14643 (0.1% w/w) for time indicated and fenofibrate (0.2% w/w) for 10 weeks provided to separate mice via feeding chow diet | Regular chow diet | Altered gene expression | B | N | R | N/A | N/A | N | N/A | N/A | PPARα agonists in mice with decreased PPARα target gene expression reverse mitochondrial defects, restore normal heart function, and prevent premature death. |
Jia et al., 2014 [28] | M 10 week 24–26 g mice | Cardiac hypertrophy induced by thoracic transverse AC | n = 3–5 for each group in experiments | Fenofibrate (50 g/kg) via gavage after operation for 4 weeks | Saline | Reduced cardiac inflammation | B | N/A | N/A | N/A | Y | Y | N/A | Y | Fenofibrate modulates basal and lipopolysaccharide (LPS)-stimulated HMGB1 expression and secretion in cardiomyocytes. Fenofibrate also prevents cardiac hypertrophy. |
Ibarra-Lara et al., 2016 [29] | M Wistar 24 weeks 50 g rats | MetS rats (received 30% sugar in drinking water for 24 weeks) and controls (tap water for drinking). MI achieved by occluding LAD coronary artery for 60 min (sham control) | n = 5 per group for experiments | At end of 24 weeks, given 2-week oral treatment of fenofibrate (100 mg/kg/day) | Vehicle treatment (NaCl 0.9%) | Reduced insulin resistance | B | R | R | N | Y | N/A | N/A | Y | Fenofibrate reduced triglycerides, non-HDL cholesterol, insulin levels, and insulin resistance index in MetS animals, whilst promoting an antioxidant environment. |
Kaimoto et al., 2017 [12] | M 10-week mice | Pressure-overload heart failure model in mice through transverse AC. Transgenic PPARα overexpression induction using Tet-Off system | n = 6–10 per group for different experiments | WY-14643 (0.01% w/w) in powdered chow. Operation at 10 weeks. At 14–18 week of age, powdered diet with WY-14643 | Regular chow diet | Altered lipid metabolism | B | Y | Y | N/A | Y | Y | N/A | N/A | PPARα activation during pressure-overloaded heart failure improved myocardial function and energetics. |
Ibarra-Lara et al., 2019 [30] | M Wistar 300–350 g rats | LAD coronary artery ligation (MI) (sham control) | n = 6 per group for experiments | 7 days post-MI, animals were given clofibrate (100 mg/kg) for 7 days | Vehicle (vegetable oil) by intraperitoneal injection | Reduced cardiac inflammation | B | R | N/A | N/A | N/A | Y | N/A | R | Clofibrate decreases late inflammation and partially reverses LV remodelling and functional damage. |
Sanchez-Aguilar et al., 2023 [31] | M Wistar 24 weeks rats | MetS rats received 30% sucrose in drinking water for 24 weeks, whereas controls given tap water. LAD coronary artery ligation gave ischaemic reperfusion model (sham control) | n = 5–6 per group for experiment | At 24 weeks, MetS animals given clofibrate (100 mg/kg/day) by intraperitoneal injection for 7 days (pre-treatment to I/R model) | Control vehicle injection | Reduced cardiac inflammation | B | R | R | N | Y | N/A | N/A | R | Pre-treatment with clofibrate decreased cardiac inflammation, reduced myocardial fibrosis and apoptosis, whilst improving insulin sensitivity. |
Author | Animal Model | Heart Failure Model | Sample Size | Mechanism | Beneficial or Harmful | Myocardial Fibrosis | Altered Lipid Metabolism | Cardiac Insulin Resistance | Altered Gene Expression | Diastolic Dysfunctions | Altered Mitochondrial Homeostasis | Cardiac Inflammation | Brief Description |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Finck et al., 2002 [32] | M 8–16 weeks 22–30 g mice, some db/db MHC-PPARα mice | Diabetes induced by single intraperitoneal injection of STZ or db/db mice (control—vehicle injection). MHC-PPARα mice (control—non-transgenic littermates). | n = 3–7 per group for experiments | Altered lipid metabolism | H | N/A | Y | Y | Y | Y | Y | N | MHC-PPARα heart shows similar expression of genes involved in myocardial fatty acid utilisation and reciprocal downregulation of myocardial glucose pathways to the diabetic heart, ultimately altering cardiac myocyte lipid balance and resulting in hypertrophy and ventricular dysfunction. |
