Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation
Abstract
1. Introduction
2. Process Understanding and Optimization
2.1. Empirical Model
2.2. Mechanistic Model
2.3. Hybrid Model
3. Process Monitoring
3.1. Spectroscopy
3.2. Imaging Technique
3.3. Acoustic Emissions Technique
3.4. Multi-Technique Integrated Method
4. Process Control
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fulop, G.; Domokos, A.; Galata, D.; Szabo, E.; Gyurkes, M.; Szabo, B.; Farkas, A.; Madarasz, L.; Demuth, B.; Lender, T.; et al. Integrated twin-screw wet granulation, continuous vibrational fluid drying and milling: A fully continuous powder to granule line. Int. J. Pharm. 2021, 594, 120126. [Google Scholar] [CrossRef]
- Fisher, A.C.; Liu, W.; Schick, A.; Ramanadham, M.; Chatterjee, S.; Brykman, R.; Lee, S.L.; Kozlowski, S.; Boam, A.B.; Tsinontides, S.C.; et al. An audit of pharmaceutical continuous manufacturing regulatory submissions and outcomes in the US. Int. J. Pharm. 2022, 622, 121778. [Google Scholar] [CrossRef] [PubMed]
- Dhenge, R.M.; Fyles, R.S.; Cartwright, J.J.; Doughty, D.G.; Hounslow, M.J.; Salman, A.D. Twin screw wet granulation: Granule properties. Chem. Eng. J. 2010, 164, 322–329. [Google Scholar] [CrossRef]
- Matsui, Y.; Watano, S. Evaluation of properties of granules and tablets prepared by twin-screw continuous granulation and comparison of their properties with those by batch fluidized-bed and high shear granulations. Powder Technol. 2018, 55, 86–94. [Google Scholar] [CrossRef]
- Kytta, K.M.; Lakio, S.; Wikstrom, H.; Sulemanji, A.; Fransson, M.; Ketolainen, J.; Tajarobi, P. Comparison between twin-screw and high-shear granulation—The effect of filler and active pharmaceutical ingredient on the granule and tablet properties. Powder Technol. 2020, 376, 187–198. [Google Scholar] [CrossRef]
- Gorringe, L.J.; Kee, G.S.; Saleh, M.F.; Fa, N.H.; Elkes, R.G. Use of the channel fill level in defining a design space for twin screw wet granulation. Int. J. Pharm. 2017, 519, 165–177. [Google Scholar] [CrossRef]
- Vercruysse, J.; Peeters, E.; Fonteyne, M.; Cappuyns, P.; Delaet, U.; Van Assche, I.; De Beer, T.; Remon, J.P.; Vervaet, C. Use of a continuous twin screw granulation and drying system during formulation development and process optimization. Eur. J. Pharm. Biopharm. 2015, 89, 239–247. [Google Scholar] [CrossRef]
- Chavez, P.-F.; Stauffer, F.; Eeckman, F.; Bostijn, N.; Didion, D.; Schaefer, C.; Yang, H.; El Aalamat, Y.; Lories, X.; Warman, M.; et al. Control strategy definition for a drug product continuous wet granulation process: Industrial case study. Int. J. Pharm. 2022, 624, 121970. [Google Scholar] [CrossRef]
- Beg, S.; Hasnain, M.S.; Rahman, M.; Swain, S. Chapter 1—Introduction to Quality by Design (QbD): Fundamentals, Principles, and Applications. In Pharmaceutical Quality by Design; Beg, S., Hasnain, M.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 1–17. [Google Scholar]
- Vargas, J.M.; Nielsen, S.; Cárdenas, V.; Gonzalez, A.; Aymat, E.Y.; Almodovar, E.; Classe, G.; Colón, Y.; Sanchez, E.; Romañach, R.J. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. Int. J. Pharm. 2018, 538, 167–178. [Google Scholar] [CrossRef]
- Miyai, Y.; Formosa, A.; Armstrong, C.; Marquardt, B.; Rogers, L.; Roper, T. PAT Implementation on a Mobile Continuous Pharmaceutical Manufacturing System: Real-Time Process Monitoring with In-Line FTIR and Raman Spectroscopy. Organic Process Res. Dev. 2021, 25, 2707–2717. [Google Scholar] [CrossRef]
