Vascular Smooth Muscle Cell Metabolic Reprogramming in Arteriovenous Fistula Failure
Abstract
1. Introduction
2. Pathophysiological Features of Arteriovenous Fistula Dysfunction
2.1. Outward Remodeling
2.2. Inward Remodeling
2.3. Medial Calcification
3. VSMC Metabolic Reprogramming and Outward Remodeling
4. VSMC Metabolic Reprogramming and Inward Remodeling
4.1. Glucose Metabolism
4.2. Lipid Metabolism
4.3. Amino Acid Metabolism
5. VSMC Metabolic Reprogramming and Medial Calcification
5.1. Glucose Metabolism
5.1.1. High-Phosphate Environments and VSMC Glucose Metabolism in Medial Calcification
5.1.2. Mitochondrial Dysfunction and VSMC Glucose Metabolism in Medial Calcification
5.1.3. Advanced Glycation End Products and VSMC Glucose Metabolism in Medial Calcification
5.2. Lipid Metabolism
5.3. Amino Acid Metabolism
6. Metabolic Crosstalk Between VSMCs and ECs During AVF Dysfunction
7. Potential Therapeutic Approaches Targeting the Metabolic Reprogramming of VSMCs in AVF Failure
7.1. Neointimal Hyperplasia
7.2. Medial Calcification
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef]
- Vascular Access 2006 Work Group. Clinical practice guidelines for vascular access. Am. J. Kidney Dis. 2006, 48 (Suppl. S1), S248–S273. [Google Scholar] [CrossRef]
- Huber, T.S.; Berceli, S.A.; Scali, S.T.; Neal, D.; Anderson, E.M.; Allon, M.; Cheung, A.K.; Dember, L.M.; Himmelfarb, J.; Roy-Chaudhury, P.; et al. Arteriovenous Fistula Maturation, Functional Patency, and Intervention Rates. JAMA Surg. 2021, 156, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 2004, 84, 767–801. [Google Scholar] [CrossRef]
- Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular smooth muscle cells in atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744. [Google Scholar] [CrossRef]
- Yeo, Y.; Jeong, H.; Kim, M.; Choi, Y.; Kim, K.L.; Suh, W. Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells. BMB Rep. 2022, 55, 565–570. [Google Scholar] [CrossRef]
- Kosmas, K.; Papathanasiou, A.E.; Spyropoulos, F.; Rehman, R.; Cunha, A.A.; Fredenburgh, L.E.; Perrella, M.A.; Christou, H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells 2024, 13, 1796. [Google Scholar] [CrossRef]
- Belo, V.A.; Guimarães, D.A.; Castro, M.M. Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension. J. Vasc. Res. 2015, 52, 221–231. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Y.; Cheng, A.; Xu, G.; He, F. Metabolism of vascular smooth muscle cells in vascular diseases. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H613–H631. [Google Scholar] [CrossRef]
- Xie, T.; Xu, Y.; Ji, L.; Sui, X.; Zhang, A.; Zhang, Y.; Chen, J. Heme Oxygenase 1/Peroxisome Proliferator-Activated Receptor Gamma Pathway Protects Intimal Hyperplasia and Mitigates Arteriovenous Fistula Dysfunction by Regulating Oxidative Stress and Inflammatory Response. Cardiovasc. Ther. 2022, 2022, 7576388. [Google Scholar] [CrossRef]
- Aso, K.; Kono, M.; Kanda, M.; Kudo, Y.; Sakiyama, K.; Hisada, R.; Karino, K.; Ueda, Y.; Nakazawa, D.; Fujieda, Y.; et al. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming. Nat. Commun. 2023, 14, 984. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Chang, P.Y.; Wu, B.S.; Tarng, D.C.; Lee, O.K. Mechanical and chemical cues synergistically promote human venous smooth muscle cell osteogenesis through integrin β1-ERK1/2 signaling: A cell model of hemodialysis fistula calcification. FASEB J. 2021, 35, e22042. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Duan, D.; Doehle, B.P.; O’Neill, K.D.; Chen, N.X. Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int. 2003, 63, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.; Singh, H.; Agrawal, D.K. Targeting the Crosstalk of Immune Response and Vascular Smooth Muscle Cells Phenotype Switch for Arteriovenous Fistula Maturation. Int. J. Mol. Sci. 2022, 23, 12012. [Google Scholar] [CrossRef]
- Browne, L.D.; Bashar, K.; Griffin, P.; Kavanagh, E.G.; Walsh, S.R.; Walsh, M.T. The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review. PLoS ONE 2015, 10, e0145795. [Google Scholar] [CrossRef]
- Yan, R.; Song, A.; Zhang, C. The Pathological Mechanisms and Therapeutic Molecular Targets in Arteriovenous Fistula Dysfunction. Int. J. Mol. Sci. 2024, 25, 9519. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, Y.; Yang, F.; Yang, Y.; Cui, Z.; Shi, D.; Bai, R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024, 10, e37727. [Google Scholar] [CrossRef]
