Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethical Statement
2.3. Laboratory Analyses
2.4. Statistical Methods
3. Results
3.1. Study Participants’ Characteristics
3.2. Polymorphisms in GST Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petty, R.E.; Southwood, T.R.; Baum, J.; Bhettay, E.; Glass, D.; Manners, P.; Maldonado- Cocco, J.; Suarez-Almazor, M.; Orozco-Alcala, J.; Prier, A.-M. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J. Rheumatol. 1998, 25, 1991–1994. [Google Scholar]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Thierry, S.; Fautrel, B.; Lemelle, I.; Guillemin, F. Prevalence and incidence of juvenile idiopathic arthritis: A systematic review. Jt. Bone Spine 2014, 81, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Manners, P.J.; Bower, C. Worldwide prevalence of juvenile arthritis: Why does it vary so much? J. Rheumatol. 2002, 29, 1520–1530. [Google Scholar] [PubMed]
- Prakken, B.; Albani, S.; Martini, A. Juvenile idiopathic arthritis. Lancet 2011, 377, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Ringold, S.; Angeles-Han, S.T.; Beukelman, T.; Lovell, D.; Cuello, C.A.; Becker, M.L.; Colbert, R.A.; Feldman, B.M.; Ferguson, P.J.; Gewanter, H.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Treatment of Juvenile Idiopathic Arthritis: Therapeutic Approaches for Non-Systemic Polyarthritis, Sacroiliitis, and Enthesitis. Arthritis Rheumatol. 2019, 71, 846–863. [Google Scholar] [CrossRef] [PubMed]
- Onel, K.B.; Horton, D.B.; Lovell, D.J.; Shenoi, S.; Cuello, C.A.; Angeles-Han, S.T.; Becker, M.L.; Cron, R.Q.; Feldman, B.M.; Ferguson, P.J.; et al. 2021 American College of Rheumatology Guideline for the Treatment of Juvenile Idiopathic Arthritis: Therapeutic Approaches for Oligoarthritis, Temporomandibular Joint Arthritis, and Systemic Juvenile Idiopathic Arthritis. Arthritis Care Res. 2022, 74, 521–537. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, D.; Romano, M.; Gattinara, M.; Gerloni, V. Biologics for the Treatment of Juvenile Idiopathic Arthritis. Curr. Med. Chem. 2018, 25, 5860–5893. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, G.; On behalf of the Rheumatology Italian Study Group; Mastrangelo, G.; Barone, P.; La Torre, F.; Martino, S.; Pappagallo, G.; Ravelli, A.; Taddio, A.; Zulian, F.; et al. Methotrexate in juvenile idiopathic arthritis: Advice and recommendations from the MARAJIA expert consensus meeting. Pediatr. Rheumatol. 2018, 16, 46. [Google Scholar] [CrossRef]
- Wallace, C.A.; Ruperto, N.; Giannini, E. Childhood Arthritis and Rheumatology Research Alliance; Pediatric Rheumatology International Trials Organisation; Pediatric Rheumatology Collaborative Study Group. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J. Rheumatol. 2004, 31, 2290–2294. [Google Scholar]
- Wallace, C.A.; Giannini, E.H.; Huang, B.; Itert, L.; Ruperto, N.; Childhood Arthritis Rheumatology Research Alliance (CARRA); Pediatric Rheumatology Collaborative Study Group (PRCSG); Paediatric Rheumatology International Trials Organisation (PRINTO). American College of Rheumatology provisional criteria for defining clinical inactive disease in select categories of juvenile idiopathic arthritis. Arthritis Care Res. 2011, 63, 929–936. [Google Scholar] [CrossRef]
- Consolaro, A.; Bracciolini, G.; Ruperto, N.; Pistorio, A.; Magni-Manzoni, S.; Malattia, C.; Pederzoli, S.; Davì, S.; Martini, A.; Ravelli, A.; et al. Remission, minimal disease activity, and acceptable symptom state in juvenile idiopathic arthritis: Defining criteria based on the juvenile arthritis disease activity score. Arthritis Rheum. 2012, 64, 2366–2374. [Google Scholar] [CrossRef] [PubMed]