- Portier, C.; Vervaet, C.; Vanhoorne, V. Continuous Twin Screw Granulation: A Review of Recent Progress and Opportunities in Formulation and Equipment Design. Pharmaceutics 2021, 13, 668. [Google Scholar] [CrossRef]
- Morrissey, J.P.; Hanley, K.J.; Ooi, J.Y. Conceptualisation of an Efficient Particle-Based Simulation of a Twin-Screw Granulator. Pharmaceutics 2021, 13, 2136. [Google Scholar] [CrossRef]
- Liu, H.; Ricart, B.; Stanton, C.; Smith-Goettler, B.; Verdi, L.; O’Connor, T.; Lee, S.; Yoon, S. Design space determination and process optimization in at-scale continuous twin screw wet granulation. Comput. Chem. Eng. 2019, 125, 271–286. [Google Scholar] [CrossRef]
- Fonteyne, M.; Vercruysse, J.; Díaz, D.C.; Gildemyn, D.; Vervaet, C.; Remon, J.P.; Beer, T.D. Real-time assessment of critical quality attributes of a continuous granulation process. Pharm. Dev. Technol. 2013, 18, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Jiménez, A.A.B.; Matsunami, K.; Stauffer, F.; Nopens, I.; De Beer, T. Evaluation of the influence of material properties and process parameters on granule porosity in twin-screw wet granulation. Int. J. Pharm. 2023, 641, 123010. [Google Scholar] [CrossRef]
- Van de Steene, S.; Van Renterghem, J.; Vanhoorne, V.; Vervaet, C.; Kumar, A.; De Beer, T. Identification of continuous twin-screw melt granulation mechanisms for different screw configurations, process settings and formulation. Int. J. Pharm. 2023, 630, 122322. [Google Scholar] [CrossRef] [PubMed]
- Seem, T.C.; Rowson, N.A.; Ingram, A.; Huang, Z.; Yu, S.; Matas, M.D.; Gabbott, I.; Reynolds, G.K. Twin Screw Granulation—A Literature Review. Powder Technol. 2015, 276, 89–102. [Google Scholar] [CrossRef]
- Kumar, V.; Taylor, M.K.; Mehrotra, A.; Stagner, W.C. Real-Time Particle Size Analysis Using Focused Beam Reflectance Measurement as a Process Analytical Technology Tool for a Continuous Granulation-Drying-Milling Process. AAPS PharmSciTech 2013, 14, 523–530. [Google Scholar] [CrossRef]
- Fonteyne, M.; Correia, A.; De Plecker, S.; Vercruysse, J.; Ilic, I.; Zhou, Q.; Veryaet, C.; Remon, J.P.; Onofre, F.; Bulone, V.; et al. Impact of microcrystalline cellulose material attributes: A case study on continuous twin screw granulation. Int. J. Pharm. 2015, 478, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Alakarjula, M.; Vanhoorne, V.; Toiviainen, M.; De Leersnyder, F.; Vercruysse, J.; Juuti, M.; Ketolainen, J.; Vervaet, C.; Remon, J.P.; et al. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation. Eur. J. Pharm. Sci. 2016, 90, 25–37. [Google Scholar] [CrossRef]
- Meng, W.; Kotamarthy, L.; Panikar, S.; Sen, M.; Pradhan, S.; Marc, M.; Litster, J.D.; Muzzio, F.J.; Ramachandran, R. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms. Int. J. Pharm. 2016, 513, 357–375. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Galbraith, S.C.; Ricart, B.; Stanton, C.; Smith-Goettler, B.; Verdi, L.; O’Connor, T.; Lee, S.; Yoon, S. Optimization of critical quality attributes in continuous twin-screw wet granulation via design space validated with pilot scale experimental data. Int. J. Pharm. 2017, 525, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Maniruzzaman, M.; Ross, S.A.; Dey, T.; Nair, A.; Snowden, M.J.; Douroumis, D. A quality by design (QbD) twin-Screw extrusion wet granulation approach for processing water insoluble drugs. Int. J. Pharm. 2017, 526, 496–505. [Google Scholar] [CrossRef]
