Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models
Abstract
:1. Introduction
2. Literature Review
2.1. Trajectory of Machine Learning Models for Sepsis Mortality Prediction
2.2. Feature Representation and Expansion of the Data Spectrum
2.3. Ensemble Architectures: Integrating Base Learners for Robust Prediction
3. Methods and Materials
3.1. Missing Data Imputation
3.2. Categorical Feature Encoding
3.3. Data Selection
- Admission to the ICU directly from the ED.
- A sepsis diagnosis coded using ICD-10 and confirmed by SOFA score evaluation.
- Complete records of time-series vitals and laboratory measurements within the first 6 h of ICU admission.
- The exclusion criteria were as follows:
- Pediatric or non-ED transfer patients;
- An ICU length of stay < 24 h (to remove transient admissions);
- Missing outcome labels;
- Non-index ICU admissions.
- Following the initial screening, 475 structured features were extracted per patient.
- Demographics (e.g., age and sex);
- Vital signs (e.g., HR, RR, and SBP);
- Laboratory markers (e.g., lactate, CRP, albumin);
- Composite clinical scores (qSOFA and NEWS);
- Derived biomarkers (e.g., CRP/albumin, PCT/WBC, and NLR).
3.4. Normalization and Feature Scaling
3.5. Target Variable Discretization
- →
- Label 0 (short LOS): 0–6 days
- →
- Label 1 (long LOS): ≥7 days
3.6. Knowledge-Augmented Feature Engineering
3.7. Structured Data Cleaning and Preprocessing
Algorithm 1: CleanEHR—Structured EHR Data Cleaning |
Input: EHRFull ← Raw ICU admission records from EMR Output: EHRClean ← Validated and preprocessed patient dataset function CleanEHR (EHRFull) Initialize EHRClean ← ∅ for each record Fi ∈ EHRFull do if Fi contains: • expired or withdrawn hospitalizations • critical missing values in core fields (e.g., g, fc, fl, fm) Then Discard Fi from EHRFull else Append Fi to EHRClean end if end for return EHRClean end function |
3.8. Component Models and Their Roles
3.8.1. Random Forest
3.8.2. Gradient Boosting
3.8.3. Logistic Regression
3.8.4. Red Piranha Optimization: Adaptive Hyperparameter Tuning
- A Stacked Ensemble model composed of RF, GB, and LR.
- A DNN with dropout layers, nonlinear activations, and temporal inputs.
3.8.5. SMOTE for Class Imbalance Correction
3.8.6. Providing Explainability with SHAP Integration
3.8.7. SHAP + SMOTE Interaction Justification
3.8.8. Experimental Environment and Evaluation Strategy
- →
- AUROC: Measures discriminative power.
- →
- F1-Score, Precision, and Recall: Used to assess the class-specific performance.
- →
- Brier Score: Evaluates the probabilistic calibration.
- →
- 95% Confidence Intervals: Computed via bootstrapping to measure statistical robustness.
3.8.9. Performance Evaluation Metrics
3.8.10. Error Analysis and Clinical Misclassification Insights
3.8.11. Evaluation Metrics
4. Result: Comparative Performance Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibarz, M.; Haas, L.E.; Ceccato, A.; Artigas, A. The critically ill older patient with sepsis: A narrative review. Ann. Intensive Care 2024, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, E.; D’Angerio, M.; Ciobanu, A.L.; Masini, L.; Lo Tartaro, D.; Coloretti, I.; Busani, S.; Rubio, I.; Meschiari, M.; De Biasi, S. Advances and challenges in sepsis management: Modern tools and future directions. Cells 2024, 13, 439. [Google Scholar] [CrossRef]
- Shih, B.H.; Yeh, C.C. Advancements in artificial intelligence in emergency medicine in Taiwan: A narrative review. J. Acute Med. 2024, 14, 9–19. [Google Scholar] [CrossRef]
- Smith, M.E.; Zalesky, C.C.; Lee, S.; Gottlieb, M.; Adhikari, S.; Goebel, M.; Wegman, M.; Garg, N.; Lam, S.H. Artificial intelligence in emergency medicine: A primer for the nonexpert. JACEP Open 2025, 6, 100051. [Google Scholar] [CrossRef]
- Paudyal, V.; Cadogan, C.; Fialová, D.; Henman, M.C.; Hazen, A.; Okuyan, B.; Lutters, M.; Stewart, D. Provision of clinical pharmacy services during the COVID-19 pandemic: Experiences of pharmacists from 16 European countries. Res. Soc. Adm. Pharm. 2021, 17, 1507–1517. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Zhu, Z.; Zhao, L.; Wang, H.; Song, C.; Chen, Y.; Zhao, Q.; Yang, J.; Pei, Y. A comprehensive review on synergy of multi-modal data and AI technologies in medical diagnosis. Bioengineering 2024, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, X.; Jian, Z.; Li, J.; Xu, C.; Chen, Y.; Huang, C.; Hu, J.; Liu, Z. Advances and prospects of multi-modal ophthalmic artificial intelligence based on deep learning: A review. Eye Vis. 2024, 11, 38. [Google Scholar] [CrossRef]
