Correlation of Oxidative Stress Biomarkers with Activity of Pediatric Idiopathic Nephrotic Syndrome
Abstract
1. Introduction
1.1. Etiology and Pathogenesis of Idiopathic Nephrotic Syndrome in Children
1.2. The Role of Oxidative Stress in Pediatric INS
2. Materials and Methods
2.1. Study Design
2.2. Oxidative Stress Biomarker Determination
2.3. Evaluation of Oxidative Status Using d-ROMs, PAT and OSI
2.4. Statistical Methods
3. Results
4. Discussion
4.1. Oxidative Stress Biomarkers in Kidney Disease
4.2. Implications of Oxidative Stress and Its Biomarkers (DiY, HEL, 8-OHdG, Isoprostanes, and OSI) in INS Children
4.3. Oxidative Stress, Steroid Resistance, and Treatment Monitoring
4.4. Biomarkers Specifically Linked to Oxidative Stress Severity in Pediatric INS
- Sample size limitations inherent to our pilot design likely reduced statistical power to detect subtle but biologically meaningful differences. The small cohort size, combined with inter-individual variability and heterogeneity in treatment timing, may have obscured real effects.
- The temporal dynamics of HEL and DiY may not align with the sampling points used in our study. HEL, as a marker of early lipid peroxidation, and DiY, reflecting protein oxidation through tyrosine cross-linking, may peak at different stages of oxidative injury than those captured (i.e., before overt clinical relapse or after inflammatory resolution). These markers might be more responsive to sustained oxidative insults than to transient fluctuations.
- Biological specificity may limit their utility in pediatric INS. For example, HEL has shown stronger associations with chronic oxidative conditions such as diabetic nephropathy or hypertensive kidney injury, where continuous lipid peroxidation plays a prominent role [31]. Similarly, DiY may better reflect cumulative oxidative protein damage in advanced or end-stage renal disease than in episodic relapses typical of steroid-sensitive INS [30].
- Finally, technical factors may have contributed to non-significant results. While all assays had acceptable intra- and inter-assay coefficients of variation, it is possible that sensitivity thresholds were insufficient to capture low-level oxidative changes in well-controlled patients.
4.5. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | reactive oxygen species |
MDA | malondialdehyde |
SOD | superoxide dismutase |
GSH | glutathione |
TAC | total antioxidant capacity |
TAS | total antioxidant status |
AOPP | advanced oxidized protein products |
DiY | dityrosine |
GC | glucocorticoid |
CV | coefficients of variation |
8-OHdG | 8-hydroxy-2′-deoxyguanosine |
HEL | hexanoyl-lysine adduct |
ELISA | enzyme-linked immunosorbent assay |
d-ROMs test | derivatives of reactive oxygen metabolites |
PAT test | plasma antioxidant test |
OSI | oxidative stress index |
References
- Niaudet, P. Nephrotic Syndrome: Classification and Evaluation. In Pediatric Nephrology, 8th ed.; Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R., Eds.; Springer Nature: Cham, Switzerland, 2022; Volume 1, pp. 255–260. [Google Scholar]