- Willecke, N.; Szepes, A.; Wunderlich, M.; Remon, J.P.; Vervaet, C.; De Beer, T. A novel approach to support formulation design on twin screw wet granulation technology: Understanding the impact of overarching excipient properties on drug product quality attributes. Int. J. Pharm. 2018, 545, 128–143. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, F.; Vanhoorne, V.; Piker, G.; Chavez, P.F.; Vervaet, C.; De Beer, T. Managing API raw material variability during continuous twin-screw wet granulation. Int. J. Pharm. 2019, 561, 265–273. [Google Scholar] [CrossRef]
- Meng, W.; Rao, K.S.; Snee, R.D.; Ramachandran, R.; Muzzio, F.J. A comprehensive analysis and optimization of continuous twin-screw granulation processes via sequential experimentation strategy. Int. J. Pharm. 2019, 556, 349–362. [Google Scholar] [CrossRef]
- Portier, C.; De Vriendt, C.; Vigh, T.; Di Pretoro, G.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Continuous twin screw granulation: Robustness of lactose/MCC-based formulations. Int. J. Pharm. 2020, 588, 119756. [Google Scholar] [CrossRef]
- Portier, C.; Pandelaere, K.; Delaet, U.; Vigh, T.; Di Pretoro, G.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Continuous twin screw granulation: A complex interplay between formulation properties, process settings and screw design. Int. J. Pharm. 2020, 576, 119004. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Lenhart, V.; Kleinebudde, P. Switch of tablet manufacturing from high shear granulation to twin-screw granulation using quality by design approach. Int. J. Pharm. 2020, 579, 119139. [Google Scholar] [CrossRef]
- Portier, C.; Pandelaere, K.; Delaet, U.; Vigh, T.; Kumar, A.; Di Pretoro, G.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Continuous twin screw granulation: Influence of process and formulation variables on granule quality attributes of model formulations. Int. J. Pharm. 2020, 576, 118981. [Google Scholar] [CrossRef]
- Portier, C.; Vigh, T.; Di Pretoro, G.; Leys, J.; Klingeleers, D.; De Beer, T.; Vervaet, C.; Vanhoorne, V. Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying—A QbD approach. Int. J. Pharm. X 2021, 3, 100077. [Google Scholar] [CrossRef] [PubMed]
- Plath, T.; Korte, C.; Sivanesapillai, R.; Weinhart, T. Parametric Study of Residence Time Distributions and Granulation Kinetics as a Basis for Process Modeling of Twin-Screw Wet Granulation. Pharmaceutics 2021, 13, 645. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.Y.; Albadarin, A.B.; Iqbal, J.; Walker, G.M. Image processing for detecting complete two dimensional properties’ distribution of granules produced in twin screw granulation. Int. J. Pharm. 2021, 600, 120472. [Google Scholar] [CrossRef]
- Koster, C.; Pohl, S.; Kleinebudde, P. Evaluation of Binders in Twin-Screw Wet Granulation. Pharmaceutics 2021, 13, 241. [Google Scholar] [CrossRef] [PubMed]
- Ismail, H.Y.; Singh, M.; Shirazian, S.; Albadarin, A.B.; Walker, G.M. Development of high-performance hybrid ANN-finite volume scheme (ANN-FVS) for simulation of pharmaceutical continuous granulation. Chem. Eng. Res. Des. 2020, 163, 320–326. [Google Scholar] [CrossRef]