- Tajvidi Asr, R.; Rahimi, M.; Hossein Pourasad, M.; Zayer, S.; Momenzadeh, M.; Ghaderzadeh, M. Hematology and Hematopathology Insights Powered by Machine Learning: Shaping the Future of Blood Disorder Management. Iran. J. Blood Cancer 2024, 16, 9–19. [Google Scholar] [CrossRef]
- Ghaderzadeh, M.; Shalchian, A.; Irajian, G.; Sadeghsalehi, H.; Sabet, B. Artificial intelligence in drug discovery and development against antimicrobial resistance: A narrative review. Iran. J. Med. Microbiol. 2024, 18, 135–147. [Google Scholar] [CrossRef]
- O’Reilly, D.; McGrath, J.; Martin-Loeches, I. Optimizing artificial intelligence in sepsis management: Opportunities in the present and looking closely to the future. J. Intensive Med. 2024, 4, 34–45. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Snyder, A.; Han, X.; Sokol, S.; Pettit, N.; Howell, M.D.; Edelson, D.P. qSOFA, SIRS, and NEWS for predicting in-hospital mortality and ICU admission. Chest 2017, 151, 279–287. [Google Scholar] [CrossRef]
- de Jager, C.P.; van Wijk, P.T.; Mathoera, R.B.; de Jongh-Leuvenink, J.; van der Poll, T.; Wever, P.C. Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit. Care 2010, 14, R192. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Hager, D.N.; Osborn, T.M.; Saria, S.; Wu, A.W.; Henry, K.E. Comparison of Automated Sepsis Identification Methods and Electronic Health Record–based Sepsis Phenotyping: Improving Case Identification Accuracy by Accounting for Confounding Comorbid Conditions. Crit. Care Explor. 2019, 1, e0053. [Google Scholar] [CrossRef]
- Henry, K.E.; Kornfield, R.; Saria, S.; Pronovost, P.J. Machine learning in critical care: State-of-the-art and a sepsis case study. IEEE J. Biomed. Health Inform. 2018, 22, 1777–1788. [Google Scholar] [CrossRef]
- Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 2018, 24, 1716–1720. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, L.; Sun, B.; Ruan, Z.; Pan, P.; Zhang, W.; Jiang, X.; Zheng, S.; Cheng, S.; Hong, Y.; et al. Identifying septic shock subgroups to tailor fluid strategies through multi-omics integration. Nat. Commun. 2024, 15, 9028. [Google Scholar] [CrossRef]
- Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.; Gini, D.; Buchman, T.G. Gradient boosting machine for predicting sepsis mortality. Crit. Care Med. 2018, 46, e13–e19. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Naghavi, M.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Sendak, M.P.; Ratliff, W.; Sarro, D.; Alderton, E.; Futoma, J.; Gao, M.; Nichols, M.; Revoir, M.; Yashar, F.; O’Brien, C.; et al. Real-world integration of a sepsis deep learning technology into routine clinical care: Implementation study. JMIR Med. Inform. 2020, 8, e15182. [Google Scholar] [CrossRef]
- Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Real-time sepsis prediction using EHR data. J. Am. Med. Inform. Assoc. 2017, 24, 1144–1151. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Sharafoddini, A.; Dubin, J.A.; Maslove, D.M.; Lee, J. A new insight into missing data in intensive care unit patient profiles: Observational study. JMIR Med. Inform. 2019, 7, e11605. [Google Scholar] [CrossRef]
- Alghatani, K.; Ammar, N.; Rezgui, A.; Shaban-Nejad, A. Predicting intensive care unit length of stay and mortality using patient vital signs: Machine learning model development and validation. JMIR Med. Inform. 2021, 9, e21347. [Google Scholar] [CrossRef]
- Lelubre, C.; Vincent, J.L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 2018, 14, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef]
- Hussain, M.; Islam, A.; Turi, J.A.; Nabi, S.; Hamdi, M.; Hamam, H.; Ibrahim, M.; Cifci, M.A.; Sehar, T. Machine learning-driven approach for a COVID-19 warning system. Electronics 2022, 11, 3875. [Google Scholar] [CrossRef]
- Cifci, M.A.; Hussain, S.; Canatalay, P.J. Hybrid deep learning approach for accurate tumor detection in medical imaging data. Diagnostics 2023, 13, 1025. [Google Scholar] [CrossRef]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Chen, K.; et al. XGBoost: Extreme Gradient Boosting, (Version 2.0.0), [Computer Software]; DMLC (Distributed Machine Learning Community): San Francisco, CA, USA, 2023; Available online: https://xgboost.readthedocs.io (accessed on 16 April 2025).