- Lestari, H.I.; Zulissetiana, E.F.; Melizah, A. The Status of Oxidants and Antioxidants in Children With Nephrotic Syndrome. Biosci. Med. J. Biomed. Transl. Res. 2018, 2, 24–33. [Google Scholar] [CrossRef]
- Rajbala, A.; Sane, A.S.; Zope, J.S.; Mishra, V.V.; Trivedi, H.L. Oxidative stress status in children with nephrotic syndrome. Panminerva Medica 1997, 39, 165–168. [Google Scholar]
- Mao, S.; Zhang, A.; Huang, S. Serum levels of malondialdehyde, vitamin C and E in idiopathic nephrotic syndrome: A meta-analysis. Ren. Fail. 2014, 36, 994–999. [Google Scholar] [CrossRef]
- Yazılıtaş, F.; Oztek-Celebi, F.Z.; Erel, Ö.; Çakıcı, E.K.; Alışık, M.; Bülbül, M. Dynamic Thiol/Disulphide Homeostasis in Children with Nephrotic Syndrome. Nephron 2019, 142, 17–25. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Sinha, I.; Prabhu, K.; Bhaskaranand, N.; Rao, A. Plasma Protein Thiols and Total Antioxidant Power in Pediatric Nephrotic Syndrome. Nephron Clin. Pract. 2008, 110, c10–c14. [Google Scholar] [CrossRef]
- Mulat, S.Y.; Mihajlović, M.; Antonić, T.; Miloševski-Lomić, G.; Peco-Antić, A.; Jovanović, D.; Paripović, D.; Stefanović, A. Pediatric nephrotic syndrome: The interplay of oxidative stress and inflammation. J. Med. Biochem. 2024, 43, 424–435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zachwieja, J.; Dobrowolska-Zachwieja, A.; Bobkowski, W.; Strzykała, K.; Niklas, A.; Zaniew, M.; Maciejewski, J. Dietary antioxidants and total antioxidant status in children with nephrotic syndrome. Pol. Merkur. Lekarski. 2001, 10, 237–240. (In Polish) [Google Scholar] [PubMed]
- Jing, H.; Wang, F.; Gao, X. Lithium intoxication induced pyroptosis viaROS/NF-κB/NLRP3inflammasome regulatory networks in kidney of mice. Environ. Toxicol. 2022, 37, 825–835. [Google Scholar] [CrossRef]
- Alberti, A.; Bolognini, L.; Macciantelli, D.; Caratelli, M. The radical cation of N,N-diethyl-para-phenylenediamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 2000, 26, 253–267. [Google Scholar] [CrossRef]
- Carratelli, M. Reactive oxygen metabolites (ROMs) and oxidative stress. Clin. Chem. Lab. Med. 2003, 41, 115–121. [Google Scholar]
- Rice-Evans, C.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Ece, A.; Atamer, Y.; Gürkan, F.; Davutoğlu, M.; Bilici, M.; Tutanç, M.; Güneş, A. Paraoxonase, anti-oxidant response and oxidative stress in children with chronic renal failure. Pediatr. Nephrol. 2005, 21, 239–245. [Google Scholar] [CrossRef]
- Nasrollahi, S.; Panah, S.M.H.; Tavilani, H.; Tavasoli, S.; Naderan, M.; Shoar, S. Antioxidant status and serum levels of selectins in pre-eclampsia. J. Obstet. Gynaecol. 2014, 35, 16–18. [Google Scholar] [CrossRef]
- Dursun, E.; Ozben, T.; Süleymanlar, G.; Dursun, B.; Yakupoglu, G. Effect of hemodialysis on the oxidative stress and antioxidants. Clin. Chem. Lab. Med. 2002, 40, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Zhang, T. Danggui Shaoyaosan attenuates doxorubicin induced Nephrotic Syndrome THROUGH regulating on PI3K/Akt Pathway. Funct. Integr. Genom. 2023, 23, 148. [Google Scholar] [CrossRef]