- Grootaert, M.O.J.; Bennett, M.R. Vascular smooth muscle cells in atherosclerosis: Time for a re-assessment. Cardiovasc. Res. 2021, 117, 2326–2339. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, X.; Xia, Y.; Mao, L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell. Mol. Life Sci. 2021, 79, 6. [Google Scholar] [CrossRef]
- Lok, C.E.; Huber, T.S.; Lee, T.; Shenoy, S.; Yevzlin, A.S.; Abreo, K.; Allon, M.; Asif, A.; Astor, B.C.; Glickman, M.H.; et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am. J. Kidney Dis. 2020, 75, S1–S164. [Google Scholar] [CrossRef]
- Rai, V.; Agrawal, D.K. Transcriptomic Analysis Identifies Differentially Expressed Genes Associated with Vascular Cuffing and Chronic Inflammation Mediating Early Thrombosis in Arteriovenous Fistula. Biomedicines 2022, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Gorecka, J.; Fereydooni, A.; Gonzalez, L.; Lee, S.R.; Liu, S.; Ono, S.; Xu, J.; Liu, J.; Taniguchi, R.; Matsubara, Y.; et al. Molecular Targets for Improving Arteriovenous Fistula Maturation and Patency. Vasc. Investig. Ther. 2019, 2, 33–41. [Google Scholar] [CrossRef]
- He, Y.; Anderson, B.; Hu, Q.; Hayes, R.B.; Huff, K.; Isaacson, J.; Warner, K.S.; Hauser, H.; Greenberg, M.; Chandra, V.; et al. Photochemically Aided Arteriovenous Fistula Creation to Accelerate Fistula Maturation. Int. J. Mol. Sci. 2023, 24, 7571. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Maldonado-Agurto, R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J. Physiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jourd’heuil, F.L.; Xue, M.; Conti, D.; Lopez-Soler, R.I.; Ginnan, R.; Asif, A.; Singer, H.A.; Jourd’heuil, D.; Long, X. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J. Am. Heart Assoc. 2017, 6, e004891. [Google Scholar] [CrossRef]
- Bezhaeva, T.; Wong, C.; de Vries, M.R.; van der Veer, E.P.; van Alem, C.M.A.; Que, I.; Lalai, R.A.; van Zonneveld, A.J.; Rotmans, J.I.; Quax, P.H.A. Deficiency of TLR4 homologue RP105 aggravates outward remodeling in a murine model of arteriovenous fistula failure. Sci. Rep. 2017, 7, 10269. [Google Scholar] [CrossRef]
- Geenen, I.L.; Kolk, F.F.; Molin, D.G.; Wagenaar, A.; Compeer, M.G.; Tordoir, J.H.; Schurink, G.W.; De Mey, J.G.; Post, M.J. Nitric Oxide Resistance Reduces Arteriovenous Fistula Maturation in Chronic Kidney Disease in Rats. PLoS ONE 2016, 11, e0146212. [Google Scholar] [CrossRef]
- Xia, F.; Rai, V.; Agrawal, D.K. Vascular and Perivascular Role in the Regulation of Angiogenesis: Impact on Arteriovenous Fistula Maturation. Arch. Intern. Med. Res. 2024, 7, 284–296. [Google Scholar] [CrossRef]
- Roy-Chaudhury, P.; Wang, Y.; Krishnamoorthy, M.; Zhang, J.; Banerjee, R.; Munda, R.; Heffelfinger, S.; Arend, L. Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol. Dial. Transplant. 2009, 24, 2786–2791. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Varsanik, M.A.; Thaxton, C.; Ohashi, Y.; Gonzalez, L.; Zhang, W.; Aoyagi, Y.; Kano, M.; Yatsula, B.; Li, Z.; et al. Disturbed flow in the juxta-anastomotic area of an arteriovenous fistula correlates with endothelial loss, acute thrombus formation, and neointimal hyperplasia. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H1446–H1461. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Zhang, W.; Thaxton, C.; Ohashi, Y.; Gonzalez, L.; Kano, M.; Yatsula, B.; Hwa, J.; Dardik, A. Early thrombus formation is required for eccentric and heterogeneous neointimal hyperplasia under disturbed flow. J. Thromb. Haemost. 2024, 22, 3614–3628. [Google Scholar] [CrossRef]
- Robbin, M.L.; Chamberlain, N.E.; Lockhart, M.E.; Gallichio, M.H.; Young, C.J.; Deierhoi, M.H.; Allon, M. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology 2002, 225, 59–64. [Google Scholar] [CrossRef]
- Bartlett, M.; Bonfanti, M.; Diaz-Zuccarini, V.; Tsui, J. Computationally Enhanced, Haemodynamic Case Study of Neointimal Hyperplasia Development in a Dialysis Access Fistula. Rev. Cardiovasc. Med. 2024, 25, 35. [Google Scholar] [CrossRef]
- Gunasekera, S.; de Silva, C.; Ng, O.; Thomas, S.; Varcoe, R.; Barber, T. Stenosis to stented: Decrease in flow disturbances following stent implantation of a diseased arteriovenous fistula. Biomech. Model. Mechanobiol. 2024, 23, 453–468. [Google Scholar] [CrossRef]
- Zheng, Q.; Xie, B.; Xie, X.; Zhang, W.; Hou, J.; Feng, Z.; Tao, Y.; Yu, F.; Zhang, L.; Ye, Z. Predictors associated with early and late restenosis of arteriovenous fistulas and grafts after percutaneous transluminal angiography. Ann. Transl. Med. 2021, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Wang, Y.; Liang, A.; Mitch, W.E.; Roy-Chaudhury, P.; Han, G.; Cheng, J. Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int. 2015, 88, 490–502. [Google Scholar] [CrossRef] [PubMed]