- Pastore, S.; Stocco, G.; Moressa, V.; Zandonà, L.; Favretto, D.; Malusà, N.; Decorti, G.; Lepore, L.; Ventura, A. 5-Aminoimidazole-4-carboxamide ribonucleotide-transformylase and inosine-triphosphate-pyrophosphatase genes variants predict remission rate during methotrexate therapy in patients with juvenile idiopathic arthritis. Rheumatol. Int. 2014, 35, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.A. The use of methotrexate in childhood rheumatic diseases. Arthritis Rheum. 1998, 41, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Albarouni, M.; Becker, I.; Horneff, G. Predictors of response to methotrexate in juvenile idiopathic arthritis. Pediatr. Rheumatol. 2014, 12, 35. [Google Scholar] [CrossRef]
- van Dijkhuizen, E.P.; Wulffraat, N.M. Prediction of methotrexate efficacy and adverse events in patients with juvenile idiopathic arthritis: A systematic literature review. Pediatr. Rheumatol. 2014, 12, 51. [Google Scholar] [CrossRef]
- Pastore, S.; Stocco, G.; Favretto, D.; De Iudicibus, S.; Taddio, A.; D’Adamo, P.; Malusã, N.; Addobbati, R.; Decorti, G.; Lepore, L.; et al. Genetic determinants for methotrexate response in juvenile idiopathic arthritis. Front. Pharmacol. 2015, 6, 52. [Google Scholar] [CrossRef]
- Danila, M.I.; Hughes, L.B.; Brown, E.E.; Morgan, S.L.; Baggott, J.E.; Arnett, D.K.; Bridges, S.L. Measurement of erythrocyte methotrexate polyglutamate levels: Ready for clinical use in rheumatoid arthritis? Curr. Rheumatol. Rep. 2010, 12, 342–347. [Google Scholar] [CrossRef]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360 Pt 1, 1–16. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. GLUTATHIONE TRANSFERASES. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Josephy, P.D. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum. Genom. Proteom. 2010, 2, 876940. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E.; Gelbart, T.; Pegelow, C. Erythrocyte glutathione synthetase deficiency leads not only to glutathione but also to glutathione-S-transferase deficiency. J. Clin. Investig. 1986, 77, 38–41. [Google Scholar] [CrossRef]
- Kalyan Kolli, V.; Abraham, P.; Isaac, B. Alteration in antioxidant defense mechanisms in the small intestines of methotrexate treated rat may contribute to its gastrointest toxicity. Cancer Ther. 2007, 5, 501–510. [Google Scholar]
- Audemard-Verger, A.; Silva, N.M.; Verstuyft, C.; Costedoat-Chalumeau, N.; Hummel, A.; Le Guern, V.; Sacré, K.; Meyer, O.; Daugas, E.; Goujard, C.; et al. Glutathione S Transferases Polymorphisms Are Independent Prognostic Factors in Lupus Nephritis Treated with Cyclophosphamide. PLoS ONE 2016, 11, e0151696. [Google Scholar] [CrossRef]
- Rupasree, Y.; Naushad, S.M.; Rajasekhar, L.; Kutala, V.K. Association of genetic variants of xenobiotic metabolic pathway with systemic lupus erythematosus. Indian. J. Biochem. Biophys. 2013, 50, 447–452. [Google Scholar] [PubMed]
- Al-Judaibi, B.; Schwarz, U.I.; Huda, N.; Dresser, G.K.; Gregor, J.C.; Ponich, T.; Chande, N.; Mosli, M.; Kim, R.B. Genetic Predictors of Azathioprine Toxicity and Clinical Response in Patients with Inflammatory Bowel Disease. J. Popul. Ther. Clin. Pharmacol. 2016, 23, 26–36. [Google Scholar]
- Stocco, G. Pharmacogenetics of azathioprine in inflammatory bowel disease: A role for glutathione-S-transferase? World J. Gastroenterol. 2014, 20, 3534–3541. [Google Scholar] [CrossRef]
