Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians
Abstract
1. Introduction
2. Materials and Methods
3. Immune Dysregulation in Sepsis
- Upon sepsis onset, macrophage TLRs (toll-like receptors) recognize and bind microbial PAMPs (pathogen-associated molecular patterns), such as LPS, in cases of Gram-negative pathogens. TLR engagement promotes the activation of intracellular signal transduction pathways, such as, among others, NF-kB and MAPK pathways, leading to the release of cytokines as a defense mechanism [16].
- Neutrophil activation is observed. In this activation, aside from traditional mechanisms (release of cytokines, phagocytosis, reactive oxygen species), neutrophils release extracellular traps (NETs), targeting bacteria clearance in the circulation under normal conditions, but the excessive release of NETs under neutrophil hyperactivation leads to the shift of endothelial cells toward a pro-inflammatory phenotype, a degradation of endothelial glycocalyx, and an increase in endothelial permeability. These consequences have the result of dramatic endothelial dysfunction with increased vascular permeability, tissue hypoperfusion, and microcirculatory flow disturbance, findings that characterize late sepsis and, importantly, organ failure [17].
- Natural Killer (NK) cells, as one of the most important lymphocyte cell types of innate immune responses, can orchestrate early responses to bacterial pathogens. Their role in amplifying responses of myeloid cells, especially macrophages, is generally thought to be mediated by the production of IFN-γ. Their excessive activation and IFN-γ production lead to systemic inflammatory response during sepsis and organ dysfunction, although in bacterial sepsis, their role derives basically from studies in mice. Human studies have shown, until now, a correlation between NK function and outcomes, so their exact role in human bacterial infections still remains to be more clearly defined [18].
Diagnosis and Treatment Avenues for Sepsis-Related Immune Alterations
4. Non-Coding miRNA as Biomarkers
5. Antibodies as Useful Treatment Tools
6. Cytokine Administration in Treating Specific Septic Conditions
7. Therapeutic Effects of Modulation of Sepsis-Related Regulatory Factors
8. Utilization of Exogenous Immunoglobulins
9. Treatment with Corticosteroids
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sep sis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Leligdowicz, A.; Matthay, M.A. Heterogeneityinsepsis: Newbiological evidence with clinical applications. Crit. Care 2019, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Valsamaki, A.; Vazgiourakis, V.; Mantzarlis, K.; Stamatiou, R.; Makris, D. MicroRNAs in Sepsis. Biomedicines 2024, 12, 2049. [Google Scholar] [CrossRef]
- Arora, J.; Mendelson, A.A.; Fox-Robichaud, A. Sepsis: Network pathophysiology and implications for early diagnosis. Am. J. Physiol. Integr. Comp. Physiol. 2023, 324, R613–R624. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, G.; Xie, J. Immune dysregulation in sepsis: Experiences, lessons and perspectives. Cell Death Discov. 2023, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C. Why have clinical trials in sepsis failed? Trends Mol. Med. 2014, 20, 195–203. [Google Scholar] [CrossRef]
- Morris, A.C.; Rynne, J.; Shankar-Hari, M. Compartmentalisation of immune responses in critical illness: Does it matter? Intensive Care Med. 2022, 48, 1617–1620. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Prescott, H.C.; Osterholzer, J.J.; Langa, K.M.; Angus, D.C.; Iwashyna, T.J. Late mortality after sepsis: Propensity matched cohort study. BMJ 2016, 353, i2375. [Google Scholar] [CrossRef]