- Sadaghianloo, N.; Contenti, J.; Dardik, A.; Mazure, N.M. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int. J. Mol. Sci. 2019, 20, 5387. [Google Scholar] [CrossRef]
- Brahmbhatt, A.; Remuzzi, A.; Franzoni, M.; Misra, S. The molecular mechanisms of hemodialysis vascular access failure. Kidney Int. 2016, 89, 303–316. [Google Scholar] [CrossRef]
- Liu, C.T.; Hsu, S.C.; Hsieh, H.L.; Chen, C.H.; Chen, C.Y.; Sue, Y.M.; Lin, F.Y.; Shih, C.M.; Shiu, Y.T.; Huang, P.H. Parathyroid Hormone Induces Transition of Myofibroblasts in Arteriovenous Fistula and Increases Maturation Failure. Endocrinology 2021, 162, bqab044. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, G.; Cheng, H.; Qing, Y.; Truong, L.; Ma, Q.; Wang, Y.; Cheng, J. Temporal regulation of notch activation improves arteriovenous fistula maturation. J. Transl. Med. 2022, 20, 543. [Google Scholar] [CrossRef]
- Jankovic, A.; Damjanovic, T.; Djuric, Z.; Marinkovic, J.; Schlieper, G.; Tosic-Dragovic, J.; Djuric, P.; Popovic, J.; Floege, J.; Dimkovic, N. Impact of vascular calcifications on arteriovenous fistula survival in hemodialysis patients: A five-year follow-up. Nephron 2015, 129, 247–252. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Li, G.; Fu, S.; Xiao, H.; Yang, Y.; Liang, Y.; Chen, Y.; Luo, X. The risk factors for arteriovenous fistula dysfunction in maintenance hemodialysis patients: A cross-sectional study. Hemodial. Int. 2024, 28, 170–177. [Google Scholar] [CrossRef]
- Lyu, B.; Banerjee, T.; Scialla, J.J.; Shafi, T.; Yevzlin, A.S.; Powe, N.R.; Parekh, R.S.; Astor, B.C. Vascular Calcification Markers and Hemodialysis Vascular Access Complications. Am. J. Nephrol. 2018, 48, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.; Goettsch, C.; Aikawa, E. Medial and intimal calcification in chronic kidney disease: Stressing the contributions. J. Am. Heart Assoc. 2013, 2, e000481. [Google Scholar] [CrossRef]
- Villa-Bellosta, R. Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Int. J. Mol. Sci. 2021, 22, 13536. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, M.; Towler, D.; Slatopolsky, E. Vascular calcification: The killer of patients with chronic kidney disease. J. Am. Soc. Nephrol. 2009, 20, 1453–1464. [Google Scholar] [CrossRef]
- Wang, N.; Yang, J.; Yu, X.; Hu, J.; Xing, C.; Ju, X.; Shen, X.; Qian, J.; Zhao, X.; Wang, X. Radial artery calcification in end-stage renal disease patients is associated with deposition of osteopontin and diminished expression of alpha-smooth muscle actin. Nephrology 2008, 13, 367–375. [Google Scholar] [CrossRef]
- Vazquez-Padron, R.I.; Allon, M. New Insights into Dialysis Vascular Access: Impact of Preexisting Arterial and Venous Pathology on AVF and AVG Outcomes. Clin. J. Am. Soc. Nephrol. 2016, 11, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, Y.O. Pre-existing arterial pathologic changes affecting arteriovenous fistula patency and cardiovascular mortality in hemodialysis patients. Korean J. Intern. Med. 2017, 32, 790–797. [Google Scholar] [CrossRef]
- Chen, N.X.; O’Neill, K.D.; Duan, D.; Moe, S.M. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002, 62, 1724–1731. [Google Scholar] [CrossRef]
- Opdebeeck, B.; D’Haese, P.C.; Verhulst, A. Molecular and Cellular Mechanisms that Induce Arterial Calcification by Indoxyl Sulfate and P-Cresyl Sulfate. Toxins 2020, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Masumoto, A.; Sonou, T.; Ohya, M.; Yashiro, M.; Nakashima, Y.; Okuda, K.; Iwashita, Y.; Mima, T.; Negi, S.; Shigematsu, T. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor. J. Atheroscler. Thromb. 2017, 24, 716–724. [Google Scholar] [CrossRef]
- Zoccali, C.; Mallamaci, F.; Adamczak, M.; de Oliveira, R.B.; Massy, Z.A.; Sarafidis, P.; Agarwal, R.; Mark, P.B.; Kotanko, P.; Ferro, C.J.; et al. Cardiovascular complications in chronic kidney disease: A review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023, 119, 2017–2032. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ge, Y.; Li, F.; Zhang, C.; Zhang, Z.; Xu, N.; Wang, R.; Wu, S.; Geng, X.; Quan, Y.; et al. Elucidating the relationship between nutrition indices and coronary artery calcification in patients undergoing maintenance hemodialysis. Ther. Apher. Dial. 2022, 26, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Okabe, H.; Muraoka, Y.; Naka, Y.; Setoyama, K.; Inoue, K.; Miura, T.; Shimizu, A.; Anai, R.; Miyamoto, T.; Tsuda, Y.; et al. Malnutrition leads to the progression of coronary artery calcification in hemodialysis patients. PLoS ONE 2023, 18, e0280383. [Google Scholar] [CrossRef]