- Weich, N.; Ferri, C.; Moiraghi, B.; Bengió, R.; Giere, I.; Pavlovsky, C.; Larripa, I.B.; Fundia, A.F. GSTM1 and GSTP1, but not GSTT1 genetic polymorphisms are associated with chronic myeloid leukemia risk and treatment response. Cancer Epidemiol. 2016, 44, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Shiota, M.; Fujimoto, N.; Itsumi, M.; Takeuchi, A.; Inokuchi, J.; Tatsugami, K.; Yokomizo, A.; Kajioka, S.; Uchiumi, T.; Eto, M. Gene polymorphisms in antioxidant enzymes correlate with the efficacy of androgen-deprivation therapy for prostate cancer with implications of oxidative stress. Ann. Oncol. 2017, 28, 569–575. [Google Scholar] [CrossRef]
- Kim, H.; Kang, H.J.; Kim, H.J.; Jang, M.K.; Kim, N.H.; Oh, Y.; Han, B.-D.; Choi, J.-Y.; Kim, C.W.; Lee, J.W.; et al. Pharmacogenetic Analysis of Pediatric Patients with Acute Lymphoblastic Leukemia: A Possible Association between Survival Rate and ITPA Polymorphism. PLoS ONE 2012, 7, e45558. [Google Scholar] [CrossRef]
- Shen, H.; Kauvar, L.; Tew, K.D. Importance of glutathione and associated enzymes in drug response. Oncol. Res. 1997, 9, 295–302. [Google Scholar] [PubMed]
- Meissner, B.; Stanulla, M.; Ludwig, W.-D.; Harbott, J.; Möricke, A.; Welte, K.; Schrappe, M. The GSTT1 deletion polymorphism is associated with initial response to glucocorticoids in childhood acute lymphoblastic leukemia. Leukemia 2004, 18, 1920–1923. [Google Scholar] [CrossRef] [PubMed]
- Stanulla, M.; Schrappe, M.; Muller Brechlin, A.; Zimmermann, M.; Welte, K. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: A case control study. Blood 2000, 95, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Broekman, M.M.T.J.; Bos, C.; Morsche, R.H.; Hoentjen, F.; Roelofs, H.M.J.; Peters, W.H.M.; A Wanten, G.J.; de Jong, D.J. GST Theta null genotype is associated with an increased risk for ulcerative colitis: A case–control study and meta-analysis of GST Mu and GST Theta polymorphisms in inflammatory bowel disease. J. Hum. Genet. 2014, 59, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, S.Z.; El-Zein, R.A.; Anwar, W.A.; Au, W.W. A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett. 1996, 107, 229–233. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 February 2024).
- Richard, I.; Cheng, J.; Schloerke, B.; Hughes, E.; Lauer, A.; Seo, J.; Brevoort, K. Olivier Roygt: Easily Create Presentation-Ready Display Tables. 2024. Available online: https://CRAN.R-project.org/package=gt (accessed on 27 February 2024).
- Daniel, D.S.; Whiting, K.; Curry, M.; Jessica, A.L.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Schauberger, P.; Walker, A. Openxlsx: Read, Write and Edit Xlsx Files. 2023. Available online: https://CRAN.R-project.org/package=openxlsx (accessed on 27 February 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Hawwa, A.F.; AlBawab, A.; Rooney, M.; Wedderburn, L.R.; Beresford, M.W.; McElnay, J.C. Methotrexate polyglutamates as a potential marker of adherence to long-term therapy in children with juvenile idiopathic arthritis and juvenile dermatomyositis: An observational, cross-sectional study. Arthritis Res. Ther. 2015, 17, 295. [Google Scholar] [CrossRef] [PubMed]
- Bulatović, M.; Heijstek, M.W.; Van Dijkhuizen, E.H.P.; Wulffraat, N.M.; Pluijm, S.M.F.; de Jonge, R. Prediction of clinical non-response to methotrexate treatment in juvenile idiopathic arthritis. Ann. Rheum. Dis. 2012, 71, 1484–1489. [Google Scholar] [CrossRef]