- Jimenez, A.A.B.; Van Hauwermeiren, D.; Peeters, M.; De Beer, T.; Nopens, I. Improvement of a 1D Population Balance Model for Twin-Screw Wet Granulation by Using Identifiability Analysis. Pharmaceutics 2021, 13, 692. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, L.; Govender, N.; Wu, C.Y. DEM analysis of residence time distribution during twin screw granulation. Powder Technol. 2021, 377, 924–938. [Google Scholar] [CrossRef]
- Kumar, A.; Vercruysse, J.; Mortier, S.T.F.C.; Vervaet, C.; Remon, J.P.; Gernaey, K.V.; De Beer, T.; Nopens, I. Model-based analysis of a twin-screw wet granulation system for continuous solid dosage manufacturing. Comput. Chem. Eng. 2016, 89, 62–70. [Google Scholar] [CrossRef]
- Shirazian, S.; Ismail, H.Y.; Singh, M.; Shaikh, R.; Croker, D.M.; Walker, G.M. Multi-dimensional population balance modelling of pharmaceutical formulations for continuous twin-screw wet granulation: Determination of liquid distribution. Int. J. Pharm. 2019, 566, 352–360. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Shirazian, S.; Singh, M.; Whitaker, D.; Albadarin, A.B.; Walker, G.M. Compartmental approach for modelling twin-screw granulation using population balances. Int. J. Pharm. 2020, 576, 118737. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Singh, M.; Albadarin, A.B.; Walker, G.M. Complete two dimensional population balance modelling of wet granulation in twin screw. Int. J. Pharm. 2020, 591, 118737. [Google Scholar] [CrossRef] [PubMed]
- Muddu, S.V.; Ramachandran, R. A Population Balance Methodology incorporating Semi-Mechanistic residence time metrics for twin screw granulation. Processes 2022, 10, 292. [Google Scholar] [CrossRef]
- Wang, L.G.; Pradhan, S.U.; Wassgren, C.; Barrasso, D.; Slade, D.; Litster, J.D. A breakage kernel for use in population balance modelling of twin screw granulation. Powder Technol. 2020, 363, 525–540. [Google Scholar] [CrossRef]
- McGuire, A.D.; Mosbach, S.; Reynolds, G.K.; Patterson, R.I.A.; Bringley, E.; Eaves, N.; Dreyer, J.A.H.; Kraft, M. Analysing the effect of screw configuration using a stochastic twin-screw granulation model. Chem. Eng. Sci. 2019, 203, 358–379. [Google Scholar] [CrossRef]
- McGuire, A.D.; Mosbach, S.; Lee, K.F.; Reynolds, G.; Kraft, M. A high-dimensional, stochastic model for twin-screw granulation–Part 1: Model description. Chem. Eng. Sci. 2018, 188, 221–237. [Google Scholar] [CrossRef]
- Kumar, A.; Dhondt, J.; Vercruysse, J.; De Leersnyder, F.; Vanhoorne, V.; Vervaet, C.; Remon, J.P.; Gernaey, K.V.; De Beer, T.; Nopens, I. Development of a process map: A step towards a regime map for steady-state high shear wet twin screw granulation. Powder Technol. 2016, 300, 73–82. [Google Scholar] [CrossRef]
- Kotamarthy, L.; Ramachandran, R.J.P.T. Mechanistic understanding of the effects of process and design parameters on the mixing dynamics in continuous twin-screw granulation. Powder Technol. 2021, 390, 73–85. [Google Scholar] [CrossRef]
- Ismail, H.Y.; Singh, M.; Darwish, S.; Kuhs, M.; Shirazian, S.; Croker, D.M.; Khraisheh, M.; Albadarin, A.B.; Walker, G.M. Developing ANN-Kriging hybrid model based on process parameters for prediction of mean residence time distribution in twin-screw updates wet granulation. Powder Technol. 2019, 343, 568–577. [Google Scholar] [CrossRef]