- Price, P.A.; Roublick, A.M.; Williamson, M.K. Artery calcification in uremic rats is increased by a low protein diet and prevented by treatment with ibandronate. Kidney Int. 2006, 70, 1577–1583. [Google Scholar] [CrossRef]
- Shanahan, C.M. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat. Rev. Nephrol. 2013, 9, 661–670. [Google Scholar] [CrossRef]
- Durham, A.L.; Speer, M.Y.; Scatena, M.; Giachelli, C.M.; Shanahan, C.M. Role of smooth muscle cells in vascular calcification: Implications in atherosclerosis and arterial stiffness. Cardiovasc. Res. 2018, 114, 590–600. [Google Scholar] [CrossRef]
- Ren, S.C.; Mao, N.; Yi, S.; Ma, X.; Zou, J.Q.; Tang, X.; Fan, J.M. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis. 2022, 13, 673–697. [Google Scholar] [CrossRef]
- Dong, Q.Q.; Tu, Y.C.; Gao, P.; Liao, Q.Q.; Zhou, P.; Zhang, H.; Shu, H.P.; Sun, L.L.; Feng, L.; Yao, L.J. SGK3 promotes vascular calcification via Pit-1 in chronic kidney disease. Theranostics 2024, 14, 861–878. [Google Scholar] [CrossRef]
- Kapustin, A.N.; Chatrou, M.L.; Drozdov, I.; Zheng, Y.; Davidson, S.M.; Soong, D.; Furmanik, M.; Sanchis, P.; De Rosales, R.T.; Alvarez-Hernandez, D.; et al. Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ. Res. 2015, 116, 1312–1323. [Google Scholar] [CrossRef]
- Pavlic, A.; Bahram Sangani, N.; Kerins, J.; Nicolaes, G.; Schurgers, L.; Reutelingsperger, C. Vascular Smooth Muscle Cell Neutral Sphingomyelinase 2 in the Release of Exosomes and Vascular Calcification. Int. J. Mol. Sci. 2022, 23, 9178. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.X.; O’Neill, K.D.; Moe, S.M. Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int. 2018, 93, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Lin, T.; Jin, Y.; Berezowitz, A.G.; Wang, X.L.; Lu, J.; Cai, Y.; Guzman, R.J. Smooth muscle cell-specific matrix metalloproteinase 3 deletion reduces osteogenic transformation and medial artery calcification. Cardiovasc. Res. 2024, 120, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Zazzeroni, L.; Faggioli, G.; Pasquinelli, G. Mechanisms of Arterial Calcification: The Role of Matrix Vesicles. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Zebboudj, A.F.; Imura, M.; Boström, K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J. Biol. Chem. 2002, 277, 4388–4394. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Heiss, A.; Schäfer, C.; Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 2011, 108, 1494–1509. [Google Scholar] [CrossRef]
- Jia, Y.; Mao, C.; Ma, Z.; Huang, J.; Li, W.; Ma, X.; Zhang, S.; Li, M.; Yu, F.; Sun, Y.; et al. PHB2 Maintains the Contractile Phenotype of VSMCs by Counteracting PKM2 Splicing. Circ. Res. 2022, 131, 807–824. [Google Scholar] [CrossRef]
- Cai, Z.; Satyanarayana, G.; Song, P.; Zhao, F.; You, S.; Liu, Z.; Mu, J.; Ding, Y.; He, B.; Zou, M.H. Regulation of Ptbp1-controlled alternative splicing of pyruvate kinase muscle by liver kinase B1 governs vascular smooth muscle cell plasticity in vivo. Cardiovasc. Res. 2024, 120, 1780–1793. [Google Scholar] [CrossRef]
- Yang, M.; Chadwick, A.E.; Dart, C.; Kamishima, T.; Quayle, J.M. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention. PLoS ONE 2017, 12, e0177951. [Google Scholar] [CrossRef]
- Huang, J.; Hao, J.; Wang, P.; Xu, Y. The Role of Mitochondrial Dysfunction in CKD-Related Vascular Calcification: From Mechanisms to Therapeutics. Kidney Int. Rep. 2024, 9, 2596–2607. [Google Scholar] [CrossRef]
- Wang, L.; He, L.F.; Xiong, X.; Wu, Z.N.; Tian, M.; Cao, G.Q.; Lu, H.X.; Ji, X.P.; Zhang, Y.L.; Kovarik, P.; et al. Deletion of smooth muscle ZFP36 promotes neointimal hyperplasia in mice. Acta Pharmacol. Sin. 2025, 46, 1317–1328. [Google Scholar] [CrossRef]
- Munshaw, S.; Bruche, S.; Redpath, A.N.; Jones, A.; Patel, J.; Dubé, K.N.; Lee, R.; Hester, S.S.; Davies, R.; Neal, G.; et al. Thymosin β4 protects against aortic aneurysm via endocytic regulation of growth factor signaling. J. Clin. Investig. 2021, 131, e127884. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.K.; Niu, J.L.; Lin, J.J.; Guo, Y.; Dong, L.H. Proteomics of restenosis model in LDLR-deficient hamsters coupled with the proliferative rat vascular smooth muscle cells reveals a new mechanism of vascular remodeling diseases. J. Proteom. 2022, 264, 104634. [Google Scholar] [CrossRef]