- Vilca, I.; Munitis, P.G.; Pistorio, A.; Ravelli, A.; Buoncompagni, A.; Bica, B.; Campos, L.; Häfner, R.; Hofer, M.; Ozen, S.; et al. Predictors of poor response to methotrexate in polyarticular-course juvenile idiopathic arthritis: Analysis of the PRINTO methotrexate trial. Ann. Rheum. Dis. 2010, 69, 1479–1483. [Google Scholar] [CrossRef]
- Schmeling, H.; Horneff, G.; Benseler, S.M.; Fritzler, M.J. Pharmacogenetics: Can genes determine treatment efficacy and safety in JIA? Nat. Rev. Rheumatol. 2014, 10, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Sawle, A.D.; Frank, M.B.; Chen, Y.; Wallace, C.A.; Jarvis, J.N. Whole blood gene expression profiling predicts therapeutic response at six months in patients with polyarticular juvenile idiopathic arthritis. Arthritis Rheumatol. 2014, 66, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- de Rotte, M.C.; Bulatovic, M.; Heijstek, M.W.; Jansen, G.; Heil, S.G.; van Schaik, R.H.; Wulffraat, N.M.; de Jonge, R. ABCB1 and ABCC3 gene polymorphisms are associated with first-year response to methotrexate in juvenile idiopathic arthritis. J. Rheumatol. 2012, 39, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.; Cule, E.; Moncrieffe, H.; Hinks, A.; Ursu, S.; Patrick, F.; Kassoumeri, L.; Flynn, E.; Bulatović, M.; Wulffraat, N.; et al. Genome-wide data reveal novel genes for methotrexate response in a large cohort of juvenile idiopathic arthritis cases. Pharmacogenomics J. 2014, 14, 356–364. [Google Scholar] [CrossRef]
- Tirelli, F.; Zannin, M.E.; Vittadello, F.; Agnolucci, J.; Mazzarolo, M.; Zulian, F. Methotrexate Monotherapy in Juvenile Idiopathic Arthritis Associated Uveitis: Myth or Reality? Ocul. Immunol. Inflamm. 2021, 30, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Roszkiewicz, J.; Smolewska, E. In the Pursuit of Methotrexate Treatment Response Biomarker in Juvenile Idiopathic Arthritis—Are We Getting Closer to Personalised Medicine? Curr. Rheumatol. Rep. 2017, 19, 19. [Google Scholar] [CrossRef] [PubMed]
- Prey, S.; Paul, C. Effect of folic or folinic acid supplementation on methotrexate-associated safety and efficacy in inflammatory disease: A systematic review. Br. J. Dermatol. 2009, 160, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.L.; Bammler, T.K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 1999, 49, 156–164. [Google Scholar] [CrossRef]
- Jancova, P.; Anzenbacher, P.; Anzenbacherova, E. Phase II drug metabolizing enzymes. Biomed. Pap. 2010, 154, 103–116. [Google Scholar] [CrossRef]
- Strange, R.C.; Spiteri, M.A.; Ramachandran, S.; Fryer, A.A. Glutathione-S-transferase family of enzymes. Mutat. Res. 2001, 482, 21–26. [Google Scholar] [CrossRef]
- Chikezie, P.C. Glutathione S-transferase Activity in Diagnostic Pathology. Metabolomics 2015, 5, 153. [Google Scholar] [CrossRef]
- Suvakov, S.; Damjanovic, T.; Stefanovic, A.; Pekmezovic, T.; Savic-Radojevic, A.; Pljesa-Ercegovac, M.; Matic, M.; Djukic, T.; Coric, V.; Jakovljevic, J.; et al. Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients. Nephrol. Dial. Transplant. 2013, 28, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Whalen, R.; Boyer, T.D. Human glutathione S-transferases. Semin. Liver Dis. 1998, 18, 345–358. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Male | Female | ||||
---|---|---|---|---|---|---|
MTXN = 17 1 | MTX + bDMARDN = 18 1 | p Value 2 | MTXN = 29 1 | MTX + bDMARDN = 45 1 | p Value 2 | |
Age at disease onset (mos) | 73 (48, 115) | 83 (28, 113) | 0.729 | 97 (54, 165) | 64 (23, 129) | 0.049 |