- Lang, F.M.; Lee, K.M.C.; Teijaro, J.R.; Becher, B.; Hamilton, J.A. GM CSF based treatments in COVID-19: Reconciling opposing therapeutic approaches. Nat. Rev. Immunol. 2020, 20, 507–514. [Google Scholar] [CrossRef]
- Kumar, S.; Ingle, H.; Prasad, D.V.R.; Kumar, H. Recognition of bacterial infection by innate immune sensors. Crit. Rev. Microbiol. 2013, 39, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef]
- Doganyigit, Z.; Eroglu, E.; Akyuz, E. Inflammatory mediators of cytokines and chemokines in sepsis: From bench to bedside. Hum. Exp. Toxicol. 2022, 41, 09603271221078871. [Google Scholar] [CrossRef] [PubMed]
- Nedeva, C.; Menassa, J.; Puthalakath, H. Sepsis: Inflammation is a necessary evil. Front. Cell Dev. Biol. 2019, 7, 108. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Gao, Y.; Shou, S.; Chai, Y. The roles of macrophage polarization in the host immune response to sepsis. Int. Immunopharmacol. 2021, 96, 107791. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Qu, M.; Li, W.; Wu, D.; Cata, J.P.; Miao, C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin. Transl. Med. 2023, 13, e1170. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Patil, N.K.; Luan, L.; Bohannon, J.K.; Sherwood, E.R. The biology of natural killer cells during sepsis. Immunology 2018, 153, 190–202. [Google Scholar] [CrossRef]
- Brady, J.; Horie, S.; Laffey, J.G. Role of the adaptive immune response in sepsis. Intensive Care Med. Exp. 2020, 8, 20. [Google Scholar] [CrossRef]
- Gould, T.J.; Vu, T.; Swystun, L.; Dwivedi, D.; Weitz, J.; Liaw, P. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mecha-nisms. Arter. Thromb. Vasc. Biol. 2014, 34, 1977–1984. [Google Scholar] [CrossRef]
- Xu, R.; Lin, F.; Bao, C.; Wang, F.-S. Mechanism of C5a-induced immunologic derangement in sepsis. Cell. Mol. Immunol. 2017, 14, 792–793. [Google Scholar] [CrossRef]
- Washburn, M.L.; Wang, Z.; Walton, A.H.; Goedegebuure, S.P.; Figueroa, D.J.; Van Horn, S.; Grossman, J.; Remlinger, K.; Madsen, H.; Brown, J.; et al. T Cell– and Monocyte-Specific RNA-Sequencing Analysis in Septic and Nonseptic Critically Ill Patients and in Patients with Cancer. J. Immunol. 2019, 203, 1897–1908. [Google Scholar] [CrossRef]
- Tao, T.; Bo, L.; Li, T.; Shi, L.; Zhang, H.; Ye, B.; Xu, Y.; Ma, Q.; Deng, X.; Zhang, G. High-Affinity Anti-VISTA Antibody Protects against Sepsis by Inhibition of T Lymphocyte Apoptosis and Suppression of the Inflammatory Response. Mediat. Inflamm. 2021, 2021, 6650329. [Google Scholar] [CrossRef] [PubMed]
- Patil, N.K.; Luan, L.; Bohannon, J.K.; Hernandez, A.; Guo, Y.; Sherwood, E.R. Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury. J. Leukoc. Biol. 2018, 103, 23–33. [Google Scholar] [CrossRef]
- Van Hinsbergh, V.W.M. Endothelium—Role in regulation of coagulation and inflammation. Semin. Immunopathol. 2012, 34, 93–106. [Google Scholar] [CrossRef]
- Girardis, M.; David, S.; Ferrer, R.; Helms, J.; Juffermans, N.P.; Martin-Loeches, I.; Povoa, P.; Russell, L.; Shankar-Hari, M.; Iba, T.; et al. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensive Care Med. 2024, 50, 1580–1592. [Google Scholar] [CrossRef]
- Zampieri, F.G.; Park, M.; Machado, F.S.; Azevedo, L.C.P. Sepsis-associated encephalopathy: Not just delirium. Clinics 2011, 66, 1825–1831. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denk, S.; Taylor, R.P.; Wiegner, R.; Cook, E.M.; Lindorfer, M.A.; Pfeiffer, K.; Paschke, S.; Eiseler, T.; Weiss, M.; Barth, E.; et al. Complement C5a-Induced Changes in Neutrophil Morphology During Inflammation. Scand. J. Immunol. 2017, 86, 143–155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, C.; Gao, H. New insights for C5a and C5a receptors in sepsis. Front. Immunol. 2012, 3, 31042. [Google Scholar] [CrossRef]
