Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Extraction and Synthesis
3. Results
3.1. Randomized Clinical Trials
3.2. Longitudinal Studies
3.3. Cross-Sectional Studies
3.4. Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- World Alzheimer Report 2023—Alzheimer’s Disease International. Available online: https://www.alzint.org/u/World-Alzheimer-Report-2023.pdf (accessed on 1 July 2024).
- Campbell, N.L.; Unverzagt, F.; LaMantia, M.A.; Khan, B.A.; Boustani, M.A. Risk factors for the progression of mild cognitive impairment to dementia. Clin. Geriatr. Med. 2013, 29, 873–893. [Google Scholar] [CrossRef] [PubMed]
- Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev. 2016, 64, 272–287. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 2014, 63, 2262–2272. [Google Scholar] [CrossRef]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.B.; Tang, X.; Han, M.; Yang, J.; Simó, R. Impact of antidiabetic agents on dementia risk: A Bayesian network meta-analysis. Metabolism 2020, 109, 154265. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Shao, H.; Shaaban, C.E.; Yang, K.; Brown, J.; Anton, S.; Wu, Y.; Bress, A.; Donahoo, W.T.; DeKosky, S.T.; et al. Newer glucose-lowering drugs and risk of dementia: A systematic review and meta-analysis of observational studies. J. Am. Geriatr. Soc. 2023, 71, 2096–2106. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Wefers, J.; Meier, J.J. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 2021, 9, 525–544. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Chen, K.; Nie, Z.; Shi, R.; Yu, D.; Wang, Q.; Shao, F.; Wu, G.; Wu, Z.; Chen, T.; Li, C. Time to Benefit of Sodium-Glucose Cotransporter-2 Inhibitors among Patients with Heart Failure. JAMA Netw. Open 2023, 6, e2330754. [Google Scholar] [CrossRef]
- Chen, H.B.; Yang, Y.L.; Yu, T.H.; Li, Y.H. SGLT2 inhibitors for the composite of cardiorenal outcome in patients with chronic kidney disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pharmacol. 2022, 936, 175354. [Google Scholar] [CrossRef] [PubMed]
- Pawlos, A.; Broncel, M.; Woźniak, E.; Gorzelak-Pabiś, P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules 2021, 26, 7213. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, C.H.; Friedrich, S.; Hansen, C.T.; Gerds, T.; Ballard, C.; Møller, D.V.; Knudsen, L.B.; Kvist, K.; Zinman, B.; Holm, E.; et al. Treatment with glucagon-like peptide-1 receptor agonists and incidence of dementia: Data from pooled double-blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12268. [Google Scholar] [CrossRef] [PubMed]
- Bohlken, J.; Jacob, L.; Kostev, K. Association Between the Use of Antihyperglycemic Drugs and Dementia Risk: A Case-Control Study. J. Alzheimer’s Dis. 2018, 66, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhang, Z.; Zhang, B.; Zhang, W.; Wang, J.; Ni, W.; Miao, Y.; Liu, J.; Bi, Y. Enhancement of Impaired Olfactory Neural Activation and Cognitive Capacity by Liraglutide, but Not Dapagliflozin or Acarbose, in Patients with Type 2 Diabetes: A 16-Week Randomized Parallel Comparative Study. Diabetes Care 2022, 45, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Siao, W.Z.; Lin, T.K.; Huang, J.Y.; Tsai, C.F.; Jong, G.P. The association between sodium-glucose cotransporter 2 inhibitors and incident dementia: A nationwide population-based longitudinal cohort study. Diabetes Vasc. Dis. Res. 2022, 19, 14791641221098168. [Google Scholar] [CrossRef] [PubMed]
- Secnik, J.; Xu, H.; Schwertner, E.; Hammar, N.; Alvarsson, M.; Winblad, B.; Eriksdotter, M.; Garcia-Ptacek, S.; Religa, D. Glucose-Lowering Medications and Post-Dementia Survival in Patients with Diabetes and Dementia. J. Alzheimer’s Dis. 2022, 86, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Mainardi, M.; Astrone, P.; Gozzer, C.; Biava, A.; Bacchio, R.; Spadaccini, D.; Solerte, S.B.; Rondanelli, M. 12-month effects of incretins versus SGLT2-Inhibitors on cognitive performance and metabolic profile. A randomized clinical trial in the elderly with Type-2 diabetes mellitus. Clin. Pharmacol. Adv. Appl. 2018, 10, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, R.; Wang, S. Effect of Dapagliflozin Combined with Cognitive Behavior Training on Quality of Life and Cognitive Function in Elderly Patients with Type 2 Diabetes Mellitus Complicated with Mild Cognitive Impairment. Iran. J. Public Health 2022, 51, 1251–1258. [Google Scholar] [CrossRef]