Park et al., 2005 [33] | M MHC-PPARα 2–14 weeks 27 g mice | MHC-PPARα overexpression (age-matched WT control). | n = 4–6 for most experiments n = 6–13 for hyperinsulinaemic experiments | Cardiac insulin resistance | H | N/A | N | Y | Y | Y | N/A | N/A | Increased activity of PPARα results in insulin resistance and defects in insulin signalling and STAT3 activity, reducing cardiac function. |
Marionneau et al., 2008 [34] | M + F MHC-PPARα 5–6 weeks mice | MHC-PPARα cardiac-specific overexpression (age-matched WT control). | n = 9 in wild type mice group n = 9 in MHC-PPARα C57BL/6 mice group | Ventricular Kv current remodelling | Unclear | N/A | Y | N/A | Y | N/A | N/A | N/A | Cardiac-specific activation of PPARα results in ventricular Kv current remodelling in left ventricles, although this is age-related. |
Duerr et al., 2014 [35] | M+F MHC-PPARα and C57BL/6J WT 10–12 weeks 20–25 g mice | LAD coronary artery ligation and MHC-PPARα cardiac-specific overexpression, | n = 8 in MHC-PPARα group n = 6 in wild type group | Myocardial fibrosis | H | Y | N/A | N/A | Y | Y | Y | Y | Cardiomyocyte-specific PPARα overexpression resulted in cardiomyocyte loss and reduced ventricular function. There was increased glycogen deposition, apoptosis, reduced antioxidative capacity, resulting in post-ischaemic inflammation and remodelling. |
Trial Name | Ref | Participants | Intervention | Comparison | Primary Outcomes | Heart Failure HR | Trial Design |
---|---|---|---|---|---|---|---|
Veterans Administration Cooperative Study of Atherosclerosis (VA CO-OP) (1973) | [36] | 380 men with previous history of stroke | Clofibrate | Placebo | Recurrent strokes | HR not reported; number of events in P/C arms: 4/15 | Parallel 1:1 |
Veterans Affairs HDL Intervention Trial (VA-HIT) (1999) | [16] | 2531 men < 75 y old with CVD and dyslipidaemia | Gemfibrozil | Placebo | Composite of myocardial infarction or CVD | 0.78 (0.61–0.99); p = 0.04 | Parallel 1:1 |
Action to Control Cardiovascular Risk in Diabetes Lipid trial (ACCORD-Lipid) (2010) | [17] | 5518 Type 2 diabetes patients with dyslipidaemia and CVD or CV risk factors | Fenofibrate + statins | Statins | MACEs | 0.82 (0.65–1.05); p = 0.1 | Factorial (intensive vs. standard glucose control) |
2.5. Preclinical Studies
2.5.1. The Role of PPARα in Metabolic Modulation and Energy Homeostasis
2.5.2. Potential Adverse Effects in Ischaemic Conditions
2.5.3. Anti-Inflammatory and Antioxidant Effects of PPARα Activation
2.5.4. Attenuation of Myocardial Fibrosis as a Target for HF Prevention
2.5.5. PPARα Agonists as a Drug Target for HF Prevention
2.5.6. Randomised Controlled Trials with Fibrates
2.5.7. Limitations of Existing Clinical Evidence and the Need for HF-Specific Trials
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; A Ajjan, R.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L.; Zhong, W.; Shu, J.; Abu Much, A.; Lotan, D.; Grupper, A.; Younis, A.; Dai, H. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur. J. Prev. Cardiol. 2021, 28, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 1 May 2025).