- Formosa, A.; Turgeon, P.; dos Santos, C.C. Role of miRNA dysregulation in sepsis. Mol. Med. 2022, 28, 99. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, Z.; Wang, H.; Ren, F.; Li, Y.; Zou, S.; Xu, J.; Xie, L. The protective role of miR-223 in sepsis-induced mortality. Sci. Rep. 2020, 10, 17691. [Google Scholar] [CrossRef]
- Li, G.; Zong, X.; Cheng, Y.; Xu, J.; Deng, J.; Huang, Y.; Ma, C.; Fu, Q. miR-223-3p contributes to suppressing NLRP3 inflammasome activation in Streptococcus equi ssp. zooepidemicus infection. Veter. Microbiol. 2022, 269, 109430. [Google Scholar] [CrossRef]
- Vasques-Nóvoa, F.; Laundos, T.L.M.; Cerqueira, R.J.; Quina-Rodrigues, C.; Soares-Dos-Reis, R.; Baganha, F.M.; Ribeiro, S.; Mendonça, L.; Gonçalves, F.; Reguenga, C.; et al. MicroRNA-155 Amplifies Nitric Oxide/cGMP Signaling and Impairs Vascular Angiotensin II Reactivity in Septic Shock. Crit. Care Med. 2018, 46, e945–e954. [Google Scholar] [CrossRef] [PubMed]
- Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol. Med. 2018, 24, 54. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yu, H.; Xu, Y.; Chen, K.; Lin, Y.; Lin, K.; Wang, Y.; Xu, K.; Fu, L.; Li, W.; et al. LNC-ZNF33B-2:1 gene rs579501 polymorphism is associated with organ dysfunction and death risk in pediatric sepsis. Front. Genet. 2022, 13, 947317. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wu, P.; Li, J. miR-331 inhibits CLDN2 expression and may alleviate the vascular endothelial injury induced by sepsis. Exp. Ther. Med. 2020, 20, 1343–1352. [Google Scholar] [CrossRef]
- Chatterjee, V.; Beard, R.S., Jr.; Reynolds, J.J.; Haines, R.; Guo, M.; Rubin, M.; Guido, J.; Wu, M.H.; Yuan, S.Y. MicroRNA-147b Regulates Vascular Endothelial Barrier Function by Targeting ADAM15 Expression. PLoS ONE 2014, 9, e110286. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, S.; Cao, Y.; Yang, Y. Altered miRNAs Expression Profiles and Modulation of Immune Response Genes and Proteins During Neonatal Sepsis. J. Clin. Immunol. 2014, 34, 340–348. [Google Scholar] [CrossRef]
- Knaus, W.A.; Harrell, F.E., Jr.; LaBrecque, J.F.; Wagner, D.P.; Pribble, J.P.; Draper, E.A.; Fisher, C.J.; Soll, L. Use of Predicted Risk of Mortality to evaluate the efficacy of anticytokine therapy in sepsis. Crit. Care Med. 1996, 24, 46–56. [Google Scholar] [CrossRef]
- Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: Reanalysis of a prior Phase III Trial. Crit. Care Med. 2016, 44, 275–281. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Panagopoulos, P.; Metallidis, S.; Dalekos, G.N.; Poulakou, G.; Gatselis, N.; Karakike, E.; Saridaki, M.; Loli, G.; Stefos, A.; et al. An open label trial of anakinra to prevent respiratory failure in COVID-19. eLife 2021, 10, e66125. [Google Scholar] [CrossRef]
- Leventogiannis, K.; Kyriazopoulou, E.; Antonakos, N.; Kotsaki, A.; Tsangaris, I.; Markopoulou, D.; Grondman, I.; Rovina, N.; Theodorou, V.; Antoniadou, E.; et al. Toward personalized immunotherapy in sepsis: The PROVIDE randomized clinical trial. Cell Rep. Med. 2022, 3, 100817. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F.; Chousterman, B.G.; He, S.; Fenn, A.M.; Nairz, M.; Anzai, A.; Brenner, T.; Uhle, F.; Iwamoto, Y.; Robbins, C.S.; et al. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 2015, 347, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Bénard, A.; Hansen, F.J.; Uhle, F.; Klösch, B.; Czubayko, F.; Mittelstädt, A.; Jacobsen, A.; David, P.; Podolska, M.J.; Anthuber, A.; et al. Interleukin-3 protects against viral pneumonia in sepsis by enhancing plasmacytoid dendritic cell recruitment into the lungs and T cell priming. Front. Immunol. 2023, 14, 1140630. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Ballester, J.C.; Cuellar, C.; Garcia-Ballesteros, C.; Pérez-Griera, J.; Amigó, V.; Peiró-Gómez, A.; Peñarroja-Otero, C.; Ballester, F.; Mayans, J.; Tormo-Calandín, C. Deficit of interleukin 7 in septic patients. Int. Immunopharmacol. 2014, 23, 73–76. [Google Scholar] [CrossRef]
- Turnbull, I.R.; Mazer, M.B.; Hoofnagle, M.H.; Kirby, J.P.; Leonard, J.M.; Mejia-Chew, C.; Spec, A.; Blood, J.; Miles, S.M.; Ransom, E.M.; et al. IL-7 Immunotherapy in a Nonimmun-ocompromised Patient with Intractable Fungal Wound Sepsis. Open Forum Infect. Dis. 2021, 8, ofab256. [Google Scholar] [CrossRef]
- Daix, T.; Mathonnet, A.; Brakenridge, S.; Dequin, P.-F.; Mira, J.-P.; Berbille, F.; Morre, M.; Jeannet, R.; Blood, T.; Unsinger, J.; et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: A double-blind, randomized, placebo-controlled trial. Ann. Intensive Care 2023, 13, 17. [Google Scholar] [CrossRef]
- Bidar, F.; Hamada, S.; Gossez, M.; Coudereau, R.; Lopez, J.; Cazalis, M.A.; Tardiveau, C.; Brengel-Pesce, K.; Mommert, M.; Buisson, M.; et al. Recombinant human interleukin-7 reverses T cell exhaustion ex vivo in critically ill COVID-19 patients. Ann. Intensive Care 2022, 12, 21. [Google Scholar] [CrossRef]
- Leentjens, J.; Kox, M.; Koch, R.M.; Preijers, F.; Joosten, L.A.B.; van der Hoeven, J.G.; Netea, M.G.; Pickkers, P. Reversal of Immunoparalysis in Humans In Vivo. Am. J. Respir. Crit. Care Med. 2012, 186, 838–845. [Google Scholar] [CrossRef]
- Delsing, C.E.; Gresnigt, M.S.; Leentjens, J.; Preijers, F.; Frager, F.A.; Kox, M.; Monneret, G.; Venet, F.; Bleeker-Rovers, C.P.; van de Veerdonk, F.L.; et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: A case series. BMC Infect. Dis. 2014, 14, 166. [Google Scholar] [CrossRef]
- Payen, D.; Faivre, V.; Miatello, J.; Leentjens, J.; Brumpt, C.; Tissières, P.; Dupuis, C.; Pickkers, P.; Lukaszewicz, A.C. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect. Dis. 2019, 19, 931. [Google Scholar] [CrossRef]
- Meisel, C.; Schefold, J.C.; Pschowski, R.; Baumann, T.; Hetzger, K.; Gregor, J.; Weber-Carstens, S.; Hasper, D.; Keh, D.; Zuckermann, H.; et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: A double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med. 2009, 180, 640–648. [Google Scholar] [CrossRef]
- Bo, L.; Wang, F.; Zhu, J.; Li, J.; Deng, X. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: A meta-analysis. Crit. Care 2011, 15, R58. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Colston, E.; Yende, S.; Angus, D.C.; Moldawer, L.L.; Crouser, E.D.; Martin, G.S.; Coopersmith, C.M.; Brakenridge, S.; Mayr, F.B.; et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized, PlaceboControlled, Single Ascending Dose Study of Antiprogrammed Cell Death-Ligand 1 Antibody (BMS-936559). Crit. Care Med. 2019, 47, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, E.; Nishida, O.; Kakihana, Y.; Odani, M.; Okamura, T.; Harada, T.; Oda, S. Pharmacokinetics, Pharmacodynamics, and Safety of Nivolumab in Patients With Sepsis-Induced Immunosuppression: A Multicenter, Open-Label Phase 1/2 Study. Shock 2019, 53, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.C.; Burnham, C.-A.; Compton, S.M.; Rasche, D.P.; Mazuski, R.; SMcDonough, J.; Unsinger, J.; Korman, A.J.; Green, J.M.; Hotchkiss, R.S. Blockade ofthe negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit. Care 2013, 17, R85. [Google Scholar] [CrossRef]