- Barrasso, D.; Eppinger, T.; Pereira, F.E.; Aglave, R.; Debus, K.; Bermingham, S.K.; Ramachandran, R. A multi-scale, mechanistic model of a wet granulation process using a novel bi-directional PBM–DEM coupling algorithm. Chem. Eng. Sci. 2015, 123, 500–513. [Google Scholar] [CrossRef]
- Wafa’H, A.; Khorsheed, B.; Mahfouf, M.; Reynolds, G.K.; Salman, A.D. An interpretable fuzzy logic based data-driven model for the twin screw granulation process. Powder Technol. 2020, 364, 135–144. [Google Scholar]
- Kim, E.J.; Kim, J.H.; Kim, M.S.; Jeong, S.H.; Choi, D.H. Process Analytical Technology Tools for Monitoring Pharmaceutical Unit Operations: A Control Strategy for Continuous Process Verification. Pharmaceutics 2021, 13, 919. [Google Scholar] [CrossRef]
- Rosas, J.G.; Blanco, M.; Gonzalez, J.M.; Alcala, M. Real-time determination of critical quality attributes using near-infrared spectroscopy: A contribution for Process Analytical Technology (PAT). Talanta 2012, 97, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Roman-Ospino, A.D.; Tamrakar, A.; Igne, B.; Dimaso, E.T.; Airiau, C.; Clancy, D.J.; Pereira, G.; Muzzio, F.J.; Singh, R.; Ramachandran, R. Characterization of NIR interfaces for the feeding and in-line monitoring of a continuous granulation process. Int. J. Pharm. 2020, 574, 118848. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Vercruysse, J.; Toiviainen, M.; Panouillot, P.E.; Juuti, M.; Vanhoorne, V.; Vervaet, C.; Remon, J.P.; Gernaey, K.V.; De Beer, T.; et al. Mixing and transport during pharmaceutical twin-screw wet granulation: Experimental analysis via chemical imaging. Eur. J. Pharm. Biopharm. 2014, 87, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Mundozah, A.L.; Yang, J.K.; Tridon, C.C.; Cartwright, J.J.; Omar, C.S.; Salman, A.D. Assessing Particle Segregation Using Near-Infrared Chemical Imaging in Twin Screw Granulation. Int. J. Pharm. 2019, 568, 118541. [Google Scholar] [CrossRef]
- Vercruysse, J.; Toiviainen, M.; Fonteyne, M.; Helkimo, N.; Ketolainen, J.; Juuti, M.; Delaet, U.; Van Assche, I.; Remon, J.P.; Vervaet, C.; et al. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. Eur. J. Pharm. Biopharm. 2014, 86, 383–392. [Google Scholar] [CrossRef]
- Harting, J.; Kleinebudde, P. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Eur. J. Pharm. Biopharm. 2018, 125, 169–181. [Google Scholar] [CrossRef]
- Harting, J.; Kleinebudde, P. Optimisation of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation and its application for process characterisation. Eur. J. Pharm. Biopharm. 2019, 137, 77–85. [Google Scholar] [CrossRef]
- Kumar, A.; Dhondt, J.; De Leersnyder, F.; Vercruysse, J.; Vanhoorne, V.; Vervaet, C.; Remon, J.P.; Gernaey, K.V.; De Beer, T.; Nopens, I. Evaluation of an in-line particle imaging tool for monitoring twin-screw granulation performance. Powder Technol. 2015, 285, 80–87. [Google Scholar] [CrossRef]
- Sayin, R.; Martinez-Marcos, L.; Osorio, J.G.; Cruise, P.; Jones, I.; Halbert, G.W.; Lamprou, D.A.; Litster, J.D. Investigation of an 11 mm diameter twin screw granulator: Screw element performance and in-line monitoring via image analysis. Int. J. Pharm. 2015, 496, 24–32. [Google Scholar] [CrossRef]
- El Hagrasy, A.S.; Cruise, P.; Jones, I.; Litster, J.D. In-line Size Monitoring of a Twin Screw Granulation Process Using High-Speed Imaging. J. Pharm. Innov. 2013, 8, 90–98. [Google Scholar] [CrossRef]