- Wu, C.Y.; Iskander, C.; Wang, C.; Xiong, L.Y.; Shah, B.R.; Edwards, J.D.; Kapral, M.K.; Herrmann, N.; Lanctôt, K.L.; Masellis, M.; et al. Association of Sodium-Glucose Cotransporter 2 Inhibitors with Time to Dementia: A Population-Based Cohort Study. Diabetes Care 2023, 46, 297–304. [Google Scholar] [CrossRef]
- Wium-Andersen, I.K.; Osler, M.; Jørgensen, M.B.; Rungby, J.; Wium-Andersen, M.K. Antidiabetic medication and risk of dementia in patients with type 2 diabetes: A nested case-control study. Eur. J. Endocrinol. 2019, 181, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Mui, J.V.; Zhou, J.; Lee, S.; Leung, K.S.K.; Lee, T.T.L.; Chou, O.H.I.; Tsang, S.L.; Wai, A.K.C.; Liu, T.; Wong, W.T.; et al. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors vs. Dipeptidyl Peptidase-4 (DPP4) Inhibitors for New-Onset Dementia: A Propensity Score-Matched Population-Based Study with Competing Risk Analysis. Front. Cardiovasc. Med. 2021, 8, 747620. [Google Scholar] [CrossRef] [PubMed]
- Mone, P.; Lombardi, A.; Gambardella, J.; Pansini, A.; Macina, G.; Morgante, M.; Frullone, S.; Santulli, G. Empagliflozin Improves Cognitive Impairment in Frail Older Adults with Type 2 Diabetes and Heart Failure with Preserved Ejection Fraction. Diabetes Care 2022, 45, 1247–1251. [Google Scholar] [CrossRef] [PubMed]
- Low, S.; Goh, K.S.; Ng, T.P.; Moh, A.; Ang, S.F.; Wang, J.; Ang, K.; Tang, W.E.; Lim, Z.; Subramaniam, T.; et al. Association Between Use of Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors and Cognitive Function in a Longitudinal Study of Patients with Type 2 Diabetes. J. Alzheimer’s Dis. 2022, 87, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Proietti, R.; Rivera-Caravaca, J.M.; López-Gálvez, R.; Harrison, S.L.; Marín, F.; Underhill, P.; Shantsila, E.; McDowell, G.; Vinciguerra, M.; Davies, R.; et al. Cerebrovascular, Cognitive and Cardiac Benefits of SGLT2 Inhibitors Therapy in Patients with Atrial Fibrillation and Type 2 Diabetes Mellitus: Results from a Global Federated Health Network Analysis. J. Clin. Med. 2023, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Shi, Q.; Tao, Q.; Su, H.; Du, Y.; Pan, T.; Zhong, X. Correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus: A retrospective study. PeerJ 2023, 11, e16698. [Google Scholar] [CrossRef]
- Merzon, E.; Shpigelman, M.; Vinker, S.; Cohen, A.G.; Green, I.; Israel, A.; Cukierman-Yaffe, T.; Eldor, R. Clinical characteristics and healthcare utilisation associated with undiagnosed cognitive impairment in elderly patients with diabetes in a primary care setting: A population-based cohort study. BMJ Open 2024, 14, e078996. [Google Scholar] [CrossRef]
- Saisho, Y. SGLT2 Inhibitors: The Star in the Treatment of Type 2 Diabetes? Diseases 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Xie, Y.; Wei, Y.; Li, D.; Pu, J.; Ding, H.; Zhang, X. Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J. Cardiovasc. Pharmacol. 2023, 81, 4–14. [Google Scholar] [CrossRef]
- Noel, J.A.; Hougen, I.; Sood, M.M. The Intersection of SGLT2 Inhibitors, Cognitive Impairment, and CKD. Front. Neurol. 2022, 13, 823569. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Baratta, F.; Buzzetti, R.; D’Amico, A.; Castellani, V.; Bartimoccia, S.; Siena, A.; D’Onofrio, L.; Maddaloni, E.; Pingitore, A.; et al. The Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitors Reduce Platelet Activation and Thrombus Formation by Lowering NOX2-Related Oxidative Stress: A Pilot Study. Antioxidants 2022, 11, 1878. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.H.; Leonardi, G.; Torres, P.H.P.; Amaral, T.N.; de Freitas Filho, L.H.; Antunes, E.; Vicente, C.P.; Anhe, G.F.; Monica, F.Z. The sodium-glucose cotransporter-2 (SGLT2) inhibitors synergize with nitric oxide and prostacyclin to reduce human platelet activation. Biochem. Pharmacol. 2020, 182, 114276. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Lv, R.; Wang, J.; Che, L.; Wang, Z.; Huai, Z.; Wang, Y.; Xu, L. The Extraglycemic Effect of SGLT-2is on Mineral and Bone Metabolism and Bone Fracture. Front. Endocrinol. 2022, 13, 918350. [Google Scholar] [CrossRef] [PubMed]