- Heiss, E.H.; Schachner, D.; Donati, M.; Grojer, C.S.; Dirsch, V.M. Increased aerobic glycolysis is important for the motility of activated VSMC and inhibited by indirubin-3′-monoxime. Vasc. Pharmacol. 2016, 83, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Dhanesha, N.; Doddapattar, P.; Nayak, M.K.; Guo, L.; Cornelissen, A.; Lentz, S.R.; Finn, A.V.; Chauhan, A.K. Smooth Muscle Cell-Specific PKM2 (Pyruvate Kinase Muscle 2) Promotes Smooth Muscle Cell Phenotypic Switching and Neointimal Hyperplasia. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1724–1737. [Google Scholar] [CrossRef]
- Cao, S.H.; Ma, R.Y.; Cao, T.; Hu, T.; Yang, S.; Ren, Z.Y.; Niu, J.L.; Zheng, M.Q.; Han, M.; Dong, L.H. PKM2 crotonylation reprograms glycolysis in VSMCs, contributing to phenotypic switching. Oncogene 2025, 44, 1990–2003. [Google Scholar] [CrossRef]
- Guan, H.; Sun, J.; Liang, X.; Yao, W. Protective Role of Cytochrome C Oxidase 5A (COX5A) against Mitochondrial Disorder and Oxidative Stress in VSMC Phenotypic Modulation and Neointima Formation. Curr. Vasc. Pharmacol. 2023, 21, 128–142. [Google Scholar] [CrossRef]
- Cao, K.; Zhang, T.; Li, Z.; Song, M.; Li, A.; Yan, J.; Guo, S.; Wang, L.; Huang, S.; Li, Z.; et al. Glycolysis and de novo fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia. J. Pathol. 2023, 259, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Cao, S.H.; Ren, Z.Y.; Zhang, T.; Jiang, H.M.; Hu, Z.K.; Dong, L.H. Lactate Dehydrogenase A Crotonylation and Mono-Ubiquitination Maintains Vascular Smooth Muscle Cell Growth and Migration and Promotes Neointima Hyperplasia. J. Am. Heart Assoc. 2025, 14, e036377. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Z.; Li, J.; Qin, X.; Wu, F.; Chen, C. Bone Morphogenetic Protein-4 Promotes Phenotypic Modulation via SMAD-4/MCT-4 Axis in Vascular Smooth Muscle Cells. J. Vasc. Res. 2024, 61, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, C.; Fan, Y.; Zhang, Y.; Wang, Y.; Wang, C. Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression. Korean J. Physiol. Pharmacol. 2022, 26, 519–530. [Google Scholar] [CrossRef]
- Tang, Y.; Jia, Y.; Fan, L.; Liu, H.; Zhou, Y.; Wang, M.; Liu, Y.; Zhu, J.; Pang, W.; Zhou, J. MFN2 Prevents Neointimal Hyperplasia in Vein Grafts via Destabilizing PFK1. Circ. Res. 2022, 130, e26–e43. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Kong, J.; Wang, C.; Ma, B.; Sun, W.; Ye, Z.; Liu, P.; Wen, J. Inhibition of mitochondrial fission alters neo-intimal hyperplasia via PI3K/Akt signaling in arteriovenous fistulas. Vascular 2023, 31, 533–543. [Google Scholar] [CrossRef]
- Fan, L.; Tang, Y.; Liu, J.; Liu, Y.; Xu, Y.; Liu, J.; Liu, H.; Pang, W.; Guo, Y.; Yao, W.; et al. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. Adv. Sci. 2025, 12, e2411559. [Google Scholar] [CrossRef]
- Sunaga, H.; Matsui, H.; Anjo, S.; Syamsunarno, M.R.; Koitabashi, N.; Iso, T.; Matsuzaka, T.; Shimano, H.; Yokoyama, T.; Kurabayashi, M. Elongation of Long-Chain Fatty Acid Family Member 6 (Elovl6)-Driven Fatty Acid Metabolism Regulates Vascular Smooth Muscle Cell Phenotype Through AMP-Activated Protein Kinase/Krüppel-Like Factor 4 (AMPK/KLF4) Signaling. J. Am. Heart Assoc. 2016, 5, e004014. [Google Scholar] [CrossRef]
- Osman, I.; He, X.; Liu, J.; Dong, K.; Wen, T.; Zhang, F.; Yu, L.; Hu, G.; Xin, H.; Zhang, W.; et al. TEAD1 (TEA Domain Transcription Factor 1) Promotes Smooth Muscle Cell Proliferation Through Upregulating SLC1A5 (Solute Carrier Family 1 Member 5)-Mediated Glutamine Uptake. Circ. Res. 2019, 124, 1309–1322. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Li, J.; Ban, Y.; Mao, G.; Zhang, M.; Wang, M.; Liu, Y.; Zhao, B.; Shen, Q.; et al. Inhibition of 5-Hydroxytryptamine Receptor 2B Reduced Vascular Restenosis and Mitigated the β-Arrestin2-Mammalian Target of Rapamycin/p70S6K Pathway. J. Am. Heart Assoc. 2018, 7, e006810. [Google Scholar] [CrossRef]
- Park, H.Y.; Kim, M.J.; Lee, S.; Jin, J.; Lee, S.; Kim, J.G.; Choi, Y.K.; Park, K.G. Inhibitory Effect of a Glutamine Antagonist on Proliferation and Migration of VSMCs via Simultaneous Attenuation of Glycolysis and Oxidative Phosphorylation. Int. J. Mol. Sci. 2021, 22, 5602. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeong, J.Y.; Oh, C.J.; Park, S.; Kim, J.Y.; Kim, H.J.; Doo Kim, N.; Choi, Y.K.; Do, J.Y.; Go, Y.; et al. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Sci. Rep. 2015, 5, 16577. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Wu, C.; Zhang, M.; Yang, Z.; Liu, Z.; Fu, F.; Li, J.; Feng, N.; Gu, X.; Zhang, S.; et al. κ-opioid receptor stimulation alleviates rat vascular smooth muscle cell calcification via PFKFB3-lactate signaling. Aging 2021, 13, 14355–14371. [Google Scholar] [CrossRef]