- Inoue, S.; Bo, L.; Bian, J.; Unsinger, J.; Chang, K.; Hotchkiss, R.S. Dose-dependent effect of anti-CTLA-4 on survival in sepsis. Shock 2011, 36, 38–44. [Google Scholar] [CrossRef]
- Mewes, C.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.-F.; Ghadimi, M.; Beissbarth, T.; Tzvetkov, M.; Jensen, O.; Runzheimer, J.; et al. CTLA-4 Genetic Variants Predict Survival in Patients with Sepsis. J. Clin. Med. 2019, 8, 70. [Google Scholar] [CrossRef]
- Mewes, C.; Alexander, T.; Büttner, B.; Hinz, J.; Alpert, A.; Popov, A.-F.; Ghadimi, M.; Beißbarth, T.; Tzvetkov, M.; Grade, M.; et al. TIM-3 Genetic Variants Are Associated with Altered Clinical Outcome and Susceptibility to Gram-Positive Infections in Patients with Sepsis. Int. J. Mol. Sci. 2020, 21, 8318. [Google Scholar] [CrossRef]
- Gray, C.C.; Biron-Girard, B.; Wakeley, M.E.; Chung, C.-S.; Chen, Y.; Quiles-Ramirez, Y.; Tolbert, J.D.; Ayala, A. Negative Immune Checkpoint Protein, VISTA, Regulates the CD4+ Treg Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival. Front. Immunol. 2022, 13, 861670. [Google Scholar] [CrossRef] [PubMed]
- ElTanbouly, M.A.; Schaafsma, E.; Smits, N.C.; Shah, P.; Cheng, C.; Burns, C.; Blazar, B.R.; Noelle, R.J.; Mabaera, R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways. Front. Immunol. 2020, 11, 580187. [Google Scholar] [CrossRef]
- Cui, J.; Wei, X.; Lv, H.; Li, Y.; Li, P.; Chen, Z.; Liu, G. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: A meta-analysis with trial sequential analysis. Ann. Intensive Care 2019, 9, 27. [Google Scholar] [CrossRef]
- Martinez, J.I.; Sánchez, H.F.; Velandia, J.A.; Urbina, Z.; Florián, M.C.; Martínez, M.A.; Giamarellos-Bourboulis, E.J.; Pino-Pinzón, C.-J.; Ortiz, G.; Celis, E. Treatment with IgM-enriched immunoglobulin in sepsis: A matched case-control analysis. J. Crit. Care 2021, 64, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Akatsuka, M.; Masuda, Y.; Tatsumi, H.; Sonoda, T. Efficacy of Intravenous Immunoglobulin Therapy for Patients with Sepsis and Low Immunoglobulin G Levels: A single-center retrospective study. Clin. Ther. 2022, 44, 295–303. [Google Scholar] [CrossRef]
- Werdan, K.; Pilz, G.; Bujdoso, O.; Fraunberger, P.; Neeser, G.; Schmieder, R.E.; Viell, B.; Marget, W.; Seewald, M.; Walger, P.; et al. Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study. Crit. Care Med. 2007, 35, 2693–2701. [Google Scholar]
- Annane, D. Corticosteroids for severe sepsis: An evidence-based guide for physicians. Ann. Intensive Care 2011, 1, 7. [Google Scholar] [CrossRef]
- Meduri, G.U.; Muthiah, M.P.; Carratù, P.; Eltorky, M.; Chrousos, G.P. Nuclear Factor-ĸB- and Glucocorticoid Receptor α- Mediated Mechanisms in the Regulation of Systemic and Pulmonary Inflammation during Sepsis and Acute Respiratory Distress Syndrome. Neuroimmunomodulation 2005, 12, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Pitre, T.M.; Drover, K.; Chaudhuri, D.M.; Zeraaktkar, D.; Menon, K.M.; Gershengorn, H.B.; Jayaprakash, N.; Spencer-Segal, J.L.; Pastores, S.M.; Nei, A.M.; et al. Corticosteroids in Sepsis and Septic Shock: A Systematic Review, Pairwise, and Dose-Response Meta-Analysis. Crit. Care Explor. 2024, 6, e1000. [Google Scholar] [CrossRef] [PubMed]
- Annane, D.; Renault, A.; Brun-Buisson, C.; Megarbane, B.; Quenot, J.-P.; Siami, S.; Cariou, A.; Forceville, X.; Schwebel, C.; Martin, C.; et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N. Engl. J. Med. 2018, 378, 809–818. [Google Scholar] [CrossRef]