- Jadoon, S.; Malik, A. A Comprehensive Review Article on Isoprostanes as Biological Markers. Biochem. Pharmacol. 2018, 7, 246. [Google Scholar] [CrossRef]
- Milne, G.L.; Musiek, E.S.; Morrow, J.D. F2-Isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers 2005, 10, 10–23. [Google Scholar] [CrossRef]
- Menzel, A.; Samouda, H.; Dohet, F.; Loap, S.; Ellulu, M.S.; Bohn, T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice—Which to Use Regarding Disease Outcomes? Antioxidants 2021, 10, 414. [Google Scholar] [CrossRef]
- Milne, G.L.; Dai, Q.; Roberts, L.J. The isoprostanes—25 years later. Biochim. et Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2015, 1851, 433–445. [Google Scholar] [CrossRef]
- Kaneko, K.; Kimata, T.; Takahashi, M.; Shimo, T.; Tanaka, S.; Tsuji, S. Change in urinary 8-hydroxydeoxyguanosine in idiopathic nephrotic syndrome. Pediatr. Nephrol. 2011, 27, 155–156. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.-J.; Liu, Q.; Li, J.; Jiang, S.; Ma, Y.-Q.; Dang, Y.-M.; Cai, J.-P. Urinary 8-oxoGuo as a potential novel evaluation index for patients with nephrotic syndrome. Free. Radic. Res. 2022, 56, 691–698. [Google Scholar] [CrossRef]
- Dogra, G.; Ward, N.; Croft, K.D.; Mori, T.A.; Barrett, P.H.R.; Herrmann, S.E.; Irish, A.B.; Watts, G.F. Oxidant stress in nephrotic syndrome: Comparison of F2-isoprostanes and plasma antioxidant potential. Nephrol. Dial. Transplant. 2001, 16, 1626–1630. [Google Scholar] [CrossRef]
- Matjuda, E.N.; Engwa, G.A.; Mungamba, M.M.; Sewani-Rusike, C.R.; Nkeh-Chungag, B.N. Oxidative stress is associated with markers of renal dysfunction in children aged 6-9 years old in a South African population. Pan Afr. Med. J. 2022, 42, 35. [Google Scholar]
- Bakr, A.; Hassan, S.A.; Shoker, M.; Zaki, M.; Hassan, R. Oxidant stress in primary nephrotic syndrome: Does it modulate the response to corticosteroids? Pediatr. Nephrol. 2009, 24, 2375–2380. [Google Scholar] [CrossRef]
- Hashemi, M.; Sadeghi-Bojd, S.; Raeisi, M.; Moazeni-Roodi, A. Evaluation of Paraoxonase Activity in Children With Nephrotic Syndrome. Nephro-Urol. Mon. 2013, 5, 978–982. [Google Scholar] [CrossRef]
- May, C.J.; Ford, N.P.; Welsh, G.I.; Saleem, M.A.; Bhimma, R. Biomarkers to predict or measure steroid resistance in idiopathic nephrotic syndrome: A systematic review. PLoS ONE 2025, 20, e0312232. [Google Scholar] [CrossRef]
- Miljkovic, M.; Stefanovic, A.; Simic-Ogrizovic, S.; Vekic, J.; Bogavac-Stanojevic, N.; Cerne, D.; Kocbek, P.; Marc, J.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V.; et al. Association of Dyslipidemia, Oxidative Stress, and Inflammation With Redox Status in VLDL, LDL, and HDL Lipoproteins in Patients With Renal Disease. Angiology 2018, 69, 861–870. [Google Scholar] [CrossRef]
- Tejchman, K.; Kotfis, K.; Sieńko, J. Biomarkers and Mechanisms of Oxidative Stress—Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int. J. Mol. Sci. 2021, 22, 8010. [Google Scholar] [CrossRef]