- Shahim, B.; Kapelios, C.J.; Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure: An Updated Review. Card. Fail. Rev. 2023, 9, e11. (In English) [Google Scholar] [CrossRef] [PubMed]
- Zdrojewski, T. An update on the prevalence of heart failure. In Hypertension and Heart Failure: Epidemiology, Mechanisms and Treatment; Springer: Berlin/Heidelberg, Germany, 2024; pp. 13–26. [Google Scholar]
- Fedacko, J.; Tuppo, E.E.; Singh, R.B.; Elkilany, G.N.; Hristova, K. Epidemiology and mortality due to heart failure. In Pathophysiology, Risk Factors, and Management of Chronic Heart Failure; Elsevier: Amsterdam, The Netherlands, 2024; pp. 23–40. [Google Scholar]
- Dunbar, S.B.; Khavjou, O.A.; Bakas, T.; Hunt, G.; Kirch, R.A.; Leib, A.R.; Morrison, R.S.; Poehler, D.C.; Roger, V.L.; Whitsel, L.P. Projected Costs of Informal Caregiving for Cardiovascular Disease: 2015 to 2035: A Policy Statement From the American Heart Association. Circulation 2018, 137, e558–e577. [Google Scholar] [CrossRef]
- Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef]
- Miller, L.M.; Gal, A. Cardiovascular System and Lymphatic Vessels. In Pathologic Basis of Veterinary Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 561–616.e1. [Google Scholar] [CrossRef]
- Li, X.; Bi, X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023, 13, 615. (In English) [Google Scholar] [CrossRef]
- Flavell, D.M.; Wootton, P.T.E.; Myerson, S.G.; World, M.J.; Pennell, D.J.; Humphries, S.E.; Talmud, P.J.; Montgomery, H.E. Variation in the lipoprotein lipase gene influences exercise-induced left ventricular growth. J. Mol. Med. 2006, 84, 126–131. [Google Scholar] [CrossRef]
- Kaimoto, S.; Hoshino, A.; Ariyoshi, M.; Okawa, Y.; Tateishi, S.; Ono, K.; Uchihashi, M.; Fukai, K.; Iwai-Kanai, E.; Matoba, S. Activation of PPAR-α in the early stage of heart failure maintained myocardial function and energetics in pressure-overload heart failure. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H305–H313. (In English) [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, P.; Xu, M.; Zhang, C.; Guo, W.; Chen, H.; Tian, J.; Wei, H.; Lu, R.; Cao, T. Astragaloside IV alleviates heart failure via activating PPARα to switch glycolysis to fatty acid β-oxidation. Sci. Rep. 2017, 7, 2691. (In English) [Google Scholar] [CrossRef]
- Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. (In English) [Google Scholar] [CrossRef]
- Schaffer, J.E. Lipotoxicity: When tissues overeat. Curr. Opin. Infect. Dis. 2003, 14, 281–287. [Google Scholar] [CrossRef]
- Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med. 1999, 341, 410–418. [Google Scholar] [CrossRef]
- Group, A.S.; Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef]
- Young, M.E.; Patil, S.; Ying, J.; Depre, C.; Ahuja, H.S.; Shipley, G.L.; Stepkowski, S.M.; Davies, P.J.A.; Taegtmeyer, H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor alpha in the adult rodent heart. FASEB J. 2001, 15, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Young, M.E.; Laws, F.A.; Goodwin, G.W.; Taegtmeyer, H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J. Biol. Chem. 2001, 276, 44390–44395. [Google Scholar] [CrossRef] [PubMed]