- Ma, W.Q.; Sun, X.J.; Zhu, Y.; Liu, N.F. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis. 2020, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, H.; Tan, X.; Mok, S.W.F.; Xie, Y.; Wang, Y.; Jiang, X.; Macrae, V.E.; Lan, L.; Fu, X.; et al. PFKFB3-driven vascular smooth muscle cell glycolysis promotes vascular calcification via the altered FoxO3 and lactate production. FASEB J. 2023, 37, e23182. [Google Scholar] [CrossRef]
- Alesutan, I.; Moritz, F.; Haider, T.; Shouxuan, S.; Gollmann-Tepeköylü, C.; Holfeld, J.; Pieske, B.; Lang, F.; Eckardt, K.U.; Heinzmann, S.S.; et al. Impact of β-glycerophosphate on the bioenergetic profile of vascular smooth muscle cells. J. Mol. Med. 2020, 98, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, Y.; Wang, Y.N.; Li, Q.; Xing, X.; Cheng, A.Y.; Zhan, X.N.; Li, J.; Xu, G.; He, F. Oxidative phosphorylation promotes vascular calcification in chronic kidney disease. Cell Death Dis. 2022, 13, 229. [Google Scholar] [CrossRef]
- Heuschkel, M.A.; Babler, A.; Heyn, J.; van der Vorst, E.P.C.; Steenman, M.; Gesper, M.; Kappel, B.A.; Magne, D.; Gouëffic, Y.; Kramann, R.; et al. Distinct role of mitochondrial function and protein kinase C in intimal and medial calcification in vitro. Front. Cardiovasc. Med. 2022, 9, 959457. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Xu, X.; Chen, C.; Min, M.; Liang, D.; Ren, J.; Mao, H. OTUB2 contributes to vascular calcification in chronic kidney disease via the YAP-mediated transcription of PFKFB3. Theranostics 2025, 15, 1185–1204. [Google Scholar] [CrossRef]
- Ma, W.; Jia, K.; Cheng, H.; Xu, H.; Li, Z.; Zhang, H.; Xie, H.; Sun, H.; Yi, L.; Chen, Z.; et al. Orphan Nuclear Receptor NR4A3 Promotes Vascular Calcification via Histone Lactylation. Circ. Res. 2024, 134, 1427–1447. [Google Scholar] [CrossRef]
- Phadwal, K.; Vrahnas, C.; Ganley, I.G.; MacRae, V.E. Mitochondrial Dysfunction: Cause or Consequence of Vascular Calcification? Front. Cell Dev. Biol. 2021, 9, 611922. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, Y.; Jaiswal, S.K.; Liu, N.F. Mitochondria Homeostasis and Vascular Medial Calcification. Calcif. Tissue Int. 2021, 109, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Han, X.Q.; Sun, X.J.; Yang, R.; Ma, W.Q.; Liu, N.F. Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy. Apoptosis 2020, 25, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, J.L.; Yan, X.J.; Ji, Y.; Wang, F.F. Exploring a new mechanism between lactate and VSMC calcification: PARP1/POLG/UCP2 signaling pathway and imbalance of mitochondrial homeostasis. Cell Death Dis. 2023, 14, 598. [Google Scholar] [CrossRef]
- Perkins, R.K.; van Vliet, S.; Miranda, E.R.; Fuller, K.N.Z.; Beisswenger, P.J.; Wilund, K.R.; Paluska, S.A.; Burd, N.A.; Haus, J.M. Advanced Glycation End Products and Inflammatory Cytokine Profiles in Maintenance Hemodialysis Patients After the Ingestion of a Protein-Dense Meal. J. Ren. Nutr. 2023, 33, 181–192. [Google Scholar] [CrossRef]
- Janda, K.; Krzanowski, M.; Gajda, M.; Dumnicka, P.; Jasek, E.; Fedak, D.; Pietrzycka, A.; Kuźniewski, M.; Litwin, J.A.; Sułowicz, W. Vascular effects of advanced glycation end-products: Content of immunohistochemically detected AGEs in radial artery samples as a predictor for arterial calcification and cardiovascular risk in asymptomatic patients with chronic kidney disease. Dis. Markers 2015, 2015, 153978. [Google Scholar] [CrossRef]
- Ma, W.Q.; Han, X.Q.; Wang, Y.; Wang, X.; Zhu, Y.; Liu, N.F. Nε-carboxymethyl-lysine promotes calcium deposition in VSMCs via intracellular oxidative stress-induced PDK4 activation and alters glucose metabolism. Oncotarget 2017, 8, 112841–112854. [Google Scholar] [CrossRef]
- Zhu, Y.; Ma, W.Q.; Han, X.Q.; Wang, Y.; Wang, X.; Liu, N.F. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci. Rep. 2018, 8, 13730. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, Y.; Wang, Y.; Ma, W.; Han, X.; Wang, X.; Liu, N. HIF-1α/PDK4/autophagy pathway protects against advanced glycation end-products induced vascular smooth muscle cell calcification. Biochem. Biophys. Res. Commun. 2019, 517, 470–476. [Google Scholar] [CrossRef]
- Seidah, N.G.; Prat, A. The Multifaceted Biology of PCSK9. Endocr. Rev. 2022, 43, 558–582. [Google Scholar] [CrossRef]
- Lupo, M.G.; Bressan, A.; Donato, M.; Canzano, P.; Camera, M.; Poggio, P.; Greco, M.F.; Garofalo, M.; De Martin, S.; Panighel, G.; et al. PCSK9 promotes arterial medial calcification. Atherosclerosis 2022, 346, 86–97. [Google Scholar] [CrossRef]