- Colombo, G.; Reggiani, F.; Cucchiari, D.; Portinaro, N.M.; Giustarini, D.; Rossi, R.; Garavaglia, M.L.; Saino, N.; Milzani, A.; Badalamenti, S.; et al. Plasma protein-bound di-tyrosines as biomarkers of oxidative stress in end stage renal disease patients on maintenance haemodialysis. BBA Clin. 2017, 7, 55–63. [Google Scholar] [CrossRef]
- Hojs, N.V.; Bevc, S.; Ekart, R.; Hojs, R. Oxidative Stress Markers in Chronic Kidney Disease with Emphasis on Diabetic Nephropathy. Antioxidants 2020, 9, 925. [Google Scholar] [CrossRef]
- Minato, K.-I.; Miyake, Y. Hexanoyl-Lysine as an Oxidative-Injured Marker—Application of Development of Functional Food. In Lipid Hydroperoxide-Derived Modification of Biomolecules: Subcellular Biochemistry; Kato, Y., Ed.; Springer: Dordrecht, The Netherlands, 2014; Volume 77. [Google Scholar] [CrossRef]
- Fukuchi, Y.; Miura, Y.; Nabeno, Y.; Kato, Y.; Osawa, T.; Naito, M. Immunohistochemical Detection of Oxidative Stress Biomarkers, Dityrosine and N&sup.EPSILON.;-(hexanoyl)lysine, and C-Reactive Protein in Rabbit Atherosclerotic Lesions. J. Atheroscler. Thromb. 2008, 15, 185–192. [Google Scholar] [CrossRef]
- Rejc, B.; Kato, Y.; Karas-Kuzelicki, N.; Osredkar, J.; Gersak, K. Lipid-lysine adducts and modified tyrosines as markers of oxidative stress in the second trimester of pregnancy and their association with infant characteristics. Exp. Ther. Med. 2016, 11, 797–805. [Google Scholar] [CrossRef]
- Piko, N.; Bevc, S.; Hojs, R.; Ekart, R. The Role of Oxidative Stress in Kidney Injury. Antioxidants 2023, 12, 1772. [Google Scholar] [CrossRef]
- Kishi, S.; Nagasu, H.; Kidokoro, K.; Kashihara, N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat. Rev. Nephrol. 2023, 20, 101–119. [Google Scholar] [CrossRef]
- Guo, H.; Bechtel-Walz, W. The Interplay of Autophagy and Oxidative Stress in the Kidney: What Do We Know? Nephron 2023, 147, 627–642. [Google Scholar] [CrossRef]
- Daehn, I.S.; Ekperikpe, U.S.; Stadler, K. Redox regulation in diabetic kidney disease. Am. J. Physiol. Physiol. 2023, 325, F135–F149. [Google Scholar] [CrossRef]
- Janša, V.; Osredkar, J.; Verdenik, I.; Rižner, T.L.; Frangež, H.B. Oxidative stress markers cannot be used as endometriosis biomarkers in infertile patients. Gynecol. Endocrinol. 2023, 39, 2242956. [Google Scholar] [CrossRef]
- González, E.; Gutiérrez, E.; Galeano, C.; Chevia, C.; de Sequera, P.; Bernis, C.; Parra, E.; Delgado, R.; Sanz, M.; Ortiz, M.; et al. Early steroid treatment improves the recovery of renal function in patients with drug-induced acute interstitial nephritis. Kidney Int. 2008, 73, 940–946. [Google Scholar] [CrossRef]
Patient No. | Phase of Disease Activity | Proteinuria: 24 h Urine (g)/Spot Urine -prot./creat. Ratio (g/mol) | S-Albumin Conc. (g/L) | GC Dose (mg/kg/day) | GC Th Duration | Other Immunosuppressive Th |
---|---|---|---|---|---|---|
Pt 1 | 1st DP | ND/3106 | 15 | 0 | 0 | no |
Remission | 0.37/0 | 29 | 1 | 19 days | no | |