- Aasum, E.; Belke, D.D.; Severson, D.L.; Riemersma, R.A.; Cooper, M.; Andreassen, M.; Larsen, T.S. Cardiac function and metabolism in Type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-alpha activator. Am. J. Physiol. Circ. Physiol. 2002, 283, H949–H957. (In English) [Google Scholar] [CrossRef]
- Ichihara, S.; Obata, K.; Yamada, Y.; Nagata, K.; Noda, A.; Ichihara, G.; Yamada, A.; Kato, T.; Izawa, H.; Murohara, T.; et al. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J. Mol. Cell. Cardiol. 2006, 41, 318–329. (In English) [Google Scholar] [CrossRef]
- Morgan, E.E.; Rennison, J.H.; Young, M.E.; McElfresh, T.A.; Kung, T.A.; Tserng, K.-Y.; Hoit, B.D.; Stanley, W.C.; Chandler, M.P. Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am. J. Physiol. Circ. Physiol. 2006, 290, H1899–H1904. (In English) [Google Scholar] [CrossRef]
- Pruimboom-Brees, I.; Haghpassand, M.; Royer, L.; Brees, D.; Aldinger, C.; Reagan, W.; Singh, J.; Kerlin, R.; Kane, C.; Bagley, S.; et al. A critical role for peroxisomal proliferator-activated receptor-alpha nuclear receptors in the development of cardiomyocyte degeneration and necrosis. Am. J. Pathol. 2006, 169, 750–760. [Google Scholar] [CrossRef]
- King, K.L.; Young, M.E.; Kerner, J.; Huang, H.; O’Shea, K.M.; Alexson, S.E.H.; Hoppel, C.L.; Stanley, W.C. Diabetes or peroxisome proliferator-activated receptor alpha agonist increases mitochondrial thioesterase I activity in heart. J. Lipid Res. 2007, 48, 1511–1517. [Google Scholar] [CrossRef]
- Hafstad, A.D.; Khalid, A.M.; Hagve, M.; Lund, T.; Larsen, T.S.; Severson, D.L.; Clarke, K.; Berge, R.K.; Aasum, E. Cardiac peroxisome proliferator-activated receptor-α activation causes increased fatty acid oxidation, reducing efficiency and post-ischaemic functional loss. Cardiovasc. Res. 2009, 83, 519–526. [Google Scholar] [CrossRef]
- Chen, R.; Liang, F.; Morimoto, S.; Li, Q.; Moriya, J.; Yamakawa, J.-I.; Takahashi, T.; Iwai, K.; Kanda, T. The effects of a PPARalpha agonist on myocardial damage in obese diabetic mice with heart failure. Int. Heart J. 2010, 51, 199–206. (In English) [Google Scholar] [CrossRef] [PubMed]
- Haemmerle, G.; Moustafa, T.; Woelkart, G.; Büttner, S.; Schmidt, A.; van de Weijer, T.; Hesselink, M.; Jaeger, D.; Kienesberger, P.C.; Zierler, K. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat. Med. 2011, 17, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Xue, R.; Liu, G.; Li, L.; Yang, J.; Pi, G.; Ma, S.; Kan, Q. HMGB1 is involved in the protective effect of the PPAR alpha agonist fenofibrate against cardiac hypertrophy. PPAR Res. 2014, 2014, 541394. (In English) [Google Scholar] [CrossRef]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Sánchez-Mendoza, A.; Del Valle-Mondragón, L.; Soria-Castro, E.; Carreón-Torres, E.; Díaz-Díaz, E.; Vázquez-Meza, H.; Guarner-Lans, V.; Rubio-Ruiz, M.E. Fenofibrate therapy restores antioxidant protection and improves myocardial insulin resistance in a rat model of metabolic syndrome and myocardial ischemia: The role of Angiotensin II. Molecules 2016, 22, 31. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Soria-Castro, E.; Vargas-Barrón, J.; Roldán, F.J.; Pavón, N.; Torres-Narváez, J.C.; Cervantes-Pérez, L.G.; Pastelín-Hernández, G.; Sánchez-Mendoza, A. Clofibrate treatment decreases inflammation and reverses myocardial infarction-induced remodelation in a rodent experimental model. Molecules 2019, 24, 270. [Google Scholar] [CrossRef]
- Sánchez-Aguilar, M.; Ibarra-Lara, L.; Cano-Martínez, A.; Soria-Castro, E.; Castrejón-Téllez, V.; Pavón, N.; Osorio-Yáñez, C.; Díaz-Díaz, E.; Rubio-Ruíz, M.E. PPAR Alpha Activation by Clofibrate Alleviates Ischemia/Reperfusion Injury in Metabolic Syndrome Rats by Decreasing Cardiac Inflammation and Remodeling and by Regulating the Atrial Natriuretic Peptide Compensatory Response. Int. J. Mol. Sci. 2023, 24, 5321. (In English) [Google Scholar] [CrossRef]
- Finck, B.N.; Lehman, J.J.; Leone, T.C.; Welch, M.J.; Bennett, M.J.; Kovacs, A.; Han, X.; Gross, R.W.; Kozak, R.; Lopaschuk, G.D.; et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J. Clin. Investig. 2002, 109, 121–130. [Google Scholar] [CrossRef]
- Park, S.-Y.; Cho, Y.-R.; Finck, B.N.; Kim, H.-J.; Higashimori, T.; Hong, E.-G.; Lee, M.-K.; Danton, C.; Deshmukh, S.; Cline, G.W.; et al. Cardiac-specific overexpression of peroxisome proliferator-activated receptor-alpha causes insulin resistance in heart and liver. Diabetes 2005, 54, 2514–2524. (In English) [Google Scholar] [CrossRef]
- Marionneau, C.; Aimond, F.; Brunet, S.; Niwa, N.; Finck, B.; Kelly, D.P.; Nerbonne, J.M. PPARalpha-mediated remodeling of repolarizing voltage-gated K+ (Kv) channels in a mouse model of metabolic cardiomyopathy. J. Mol. Cell. Cardiol. 2008, 44, 1002–1015. (In English) [Google Scholar] [CrossRef]
- Duerr, G.D.; Heinemann, J.C.; Arnoldi, V.; Feisst, A.; Kley, J.; Ghanem, A.; Welz, A.; Dewald, O. Cardiomyocyte specific peroxisome proliferator-activated receptor-alpha overexpression leads to irreversible damage in ischemic murine heart. Life Sci. 2014, 102, 88–97. [Google Scholar] [CrossRef]
- The Veterans Administration Cooperative Study Group. The treatment of cerebrovascular disease with clofibrate. Final report of the Veterans Administration Cooperative Study of Atherosclerosis, Neurology Section. Stroke 1973, 4, 684–693. [Google Scholar] [CrossRef]
- Kaimoto, S.; Hoshino, A.; Ariyoshi, M.; Okawa, Y.; Uchihashi, M.; Fukai, K.; Ono, K.; Tateishi, S.; Iwai-Kanai, E.; Matoba, S. Abstract 16089: Activation of PPARα During the Progressive Phase of Heart Failure Improved Myocardial Energetics and Function in Pressure Overload Heart Failure. Circulation 2014, 130 (Suppl. S2), A16089. Available online: https://www.ahajournals.org/doi/abs/10.1161/circ.130.suppl_2.16089 (accessed on 1 May 2025).