- Fujii, T.; Salanti, G.; Belletti, A.; Bellomo, R.; Carr, A.; Furukawa, T.A.; Luethi, N.; Luo, Y.; Putzu, A.; Sartini, C.; et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer-term mortality in adults with sepsis or septic shock: A systematic review and a component network meta-analysis. Intensive Care Med. 2022, 48, 16–24. [Google Scholar] [CrossRef]
- Francois, B.; Jeannet, R.; Daix, T.; Walton, A.H.; Shotwell, M.S.; Unsinger, J.; Monneret, G.; Rimmelé, T.; Blood, T.; Morre, M.; et al. Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomized clinical trial. J. Clin. Investig. 2018, 3, e98960. [Google Scholar] [CrossRef]
- Amini, K.; Mojtahedzadeh, M.; Najmeddin, M.R.; Mohammadi, A.T. The Systematic Review and Meta-Analysis of the Efficacy of Granulocyte-Colony Stimulating Factor (G-CSF) in Treatment of Sepsis and Septic Shock. Compr. Health Biomed. Stud. 2024, 3, e161333. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, J.; Li, D.; Lei, X.; Wang, H.; Cui, N. CTLA-4 expression on CD4+ lymphocytes in patients with sepsis-associated immunosuppression and its relationship to mTOR mediated autophagic–lysosomal disorder. Front. Immunol. 2024, 15, 1396157. [Google Scholar] [CrossRef]
- Shekari, N.; Shanehbandi, D.; Kazemi, T.; Zarredar, H.; Baradaran, B.; Jalali, S.A. VISTA and its ligands: The next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int. 2023, 23, 265. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Sun, P.; Pei, R.; Lin, F.; Cao, H. Efficacy of IVIG therapy for patients with sepsis: A systematic review and meta-analysis. J. Transl. Med. 2023, 21, 765. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Gonda, K.; Shimura, T.; Sakurai, K.; Takenoshita, S. SIRS, CARS and MARS in relationship to cancer cachexia and its clinical implications. Ann. Cancer Res. Ther. 2018, 26, 54–59. [Google Scholar] [CrossRef]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14 (Suppl. S2), 49. [Google Scholar] [CrossRef]
Biomarker | Involvement in Immune Response Mechanisms | Reference |
---|---|---|
Cell count | ||
CD4 and CD8 | A strong indication of the acquired immunity system status of activation or inhibition is the drastic decrease in counts of both markers in the suppression state | Arora 2023 [4] |
Macrophages | Exhaustion leads to apoptosis and immune depression | Zhang 2023 [17] |
Neutrophils | Indicative of NETosis and possible inflammation of epithelial tissue | Zhang 2023 [17], Gould 2014 [20] |
NKs | Excess activity reinforces cytokine storm | Guo 2018 [18] |
Chemotactic | ||
IL-6 | A strong indicator of innate immunity is excessive activity, cytokine storm, and septic shock | Doganyigit 2022 [14] |
TNFa | A strong indicator of innate immunity is excessive activity, cytokine storm, and septic shock | |
C3a and C5a | Strong indicators of pro-inflammatory response; C5a in excess in the late sepsis stage | Xu 2017 [21] |
Regulatory | ||
GM-CSF | Driver of immune disease at excessive levels | Lang 2020 [11] |
CTLA4 | Overexpression downregulates the acquired immune response, and lower levels activate it | Washburn 2019 [22] |
VISTA | Indicates T cell suppression | Tao 2021 [23] |
PDL-1 | Directly associated with sepsis-produced immunoparalysis | Patil 2018 [24] |
MIR | Sepsis-Related Functions | Reference |
---|---|---|
MIR-223-5p | Indicator of lymphocyte apoptosis in septic patients and has been shown to suppress the formation of inflammasomes when expressed in mice | Liu 2020 [31], Li 2022 [32] |
MIR-155 | Upregulated in myocardium and plasma in human sepsis | Vasques-Nóvoa F 2018 [33] |
MIR-574-5p | The modulator of STAT activity is found to increase in the serum of septic patients. | Liu 2020 [31] |