Post GC | 0/21 | 44 | 0 | 6 w. after GC Th | no | |
Pt 2 | 3rd relapse | 0.76/42 | 36 | 1 | 3 days | no |
Remission | ND/0 | 41 | 1 | 7 days | no | |
4th relapse | 7.1/582 | 30 | 0 | 0 | no | |
Remission | 0/0 | 40 | 1 | 10 days | no | |
6th relapse | 4.86/428 | 26 | 0 | 0 | no | |
Pt 3 | Relapse | 5.55/ND | 27 | 1 | 3 days | no |
Remission | 0/13 | 35 | 1 | 7 days | no | |
Pt 4 | 1st DP | 4.79/375 | 24 | 1 | 2 days | no |
Remission | 0.16/0 | 30 | 1 | 15 days | no | |
Post GC | 0/ND | 35 | 0 | 3 w. after GC Th | MMF (SDNS) | |
Pt 5 | Relapse | 5.53/ND | 38 | 0 | 0 | tacrolimus |
Remission | 0/9 | 37 | 1 | 21 days | no | |
Pt 6 | Relapse | ND/899 | 37 | 0.6 / 48 h (tapering) | 28 w. (not full dose all the time) | MMF (SDNS)—stopped |
Remission | ND/17 | 33 | 1 | 20 days | tacrolimus | |
Post GC | ND/20 | 44 | 0 | 4 w. after GC Th | tacrolimus | |
Pt 7 | Relapse | 1.15/ND | 30 | 0 | 0 | tacrolimus |
Remission | 0/0 | 42 | 1 | 10 days | Tacrolimus | |
Post GC | 0/0 | 46 | 0 | 1 w. after GC Th | tacrolimus | |
Pt 8 | 1st DP | ND/1275 | 15 | 0 | 0 | no |
Remission | 0.22/ND | 38 | 1 | 20 days | no | |
Post GC | 0/ND | 40 | 0 | 3 w. after GC Th | Tacrolimus (SDNS, difficult clinical course) | |
Pt 9 | Relapse | ND/1062 | 21 | 1 | 5 days | Cyclosporine |
Remission | ND/0 | 25 | 1 | 11 days | Cyclosporine | |
Pt 10 | 19th relapse | ND/510 | 48 | 0 | 0 | no |
Remission | 0/0 | 47 | 1 | 10 days | no | |
21st relapse | 0.5/174 | 47 | 0 | 0 | no | |
Pt 11 | Relapse | 3.79/ND | 29 | 0 | 0 | no |
Remission | 0.59/0 | 32 | 1 | 6 days | no | |
Post GC | 0.08/19 | 43 | 0 | 14 w. after GC Th | no | |
Pt 12 | Relapse | 9.66/ND | 28 | 0 | 0 | no |
Remission | 0/0 | 43 | 1 | 11 days | no | |
Pt 13 | Relapse | 0.87/293 | 23 | 0 | 0 | MMF (SDNS) |
Remission | 0.41/21 | 28 | 1 | 7 days | MMF | |
Relapse | 0.56/73 | 35 | 0 | 0 | MMF | |
Post GC | 0.08/0 | 42 | 0 | 17 w. after GC Th | MMF | |
Pt 14 | 1st DP | 6.25/8419 | 30 | 1 | 1 day | no |
Remission | 0/0 | 42 | 1 | 15 days | no | |
Post GC | 0.05/0 | 47 | 0 | 3 w. after GC Th | no | |
Pt 15 | Post GC | ND/7 | 49 | 0 | 0 | no |
Pt 16 | Post GC | ND/0 | 50 | 0 | 0 | no |
Pt 17 | Post GC | 0.14/11 | 45 | 0 | 0 | MMF (FRNS) |
Pt 18 | Post GC | ND/7 | 50 | 0 | 0 | no |
Pt 19 | Post GC | ND/0 | 41 | 0 | 0 | no |
Pt 20 | Relapse | 3.85/547 | 34 | 0 | 0 | no |
Biomarker | Cat. No. | Sample Type | Sensitivity | Intra-assay CV | Inter-assay CV | Standard Curve Range |
---|---|---|---|---|---|---|
8-OHdG (DNA oxidation) | KOGHS-040914E | Urine, serum, plasma | ~0.125 ng/mL | <10% | <15% | 0.125–10 ng/mL |
HEL (lipid peroxidation) | KHL-700/E | Serum, plasma | ~1.0 ng/mL | <10% | <10% | 2.6–624 nmol/L |
Dityrosine (protein oxidation) | KDT-010/E | Serum, plasma | ~0.05 ng/mL | <10% | <15% | 0.05–12 µmol/L |
15-Isoprostane F2t (lipid peroxidation) | KIP-050 | Urine, plasma | ~2.7 pg/mL | <10% | <15% | 0.05–100 ng/mL |
Test | Principle | Measured Parameter | Units | Analytical Range | Intra-Assay CV | Inter-Assay CV |
---|---|---|---|---|---|---|