- Dan, X.; Wechter, N.; Gray, S.; Mohanty, J.G.; Croteau, D.L.; Bohr, V.A. Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res. Rev. 2021, 70, 101416. [Google Scholar] [CrossRef] [PubMed]
- Marigliano, V.; Gualdi, G.; Servello, A.; Marigliano, B.; Volpe, L.D.; Fioretti, A.; Pagliarella, M.; Valenti, M.; Masedu, F.; Di Biasi, C.; et al. Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: A pilot study. Alzheimer Dis. Assoc. Disord. 2014, 28, 194–197. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, F.; Tischler, V.; Dening, T.; Churchill, A. Olfactory stimulation for people with dementia: A rapid review. Dementia 2022, 21, 1800–1824. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Zhang, X.Y.; Sun, Y.Q.; Lv, R.H.; Chen, M.; Li, M. Metformin use is associated with a reduced risk of cognitive impairment in adults with diabetes mellitus: A systematic review and meta-analysis. Front. Neurosci. 2022, 16, 984559. [Google Scholar] [CrossRef]
- Lee, C.T.; Lin, K.D.; Hsieh, C.F.; Wang, J.Y. SGLT2 Inhibitor Canagliflozin Alleviates High Glucose-Induced Inflammatory Toxicity in BV-2 Microglia. Biomedicines 2023, 12, 36. [Google Scholar] [CrossRef]
- Millar, P.; Pathak, N.; Parthsarathy, V.; Bjourson, A.J.; O’Kane, M.; Pathak, V.; Moffett, R.C.; Flatt, P.R.; Gault, V.A. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. J. Endocrinol. 2017, 234, 255–267. [Google Scholar] [CrossRef]
- Sa-Nguanmoo, P.; Tanajak, P.; Kerdphoo, S.; Jaiwongkam, T.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol. Appl. Pharmacol. 2017, 333, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.R.; Grant, D.G.; Aroor, A.R.; DeMarco, V.G. Empagliflozin Ameliorates Type 2 Diabetes-Induced Ultrastructural Remodeling of the Neurovascular Unit and Neuroglia in the Female. Brain Sci. 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Esterline, R.; Oscarsson, J.; Burns, J. A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? Int. Rev. Neurobiol. 2020, 155, 113–140. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Yamazaki, Y.; Nishioka, H.; Tokuyama, S. Neuroprotective effect through the cerebral sodium-glucose transporter on the development of ischemic damage in global ischemia. Brain Res. 2013, 1541, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Sim, A.Y.; Choi, D.H.; Kim, J.Y.; Kim, E.R.; Goh, A.R.; Lee, Y.H.; Lee, J.E. SGLT2 and DPP4 inhibitors improve Alzheimer’s disease-like pathology and cognitive function through distinct mechanisms in a T2D-AD mouse model. Biomed. Pharmacother. 2023, 168, 115755. [Google Scholar] [CrossRef]
- Pang, B.; Zhang, L.L.; Li, B.; Sun, F.X.; Wang, Z.D. The sodium glucose co-transporter 2 inhibitor ertugliflozin for Alzheimer’s disease: Inhibition of brain insulin signaling disruption-induced tau hyperphosphorylation. Physiol. Behav. 2023, 263, 114134. [Google Scholar] [CrossRef]
Author | Type of Study | Aim(s) | Patients Number | Age | SGLT2i | Time of Observation | Results |
---|---|---|---|---|---|---|---|
Bohlken J et al. (Germany) [15] (2018) | Cross-sectional study | To analyze the association between the use of antihyperglycemic drugs and dementia risk in patients followed in general practices | 8276 patients with dementia vs. 8276 dementia-free patients | N/A | not reported | N/A | Metformin use (in monotherapy or in combination with sulfonylureas) and glitazone use were negatively associated with dementia risk (p < 0.001), while insulin use was positively associated with dementia risk. Regarding SGLT2i, there was no significant difference in the risk of developing dementia (p = 0.477) |