- Li, H.; Ashrafi, N.; Kang, C.; Zhao, G.; Chen, Y.; Pishgar, M. A machine learning-based prediction of hospital mortality in mechanically ventilated ICU patients. PLoS ONE 2024, 19, e0309383. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.J.; Gnanasoundharam, J.; Birunda, M.; Sudha, G.; Maniraj, S.P.; Srinivasan, C. Wearable Sepsis Early Warning Using Cloud Computing and Logistic Regression Predictive Analytics. In Proceedings of the 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 14–15 March 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Horasan, A.; Güneş, A. Advancing prostate cancer diagnosis: A deep learning approach for enhanced detection in MRI images. Diagnostics 2024, 14, 1871. [Google Scholar] [CrossRef]
- Bian, K.; Priyadarshi, R. Machine learning optimization techniques: A Survey, classification, challenges, and Future Research Issues. Arch. Comput. Methods Eng. 2024, 31, 4209–4233. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Rai, H.M.; Yoo, J.; Razaque, A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. Expert Syst. Appl. 2024, 124838. [Google Scholar] [CrossRef]
- Sikarwar, S.S.; Rathore, R.; Kumar, S.S.; Monalisha, M.; Satapathy, L. Early Cancer Detection and Diagnosis using Deep Learning Models in Medical Imaging. In Proceedings of the 2024 4th International Conference on Advancement in Electronics & Communication Engineering (AECE), Ghaziabad, India, 22–23 November 2024; pp. 364–369. [Google Scholar]
- Reynaud-Bouret, P.; Rivoirard, V.; Tuleau-Malot, C. Machine learning for early sepsis detection: A review. Artif. Intell. Med. 2021, 112, 102138. [Google Scholar] [CrossRef]
- Rabie, A.H.M.; Yoo, J.; Dashkevych, S. Transformative Advances in AI for Precise Cancer Detection: A Comprehensive Review of Non-Invasive Techniques. Arch. Comput. Methods Eng. 2025, 2025, 1–82. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Üzülmez, S.; Çifçi, M.A. Early diagnosis of lung cancer using deep learning and uncertainty measures. J. Fac. Eng. Archit. Gazi Univ. 2024, 39, 385–400. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017, 30, 4765–4774. [Google Scholar]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What clinicians want: Contextualizing explainable machine learning for clinical end use. In Proceedings of the 4th Machine Learning for Healthcare Conference, Ann Arbor, MI, USA, 9–10 August 2019; pp. 359–380. [Google Scholar] [CrossRef]
- Wong, A.; Otles, E.; Donnelly, J.P.; Krumm, A.; McCullough, J.; DeTroyer-Cooley, O.; Pestrue, J.; Phillips, M.; Konye, J.; Ghassemi, M. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern. Med. 2021, 181, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Lemaître, G.; Nogueira, F.; Aridas, C.K. Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 2017, 18, 1–5. [Google Scholar]
- Ertuğrul, D.Ç.; Akcan, N.; Bitirim, Y.; Koru, B.; Sevince, M. A knowledge-based decision support system for inferring supportive treatment recommendations for diabetes mellitus. Technol. Health Care 2023, 31, 2279–2302. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Monreal, QC, Canada, 20–25 August 1995; Volume 2, pp. 1137–1143. Available online: https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf (accessed on 6 January 2025).