- Boulet, J.; Sridhar, V.S.; Bouabdallaoui, N.; Tardif, J.-C.; White, M. Inflammation in heart failure: Pathophysiology and therapeutic strategies. Inflamm. Res. 2024, 73, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, L.; Gelosa, P.; Muluhie, M.; Mercuriali, B.; Rzemieniec, J.; Gotti, M.; Fiordaliso, F.; Busca, G.; Sironi, L. Fenofibrate reduces cardiac remodeling by mitochondrial dynamics preservation in a renovascular model of cardiac hypertrophy. Eur. J. Pharmacol. 2024, 978, 176767. [Google Scholar] [CrossRef] [PubMed]
- Nikolov, A.; Popovski, N. Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites 2022, 12, 297. [Google Scholar] [CrossRef]
- Zou, J.; Le, K.; Xu, S.; Chen, J.; Liu, Z.; Chao, X.; Geng, B.; Luo, J.; Zeng, S.; Ye, J.; et al. Fenofibrate ameliorates cardiac hypertrophy by activation of peroxisome proliferator-activated receptor-alpha partly via preventing p65-NFkappaB binding to NFATc4. Mol. Cell. Endocrinol. 2013, 370, 103–112. [Google Scholar] [CrossRef]
- Forcheron, F.; Basset, A.; Abdallah, P.; Del Carmine, P.; Gadot, N.; Beylot, M. Diabetic cardiomyopathy: Effects of fenofibrate and metformin in an experimental model—The Zucker diabetic rat. Cardiovasc. Diabetol. 2009, 8, 16. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, Y.; Tao, T.; Guo, W.; Liu, R.; Huang, J.; Xu, G. Activation of PPARalpha Ameliorates Cardiac Fibrosis in Dsg2-Deficient Arrhythmogenic Cardiomyopathy. Cells 2022, 11, 3184. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Li, P.-F. PPARalpha: An emerging target of metabolic syndrome, neurodegenerative and cardiovascular diseases. Front. Endocrinol. 2022, 13, 1074911. [Google Scholar] [CrossRef]
- The ACCORD Study Group. Nine-Year Effects of 3.7 Years of Intensive Glycemic Control on Cardiovascular Outcomes. Diabetes Care 2016, 39, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Preiss, D.; Logue, J.; Sammons, E.; Zayed, M.; Emberson, J.; Wade, R.; Wallendszus, K.; Stevens, W.; Cretney, R.; Harding, S.; et al. Effect of Fenofibrate on Progression of Diabetic Retinopathy. NEJM Evid. 2024, 3, EVIDoa2400179. [Google Scholar] [CrossRef]
- Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S.J.; E Grobbee, D.; Cass, A.; Chalmers, J.; Perkovic, V. Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet 2010, 375, 1875–1884. [Google Scholar] [CrossRef]
- Morieri, M.L.; Shah, H.S.; Sjaarda, J.; Lenzini, P.A.; Campbell, H.; Motsinger-Reif, A.A.; Gao, H.; Lovato, L.; Prudente, S.; Pandolfi, A.; et al. PPARA Polymorphism Influences the Cardiovascular Benefit of Fenofibrate in Type 2 Diabetes: Findings From ACCORD-Lipid. Diabetes 2020, 69, 771–783. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Vasques-Nóvoa, F.; Ferrão, D.; Saraiva, F.; Falcão-Pires, I.; Neves, J.S.; Sharma, A.; Rossignol, P.; Zannad, F.; Leite-Moreira, A. Fenofibrate and Heart Failure Outcomes in Patients With Type 2 Diabetes: Analysis From ACCORD. Diabetes Care 2022, 45, 1584–1591. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Handford, C.; Stirling-Barros, L.; Ganji-Arjenaki, M.; Mahmod, M.; Nazarzadeh, M.; Wamil, M. Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence. Biomedicines 2025, 13, 2080. https://doi.org/10.3390/biomedicines13092080
Handford C, Stirling-Barros L, Ganji-Arjenaki M, Mahmod M, Nazarzadeh M, Wamil M. Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence. Biomedicines. 2025; 13(9):2080. https://doi.org/10.3390/biomedicines13092080
Chicago/Turabian StyleHandford, Carla, Laura Stirling-Barros, Mahboube Ganji-Arjenaki, Masliza Mahmod, Milad Nazarzadeh, and Malgorzata Wamil. 2025. "Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence" Biomedicines 13, no. 9: 2080. https://doi.org/10.3390/biomedicines13092080
APA StyleHandford, C., Stirling-Barros, L., Ganji-Arjenaki, M., Mahmod, M., Nazarzadeh, M., & Wamil, M. (2025). Targeting Cardiac Metabolism in Heart Failure with PPARα Agonists: A Review of Preclinical and Clinical Evidence. Biomedicines, 13(9), 2080. https://doi.org/10.3390/biomedicines13092080