- Carracedo, M.; Witasp, A.; Qureshi, A.R.; Laguna-Fernandez, A.; Brismar, T.; Stenvinkel, P.; Bäck, M. Chemerin inhibits vascular calcification through ChemR23 and is associated with lower coronary calcium in chronic kidney disease. J. Intern. Med. 2019, 286, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Alesutan, I.; Feger, M.; Tuffaha, R.; Castor, T.; Musculus, K.; Buehling, S.S.; Heine, C.L.; Kuro, O.M.; Pieske, B.; Schmidt, K.; et al. Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc. Res. 2016, 110, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Zhou, H.; Li, L.; Kang, Y.; Cao, X.; Wu, Z.Y.; Ding, L.; Sethi, G.; Bian, J.S. Hydrogen Sulfide Prevents Elastin Loss and Attenuates Calcification Induced by High Glucose in Smooth Muscle Cells through Suppression of Stat3/Cathepsin S Signaling Pathway. Int. J. Mol. Sci. 2019, 20, 4202. [Google Scholar] [CrossRef]
- Hu, H.; Patel, S.; Hanisch, J.J.; Santana, J.M.; Hashimoto, T.; Bai, H.; Kudze, T.; Foster, T.R.; Guo, J.; Yatsula, B.; et al. Future research directions to improve fistula maturation and reduce access failure. Semin. Vasc. Surg. 2016, 29, 153–171. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Y.J.; Bao, H.; Li, Y.G.; Zhang, S.M.; Yao, Q.P.; Huo, Y.L.; Jiang, Z.L.; Qi, Y.X.; Han, Y. Platelet-derived microvesicles regulate vascular smooth muscle cell energy metabolism via PRKAA after intimal injury. J. Cell Sci. 2022, 135, jcs259364. [Google Scholar] [CrossRef]
- Van den Bergh, G.; Van den Branden, A.; Opdebeeck, B.; Fransen, P.; Neven, E.; De Meyer, G.R.Y.; D’Haese, P.C.; Verhulst, A. Endothelial dysfunction aggravates arterial media calcification in warfarin administered rats. FASEB J. 2022, 36, e22315. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Y.; Zhao, W.; Wang, M.; Chen, Y.; Wang, J.; Yang, D.; Yang, Y. MTMR7 suppresses the phenotypic switching of vascular smooth muscle cell and vascular intimal hyperplasia after injury via regulating p62/mTORC1-mediated glucose metabolism. Atherosclerosis 2024, 390, 117470. [Google Scholar] [CrossRef]
- Song, Y.; Deng, M.; Qiu, Y.; Cui, Y.; Zhang, B.; Xin, J.; Feng, L.; Mu, X.; Cui, J.; Li, H.; et al. Bergenin alleviates proliferative arterial diseases by modulating glucose metabolism in vascular smooth muscle cells. Phytomedicine 2024, 129, 155592. [Google Scholar] [CrossRef]
- Yang, H.H.; Xu, Y.X.; Chen, J.Y.; Harn, H.J.; Chiou, T.W. N-Butylidenephthalide Inhibits the Phenotypic Switch of VSMCs through Activation of AMPK and Prevents Stenosis in an Arteriovenous Fistula Rat Model. Int. J. Mol. Sci. 2020, 21, 7403. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Pan, Y.; Xu, S.; Yu, C.; Ji, J.; Chen, M.; Hu, F. Propolis ameliorates restenosis in hypercholesterolemia rabbits with carotid balloon injury by inhibiting lipid accumulation, oxidative stress, and TLR4/NF-κB pathway. J. Food Biochem. 2021, 45, e13577. [Google Scholar] [CrossRef]
- Asama, T.; Hiraoka, T.; Ohkuma, A.; Okumura, N.; Yamaki, A.; Urakami, K. Cognitive Improvement and Safety Assessment of a Dietary Supplement Containing Propolis Extract in Elderly Japanese: A Placebo-Controlled, Randomized, Parallel-Group, Double-Blind Human Clinical Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 6664217. [Google Scholar] [CrossRef]
- Balica, G.; Vostinaru, O.; Stefanescu, C.; Mogosan, C.; Iaru, I.; Cristina, A.; Pop, C.E. Potential Role of Propolis in the Prevention and Treatment of Metabolic Diseases. Plants 2021, 10, 883. [Google Scholar] [CrossRef]
- Cervantes-Madrid, D.; Romero, Y.; Dueñas-González, A. Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. Biomed. Res. Int. 2015, 2015, 690492. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, J.J.; Wang, X.D.; Sun, X.J.; Li, M.; Wei, Q.; Ren, L.Q.; Liu, N.F. Periostin promotes arterial calcification through PPARγ-related glucose metabolism reprogramming. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H2222–H2239. [Google Scholar] [CrossRef]
- Nagy, A.; Pethő, D.; Gáll, T.; Zavaczki, E.; Nyitrai, M.; Posta, J.; Zarjou, A.; Agarwal, A.; Balla, G.; Balla, J. Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC Calcification Induced by High Phosphate. Front. Physiol. 2019, 10, 1584. [Google Scholar] [CrossRef]