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Diagnostic tests 1: Sensitivity and specificity. BMJ 1994, 308, 1552. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Cifci, M.A. A deep learning-based framework for uncertainty quantification in medical imaging using the DropWeak technique: An empirical study with baresnet. Diagnostics 2023, 13, 800. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Description | Value |
---|---|---|
Cohort Size | Total patients | 1000 |
Mortality | Deceased patients | 300 (30%) |
Features | Clinical scores | qSOFA, NEWS, SIRS |
Laboratory markers | CRP, albumin, WBC, lactate, procalcitonin | |
Derived biomarkers | CRP/albumin ratio, NLR, lactate/albumin ratio, PCT/WBC ratio | |
Missingness | Continuous variables | 5–15% |
Categorical variables | 3–10% | |
Data Source | EMR system | Tertiary hospital |
Study Period | January 2019–June 2024 |
Parameter | Description | Value |
---|---|---|
Objective Function | Custom loss-weighted fitness | f |
Dimensionality | Number of hyperparameters | 3 (Learning Rate, Max Depth, Dropout) |
Population Size | Number of agents in swarm | 30 |
Max Iterations | Total number of search steps | 50 |
Bounds | Search domain | [0.001, 0.1] (LR), [3,15] (Depth), [0, 0.5] (Dropout) |
Initialization | Uniform sampling | Random in defined bounds |
Termination Criteria | Score stabilization or max iteration | 10-iteration patience or convergence |
Method | Number of Iterations to Reach Convergence | Avg AUROC (CV) | Time per Run (min) |
---|---|---|---|
Bayesian Optimization | ~60 | 0.94 ± 0.009 | ~22 |
Red Piranha Optimization | ~40 | 0.96 ± 0.008 | ~18 |
Parameter | Description | Experimental Setup | ||||
---|---|---|---|---|---|---|
All | G | C | L | M | ||
LR | ||||||
C | Inverse of regularization strength (L2 penalty); higher values reduce the penalty. | 1.8 | 1.8 | 1.0 | 1.0 | 1.8 |
Solver | Optimization algorithm for LR coefficients. | lbfgs | lbfgs | lbfgs | lbfgs | lbfgs |
RF | ||||||
n_estimators | Number of decision trees in the forest. | 720 | 500 | 200 | 720 | 500 |
max_depth | Maximum depth of each tree to prevent overfitting. | 35 | 20 | 15 | 35 | 20 |
min_samples_split | Minimum samples required to split an internal node. | 4 | 5 | 5 | 4 | 5 |
XGBoost | ||||||
n_estimators | Number of boosting stages (trees). | 500 | 300 | 150 | 500 | 300 |
max_depth | Maximum depth of each tree to balance complexity and generalization. | 8 | 6 | 4 | 8 | 6 |
learning_rate | Step size for gradient updates; smaller values improve the stability. | 0.08 | 0.1 | 0.1 | 0.08 | 0.1 |
subsample | Fraction of samples used per boosting round to prevent overfitting. | 0.85 | 0.9 | 0.9 | 0.85 | 0.9 |
colsample_bytree | Fraction of features used per tree to introduce stochasticity. | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
reg_lambda | L2 regularization term for weights to penalize complexity. | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Model | Type | AUROC | Accuracy | Precision | Recall | F1-Score | Brier Score |
---|---|---|---|---|---|---|---|
qSOFA | Clinical Rule-Based | 0.78 | 0.73 | 0.69 | 0.64 | 0.66 | 0.192 |
NEWS | Clinical Rule-Based | 0.81 | 0.75 | 0.72 | 0.67 | 0.70 | 0.178 |
Random Forest | ML | 0.92 | 0.87 | 0.81 | 0.75 | 0.78 | 0.141 |
Gradient Boosting | ML | 0.93 | 0.88 | 0.82 | 0.76 | 0.79 | 0.133 |
Logistic Regression | ML(Linear) | 0.89 | 0.86 | 0.79 | 0.72 | 0.75 | 0.151 |
Stacked Ensemble | ML Stacked | 0.96 | 0.90 | 0.85 | 0.81 | 0.83 | 0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz Başer, H.; Evran, T.; Cifci, M.A. Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models. Biomedicines 2025, 13, 1449. https://doi.org/10.3390/biomedicines13061449
Yilmaz Başer H, Evran T, Cifci MA. Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models. Biomedicines. 2025; 13(6):1449. https://doi.org/10.3390/biomedicines13061449
Chicago/Turabian StyleYilmaz Başer, Hülya, Turan Evran, and Mehmet Akif Cifci. 2025. "Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models" Biomedicines 13, no. 6: 1449. https://doi.org/10.3390/biomedicines13061449
APA StyleYilmaz Başer, H., Evran, T., & Cifci, M. A. (2025). Machine Learning-Augmented Triage for Sepsis: Real-Time ICU Mortality Prediction Using SHAP-Explained Meta-Ensemble Models. Biomedicines, 13(6), 1449. https://doi.org/10.3390/biomedicines13061449