Characteristic | MTX, N = 46 1 | MTX + bDMARD, N = 63 1 | p Value 2 | |
---|---|---|---|---|
JIA type | Oligoarticular | 20 (43.5%) | 26 (41.3%) | 0.608 |
Polyarticular | 23 (50.0%) | 33 (49.2%) | ||
Systemic | 3 (6.5%) | 4 (6.3%) | ||
ANA | Positive | 29 (63.0%) | 30 (47.6%) | 0.353 |
Negative | 17 (370%) | 33 (52.4%) | ||
RF | Positive | 43 (93.5%) | 61 (96.8%) | 0.665 |
Negative | 3 (6.5%) | 2 (3.2%) | ||
MTP + IP joints | No | 38 (82.6%) | 54 (85.7%) | 0.754 |
Yes | 8 (17.4%) | 9 (14.3%) | ||
Ankles | No | 28 (60.9%) | 42 (66.7%) | 0.272 |
Yes | 18 (39.1%) | 21 (33.3%) | ||
Knees | No | 18 (39.1%) | 15 (23.8%) | 0.162 |
Yes | 28 (60.9%) | 48 (76.2%) | ||
Hips | No | 40 (87.0%) | 54 (85.7%) | 0.404 |
Yes | 6 (13.0%) | 9 (14.3%) | ||
MCP + IP joints | No | 28 (60.9%) | 43 (68.3%) | 0.717 |
Yes | 18 (39.1%) | 20 (31.7%) | ||
Wrists | No | 41 (89.1%) | 45 (71.0%) | 0.011 |
Yes | 5 (10.9%) | 18 (29.0%) | ||
Elbows | No | 44 (95.7%) | 54 (85.7%) | 0.055 |
Yes | 2 (4.3%) | 9 (14.3%) | ||
TM joints | No | 46 (100%) | 60 (95.2%) | 0.044 |
Yes | 0 (0%) | 3 (4.8%) | ||
Uveitis | No | 44 (95.7%) | 50 (79.4%) | 0.030 |
Yes | 2 (4.3%) | 13 (20.6%) |
Characteristic | MTX, N = 46 1 | MTX + bDMARD, N = 63 1 | p Value 2 |
---|---|---|---|
Time span between disease onset and MTX introduction (mos) | 3 (1, 14) | 4 (2, 9) | 0.751 |
ESR (mm/h) (at disease onset) | 25 (15, 40) | 22 (14, 33) | 0.344 |
CRP (g/L) (at disease onset) | 4 (2, 13) | 5 (2, 10) | 0.960 |
HTC (L/L) (at disease onset) | 0.34 ± 0.03 | 0.33 ± 0.03 | 0.608 |
L (×10⁹/L) (at disease onset) | 9.30 (7.95, 11.50) | 9.40 (8.10, 11.25) | 0.545 |
PLT (×10⁹/L) (at disease onset) | 386 (326, 438) | 401 (352, 456) | 0.858 |
ESR (mm/h) (at MTX introduction) | 20 (8, 44) | 20 (13, 31) | 0.598 |
CRP (g/L) (at MTX introduction) | 3 (1, 11) | 4 (2, 11) | 0.601 |
HTC (L/L) (at MTX introduction) | 0.35 ± 0.03 | 0.34 ± 0.03 | 0.841 |
L (×10⁹/L) (at MTX introduction) | 9.40 (7.00, 11.20) | 9.70 (7.85, 11.50) | 0.588 |
PLT (×10⁹/L) (at MTX introduction) | 370 (289, 426) | 389 (318, 424) | 0.689 |
Characteristic | MTX, N = 46 1 | MTX + bDMARD, N = 63 1 | p Value 2 | |
---|---|---|---|---|
GSTM1 | Deletion polymorphism (0) | 27 (58.7%) | 40 (63.5%) | 0.567 |
Without deletion polymorphism (1) | 19 (41.3%) | 23 (36.5%) | ||
GSTT1 | Deletion polymorphism (0) | 8 (17.4%) | 14 (22.2%) | 0.502 |
Without deletion polymorphism (1) | 38 (82.6%) | 49 (77.8%) | ||
GSTM1/GSTT1 | (0/0) | 6 (13%) | 8 (12.7%) | 0.966 |
(0/1, 1/0, 1/1) | 21 (45.7%) | 32 (50.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huljev Frkovic, S.; Jelusic, M.; Crkvenac Gornik, K.; Rogic, D.; Frkovic, M. Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis. Biomedicines 2024, 12, 1642. https://doi.org/10.3390/biomedicines12081642
Huljev Frkovic S, Jelusic M, Crkvenac Gornik K, Rogic D, Frkovic M. Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis. Biomedicines. 2024; 12(8):1642. https://doi.org/10.3390/biomedicines12081642
Chicago/Turabian StyleHuljev Frkovic, Sanda, Marija Jelusic, Kristina Crkvenac Gornik, Dunja Rogic, and Marijan Frkovic. 2024. "Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis" Biomedicines 12, no. 8: 1642. https://doi.org/10.3390/biomedicines12081642
APA StyleHuljev Frkovic, S., Jelusic, M., Crkvenac Gornik, K., Rogic, D., & Frkovic, M. (2024). Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis. Biomedicines, 12(8), 1642. https://doi.org/10.3390/biomedicines12081642