Cheng H. et al. (China) [16] (2022) | Randomized clinical trial | To investigate the therapeutic effects of liraglutide, dapagliflozin or acarbose treatment on brain functional alterations and cognitive changes in patients with type 2 diabetes | 12 dapagliflozin users, 12 liraglutide users, 12 acarbose users | 57 (9.5 SD) years in the SGLT2i group; 51.9 (10.2 SD) years in the Liraglutide group; 56.4 (8.9 SD) years in the Acarbose group | dapagliflozin | 16 weeks | Liraglutide significantly enhanced the impaired odor-induced left hippocampal activation with Gaussian random field correction and improved cognitive subdomains of delayed memory, attention and executive function (all p < 0.05), whereas dapagliflozin or acarbose did not |
Siao W.Z. et al. (Taiwan) [17] (2022) | Longitudinal Study | To explore the association between SGLT2i and dementia incidence in patients with type 2 diabetes | 103,247 SGLT2i users. 103,247 non-SGLT2i users | not reported | canaglifozin, dapaglifozin, empaglifozin. | 32 Months | After the adjustment for gender, age and comorbilities, the SGLT2 inhibitor group was associated with a lower risk of incident dementia compared to the non-SGLT2 inhibitor group (aHR: 0.89; [95% CI 0.82–0.96]) |
Secnik J. et al. (Sweden) [18] (2022) | Longitudinal Study | Analyze all-cause mortality among users of glucose-lowering drugs in dementia and dementia-free subjects | 11,401 patients with dementia and 121,001 dementia-free patients | 75.7 (6.3) years in the SGLT2-i group; 79.8 (7.1) years in the control group | not reported | 13 years | GLP-1a (HR: 0.44 [95% CI 0.25–0.78]) and SGLT-2i users with dementia (HR 0.43 [95% CI 0.23–0.80]) experienced lower mortality compared to non-users |
Perna S. et al. (Italy) [19] (2018) | Randomized clinical trial | To examine the effects on cognitive performance, anthropometric measures and metabolic markers in two different treatments: Incretins vs. SGLT2i | 18 incretin users vs. 21 SGLT2i users | 77.21 (8.07 SD) years. | canaglifozin, dapaglifozin, empaglifozin. | 12 months | Cognitive status did not change significantly during the 12 months of treatment in both groups |
Zhao Y. et al. (China) [20] (2021) | Randomized clinical trial | To investigate the effect of dapagliflozin combined with cognitive behavior training on quality of life and cognitive function in elderly patients with type 2 diabetes mellitus and mild cognitive impairment | 48 patients with standard cares for diabetes vs. 48 patients with dapagliflozin combined with cognitive behavior training | 59.4 (8.0 SD) in controls and 61.0 (8.43 SD) in the experimental group | dapaglifozin | 1.5 years | Dapagliflozin combined with cognitive behavior training intervention improve cognitive function, the self-efficacy of diabetes management and quality of life |
Wu C.Y. et al. (Canada) [21] (2022) | Longitudinal Study | To investigate the association between SGLT2i and DPP-4i and the incidence of dementia. | 36,513 SGLT2i users and 70,390 DPP-4i users | 72.4 (5.4 SD) years in the SGTL2i group and 74.3 (6.5 SD) years in the DPP-4i group | canaglifozin, dapaglifozin, empaglifozin. | 2.80 years | SGLT2i compared with DPP-4i were associated with a lower risk of dementia (14.2/1000 person-years; aHR 0.80 [95% CI 0.71–0.89]) |
Wium-Andersen I.K. et al. (Denmark) [22] (2019) | Cross-sectional study | To investigate the association between different types of antidiabetic medication and treatment regimens (combinations of antidiabetic drugs) and dementia diagnoses in patients with type 2 diabetes. | 176,250 patients | 70.8 (51–67 IQR) years in the dementia group and 59.0 years (64–78 IQR) in the dementia-free group | not reported | N/A | Use of metformin, DPP-4i, GLP1 analogs and SGLT2i inhibitors (OR 0.58 [95% CI: 0.42–0.81]) was associated with lower odds of dementia after multible adjustments |
Mui J. V. et al. (China) [23] (2021) | Longitudinal Study | To evaluate the effects of the two novel antidiabetic agents on cognitive dysfunction by comparing the rates of dementia between SGLT2I and DPP4I users. | 51,460 patients | 66.3 [58–76 IQR] years | not reported | 472 days | SGLT2I use was associated with lower risks of dementia (hazard ratio HR 0.41, [95% CI 0.27–0.61]), Parkinson (HR 0.28 [95% CI 0.09–0.91]), all-cause (HR 0.84, [95% CI 0.77–0.91]), cardiovascular (HR 0.64, [95% CI 0.49–0.85]) and cerebrovascular (HR:0.36, [95% CI 0.30–0.43]) mortality |