- Nagy, A.; Pethő, D.; Gesztelyi, R.; Juhász, B.; Balla, G.; Szilvássy, Z.; Balla, J.; Gáll, T. BGP-15 Inhibits Hyperglycemia-Aggravated VSMC Calcification Induced by High Phosphate. Int. J. Mol. Sci. 2021, 22, 9263. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.Q.; Sun, X.J.; Wang, Y.; Zhu, Y.; Han, X.Q.; Liu, N.F. Restoring mitochondrial biogenesis with metformin attenuates β-GP-induced phenotypic transformation of VSMCs into an osteogenic phenotype via inhibition of PDK4/oxidative stress-mediated apoptosis. Mol. Cell. Endocrinol. 2019, 479, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wei, L.L.; Zhang, R.P.; Han, C.W.; Cao, Y. Globular adiponectin inhibits osteoblastic differentiation of vascular smooth muscle cells through the PI3K/AKT and Wnt/β-catenin pathway. J. Mol. Histol. 2021, 52, 1067–1080. [Google Scholar] [CrossRef]
- Son, B.K.; Kozaki, K.; Iijima, K.; Eto, M.; Kojima, T.; Ota, H.; Senda, Y.; Maemura, K.; Nakano, T.; Akishita, M.; et al. Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ. Res. 2006, 98, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Zheng, H.; Tao, H.; Yu, W.; Jiang, X.; Li, A.; Jin, H.; Lv, A.; Li, H. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway. Mol. Cell. Biochem. 2017, 433, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Vascular Calcification in Chronic Kidney Disease: The Role of Vitamin K- Dependent Matrix Gla Protein. Front. Med. 2020, 7, 154. [Google Scholar] [CrossRef] [PubMed]
High-Phosphate Environment Subtype | Cell Type | Metabolic Change | References |
---|---|---|---|
Pi (composed of a mixture of Na2HPO4 and NaH2PO4, pH 7.4), 3.5 mM | Human VSMCs | Increased PDK4 expression, elevated PDHE1α phosphorylation, reduced PDC activity, increased glucose consumption and lactate production, and a shift in glucose metabolism toward glycolysis. | [92] |
10 mM β-glycerophosphate | Rat aortic VSMCs | PHD2 expression was significantly decreased, while PFKFB3 expression was significantly increased, with lactate levels elevated by 42.33% and LDH levels increased by 83.72%. | [93] |
10 mM β-glycerophosphate | Rat thoracic aortic VSMCs | Mitochondrial integrity in VSMCs is impaired. The protein expression of PDK4 increases significantly at 12 h, then decreases at 48 and 72 h. The protein expression of most glycolytic genes, including GLUT1, PKM2, LDHA, and MCT4, increases in a time-dependent manner after β-GP treatment, and the metabolic reprogramming of VSMCs shifts toward the Warburg effect. | [94] |
Pi (prepared as a combination of NaH2PO4 and Na2HPO4 with a ratio of 1:3, pH 7.4), 3 mM | Mice VSMCs | In VSMCs, PFKFB3 expression is increased, and intracellular lactate levels are significantly elevated. | [95] |
10 mM β-glycerophosphate and 1.5 mM calcium chloride | Human aortic smooth muscle cells (HAoSMCs) | In VSMCs, basal respiration, mitochondrial ATP production, and proton leakage are increased, while spare respiratory capacity and coupling efficiency are decreased, with no changes in non-mitochondrial respiration or maximal respiration. Additionally, the capacity to oxidize glutamine and long-chain fatty acids is enhanced. However, glycolytic function, basal and glycolytic proton efflux rates in VSMCs remain unchanged, whereas non-glycolytic acidification is increased. | [96] |
3.0 mM Pi | Mouse vascular smooth muscle cell (MOVAS) cell line | VSMCs exhibit a significantly higher glucose consumption rate, with increased expression levels of genes promoting pyruvate influx into mitochondria for OXPHOS, while glycolysis-related genes remain at similar levels during differentiation. | [97] |
0.9 mM Na2HPO4/NaH2PO4 and 1.8 mM calcium chloride | human coronary artery SMCs | Both mitochondrial respiration and glycolysis are decreased in VSMCs. | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Tian, G.; Tu, Y.; Liao, Q.; Yao, L. Vascular Smooth Muscle Cell Metabolic Reprogramming in Arteriovenous Fistula Failure. Biomedicines 2025, 13, 2340. https://doi.org/10.3390/biomedicines13102340
Bao J, Tian G, Tu Y, Liao Q, Yao L. Vascular Smooth Muscle Cell Metabolic Reprogramming in Arteriovenous Fistula Failure. Biomedicines. 2025; 13(10):2340. https://doi.org/10.3390/biomedicines13102340
Chicago/Turabian StyleBao, Jingpeng, Guiqing Tian, Yuchi Tu, Qianqian Liao, and Lijun Yao. 2025. "Vascular Smooth Muscle Cell Metabolic Reprogramming in Arteriovenous Fistula Failure" Biomedicines 13, no. 10: 2340. https://doi.org/10.3390/biomedicines13102340
APA StyleBao, J., Tian, G., Tu, Y., Liao, Q., & Yao, L. (2025). Vascular Smooth Muscle Cell Metabolic Reprogramming in Arteriovenous Fistula Failure. Biomedicines, 13(10), 2340. https://doi.org/10.3390/biomedicines13102340