MIRS 150 and 143 | Both miRs were downregulated in sepsis in correlation with SOFA scores, as found in purified T cells | Mohnle 2018 [34] |
MIR-27a-6p | Sepsis progression rate indicator in sepsis-induced lung injury | Lu 2022 [35] |
MIR-331 | Downregulates CLDN2 activity and restores the cellular function of endothelial cells, as detected in the peripheral blood of septic patients | Kong 2020 [36] |
MIR-147b | Degrades ADAM15 mRNA as a protective mechanism, acting in human vascular endothelial cells | Chatterjee 2014 [37] |
MIR-96 | Downregulated in sepsis produced by Gram (−) bacteria, as found in plasma fractions | Chen 2014 [38] |
MIR-101 | Downregulated in sepsis produced by Gram (+) bacteria, as found in plasma fractions | Chen 2014 [38] |
Type | Specificity | Effects | Therapeutic Effect |
---|---|---|---|
Cytokine inhibitors (immunosuppressive) | Anti-IL1 (anakinra) |
| Absolute survival benefit (20–50%) [42] |
a-IL-3 | Showed promising results in septic animal models since reduced organ failure and increased survival were observed | ||
Cytokine boosters (Immunostimulants) | IL-7 | Boosts CD4 and CD8 T cell activation, reverses T cell depletion in severe COVID-19 immunoparalysis | Large immunologic effect (200–400% increases in lymphocytes), but not yet translated reliably into a clear, consistent, mortality benefit [71] |
IFN-γ | Amelioration of immunoparalysis | ||
Key regulatory factors modulators (immonostimulants) | a-PD monoclonals (nivolumab) |
| 30–60% improvement in immune function markers—% of mortality not proven yet [55] |
GM-CSF administration or inhibitors |
| Very strong biomarker effects (80–100%), but no proven survival benefit in large RCTs [72] | |
CTLA-4 inhibitors | Appropriate modulation of CTLA-4 can either up- or downregulate lymphocyte response, and CTLA-4 levels could define acquired immunity | Strong biomarker effects—no definite clinical mortality effect yet [73] | |
VISTA inhibitors and enhancers |
| Modulating VISTA has promising pre-clinical effects on sepsis—clinical data are essentially absent [74] | |
Immunoglobulin enrichment (immunomodulatory therapy—can produce both immunostimulatory and immunosuppressive effects) | IgM enrichment | Has shown encouraging clinical results by the notion that the quantitative deficit of immunoglobulins is directly linked with severity and mortality in sepsis | Relative reduction in mortality of 35–45% [75] |
Corticosteroids (immunomodulatory therapy—can produce both immunostimulatory and immunosuppressive effects) |
| 5–12% mortality reduction, 20–25% faster resolution of shock [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valsamaki, A.; Vazgiourakis, V.; Mantzarlis, K.; Manoulakas, E.; Makris, D. Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians. Biomedicines 2025, 13, 2386. https://doi.org/10.3390/biomedicines13102386
Valsamaki A, Vazgiourakis V, Mantzarlis K, Manoulakas E, Makris D. Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians. Biomedicines. 2025; 13(10):2386. https://doi.org/10.3390/biomedicines13102386
Chicago/Turabian StyleValsamaki, Asimina, Vasileios Vazgiourakis, Konstantinos Mantzarlis, Efstratios Manoulakas, and Demosthenes Makris. 2025. "Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians" Biomedicines 13, no. 10: 2386. https://doi.org/10.3390/biomedicines13102386
APA StyleValsamaki, A., Vazgiourakis, V., Mantzarlis, K., Manoulakas, E., & Makris, D. (2025). Immune Dysregulation in Sepsis. A Narrative Review for the Clinicians. Biomedicines, 13(10), 2386. https://doi.org/10.3390/biomedicines13102386