Mone P. et al. (Italy) [24] (2022) | Longitudinal Study | To assess cognitive and physical function in consecutive frail older adults with diabetes and HFpEF, comparing the effects of empagliflozin, metformin and insulin | 52 empaglifozin users, 56 metformin users, 54 insulin users | 80 [6.6 SD] years in the empaglifozin group, 80 [6.3 SD] years in the metformin group, 81.4 [5.5 SD] years in the insulin group | empaglifozin | 1 month | The multivariable regression analysis showed the beneficial effects of empagliflozin (OR 3.61; [95% CI 1.57–8.32]) and no effect of metformin and insulin therapy. |
Low S. et al. (Singapore) [25] (2022) | Longitudinal Study | To evaluate the possible association between SGLT2i and longitudinal changes in cognitive functions in patients with Type II Diabetes | 138 patients with SGLT2i | 60.6 [7.4 SD] years | not reported | 4.6 years | The use of SGLT2i was associated with an increase in the Repeteable Battery for the Assessment of Neuropsychological Status (RBANS) total score in language (p = 0.019) |
Proietti R. et al. (International dataset) [26] (2023) | Longitudinal Study | To investigate cardiovascular, cerebrovascular and cognitive outcomes of SGLT2i therapy in patients with atrial fibrillation (AF) and T2DM | 89356 patients with AF | 71.8 [11.3 SD] years in the control group; 66.6 [9.92 SD] years in the SGLT2i group | not reported | 3 years | the risk of ischemic stroke/TIA was higher in patients not receiving SGLT2i (HR 1.12 [95% CI 1.01–1.24]) and for ICH (HR 1.57 [95% CI 1.25–1.99]) and incident dementia (HR 1.66 [95% CI 1.30–2.12]) |
Ding J et al. (China) [27] (2023) | Longitudinal Study | To investigate the correlation between long-term glycemic variability and cognitive function in middle-aged and elderly patients with type 2 diabetes mellitus (T2DM) | 222 patients | 63.1 (57.00–69.50 IQR) years in the MCI group; 60.7 (56.0–65.0 IQR) years in the MCI-free group | not reported | 16.1 months | HbA1c SD, fasting glucose SD and smoking were risk factors for cognitive dysfunction, while eGFR, GLP-1RA and SGLT-2i usage had a protective effect. |
Merzon E. et al. (Israel) [28] (2024) | Cross-sectional study | To assess the prevalence, clinical characteristics and healthcare utilization of patients with type 2 diabetes and previously undiagnosed cognitive impairment (who were identified as having a low MoCA score) | 350 patients | 73.8 [5.8 SD] years | not reported | N/A | Patients with MoCA < 19 had more diabetes-related complications, were less likely to be treated with GLP-1Ra, DPP-4i or SGLT2i and were more likely to receive insulin or sulfonylurea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lardaro, A.; Quarta, L.; Pagnotta, S.; Sodero, G.; Mariani, S.; Del Ben, M.; Desideri, G.; Ettorre, E.; Baratta, F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines 2024, 12, 1750. https://doi.org/10.3390/biomedicines12081750
Lardaro A, Quarta L, Pagnotta S, Sodero G, Mariani S, Del Ben M, Desideri G, Ettorre E, Baratta F. Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines. 2024; 12(8):1750. https://doi.org/10.3390/biomedicines12081750
Chicago/Turabian StyleLardaro, Antonio, Ludovica Quarta, Stefania Pagnotta, Giorgio Sodero, Sandro Mariani, Maria Del Ben, Giovambattista Desideri, Evaristo Ettorre, and Francesco Baratta. 2024. "Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline" Biomedicines 12, no. 8: 1750. https://doi.org/10.3390/biomedicines12081750
APA StyleLardaro, A., Quarta, L., Pagnotta, S., Sodero, G., Mariani, S., Del Ben, M., Desideri, G., Ettorre, E., & Baratta, F. (2024). Impact of Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) Therapy on Dementia and Cognitive Decline. Biomedicines, 12(8), 1750. https://doi.org/10.3390/biomedicines12081750