d-ROMs | Hydroperoxide-mediated oxidation of chromogen | Reactive oxygen metabolites | U.CARR | 50–500 U.CARR | <5% | <8% |
PAT | Reduction of Fe3+ to Fe2+ and chromogen complexation | Total antioxidant power | µmol/L ascorbic acid | 600–2800 µmol/L | <5% | <7% |
OSI (calculated) | Ratio of d-ROMs to PAT | Oxidative stress index | Arbitrary Units | - | - | - |
Substance (Units) | No. | First Disease Presentation/Relapse (G1) | Remission (G2) | Post GC Treatment (G3) | Max. Value | Min. Value | p-Value |
---|---|---|---|---|---|---|---|
S-dityrosine (µmol/L) | 47 | 4.56 (1.69) | 5.22 (2.17) | 4.37 (2.76) | 12.77 (G3) | 1.24 (G3) | >0.05 (NS) |
U-dityrosine (µmol/mmol creatinine) | 47 | 0.22 (0.27) | 0.29 (0.26) | 0.17 (0.088) | 1.09 (G1) | 0.00 (G3) | >0.05 (NS) |
S-HEL (nmol/L) | 47 | 119.44 (88.31) | 164.83 (292.39) | 152.66 (117.86) | 1202.44 (G2) | 29.76 (G2) | >0.05 (NS) |
U-HEL (nmol/mmol creatinine) | 47 | 12.22 (5.59) | 10.39 (6.10) | 11.68 (9.46) | 38.11 (G3) | 1.33 (G3) | >0.05 (NS) |
S-8-OHdG (µg/L) | 42 | 5.72 (2.21) | 6.43 (3.99) | 7.47 (3.70) | 20.00 (G2) | 2.98 (G3) | >0.05 (NS) |
U-8-OHdG (µg/mmol creatinine) | 33 | 0.90 (0.82) | 1.24 (0.51) | 1.64 (0.90) | 2.91 (G2) | 0.05 (G1) | >0.05 (NS) |
S-isoprostane (ng/L) | 36 | 904 (1328) | 1218 (2438) | 1604 (3591) | 9722 (G3) | 8 (G2) | >0.05 (NS) |
U-isoprostane (ng/mmol creatinine) | 35 | 200 (100) | 281 (85) | 383 (361) | 1120 (G3) | 44 (G3) | 0.0296 (G1 vs. G2) |
Substance (Units) | No. | First Disease Presentation/ Relapse (G1) | Remission (G2) | Post GC Treatment (G3) | Max. Value | Min. Value | p-Value |
---|---|---|---|---|---|---|---|
d-ROMs test (U.CARR) | 47 | 314.105 (115.60) | 240.667 (90.47) | 318.692 (108.18) | 531 (G1) | 53 (G2) | 0.0458 (G1 vs. G2) |
PAT test (µmol/L ascorbic acid) | 47 | 2306.895 (413.02) | 2274.067 (273.74) | 2664.077 (431.02) | 3142 (G1) | 1536 (G3) | 0.0274 (G1 vs. G3); 0.0109 (G2 vs. G3) |
OSI (Arbitrary Units) | 47 | 71.789 (29.85) | 54.133 (26.78) | 63 (35.08) | 147 (G1) | 21 (G1) | >0.05 (NS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopač, M.; Jerin, A.; Bohinc, E.; Osredkar, J. Correlation of Oxidative Stress Biomarkers with Activity of Pediatric Idiopathic Nephrotic Syndrome. Biomedicines 2025, 13, 1984. https://doi.org/10.3390/biomedicines13081984
Kopač M, Jerin A, Bohinc E, Osredkar J. Correlation of Oxidative Stress Biomarkers with Activity of Pediatric Idiopathic Nephrotic Syndrome. Biomedicines. 2025; 13(8):1984. https://doi.org/10.3390/biomedicines13081984
Chicago/Turabian StyleKopač, Matjaž, Aleš Jerin, Ema Bohinc, and Joško Osredkar. 2025. "Correlation of Oxidative Stress Biomarkers with Activity of Pediatric Idiopathic Nephrotic Syndrome" Biomedicines 13, no. 8: 1984. https://doi.org/10.3390/biomedicines13081984
APA StyleKopač, M., Jerin, A., Bohinc, E., & Osredkar, J. (2025). Correlation of Oxidative Stress Biomarkers with Activity of Pediatric Idiopathic Nephrotic Syndrome. Biomedicines, 13(8), 1984. https://doi.org/10.3390/biomedicines13081984