- Stauffer, F.; Ryckaert, A.; Vanhoorne, V.; Van Hauwermeiren, D.; Funke, A.; Djuric, D.; Vervaet, C.; Nopens, I.; De Beer, T. In-line temperature measurement to improve the understanding of the wetting phase in twin-screw wet granulation and its use in process development. Int. J. Pharm. 2020, 584, 119451. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Huang, X.; Qian, X.; Gao, L.; Yan, Y. Online particle size measurement through acoustic emission detection and signal analysis. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014; pp. 949–953. [Google Scholar]
- Hu, Y.; Qian, X.; Huang, X.; Gao, L.; Yan, Y. Online continuous measurement of the size distribution of pneumatically conveyed particles by acoustic emission methods. Flow Meas. Instrum. 2014, 40, 163–168. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Huang, X.; Qian, X.; Gao, L.; Yan, Y. On-line Sizing of Pneumatically Conveyed Particles Through Acoustic Emission Detection and Signal Analysis. IEEE Trans. Instrum. Meas. 2015, 64, 1100–1109. [Google Scholar] [CrossRef]
- Uher, M.; Beneš, P. Measurement of particle size distribution by the use of acoustic emission method. In Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria, 13–16 May 2012; pp. 1194–1198. [Google Scholar]
- Abdulhussain, H.A.; Thompson, M.R. Considering inelasticity in the real-time monitoring of particle size for twin-screw granulation via acoustic emissions. Int. J. Pharm. 2023, 639, 122949. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Roman-Ospino, A.D.; Panikar, S.S.; O’Callaghan, C.; Gilliam, S.J.; Ramachandran, R.; Muzzio, F.J. Advanced process design and understanding of continuous twin-screw granulation via implementation of in-line process analytical technologies. Adv. Powder Technol. 2019, 30, 879–894. [Google Scholar] [CrossRef]
- Dahlgren, G.; Tajarobi, P.; Simone, E.; Ricart, B.; Melnick, J.; Puri, V.; Stanton, C.; Bajwa, G. Continuous Twin Screw Wet Granulation and Drying-Control Strategy for Drug Product Manufacturing. J. Pharm. Sci. 2019, 108, 3502–3514. [Google Scholar] [CrossRef]
- Ishimoto, H.; Kano, M.; Sugiyama, H.; Takeuchi, H.; Terada, K.; Aoyama, A.; Shoda, T.; Demizu, Y.; Shimamura, J.; Yokoyama, R.; et al. Approach to Establishment of Control Strategy for Oral Solid Dosage Forms Using Continuous Manufacturing. Chem. Pharm. Bull. 2021, 69, 211–217. [Google Scholar] [CrossRef]
- Pauli, V.; Elbaz, F.; Kleinebudde, P.; Krumme, M. Methodology for a Variable Rate Control Strategy Development in Continuous Manufacturing Applied to Twin-screw Wet-Granulation and Continuous Fluid-bed Drying. J. Pharm. Innov. 2018, 13, 247–260. [Google Scholar] [CrossRef]
- Silva, A.F.; Sarraguca, M.C.; Fonteyne, M.; Vercruysse, J.; De Leersnyder, F.; Vanhoorne, V.; Bostijn, N.; Verstraeten, M.; Vervaet, C.; Remon, J.P.; et al. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process. Int. J. Pharm. 2017, 528, 242–252. [Google Scholar] [CrossRef]
- Stauffer, F.; Boulanger, E.; Pilcer, G. Sampling and diversion strategy for twin-screw granulation lines using batch statistical process monitoring. Eur. J. Pharm. Sci. 2022, 171. [Google Scholar] [CrossRef] [PubMed]
- Madarasz, L.; Nagy, Z.K.; Hoffer, I.; Szabo, B.; Csontos, I.; Pataki, H.; Demuth, B.; Szabo, B.; Csorba, K.; Marosi, G. Real-time feedback control of twin-screw wet granulation based on image analysis. Int. J. Pharm. 2018, 547, 360–367. [Google Scholar] [CrossRef]
- Nicolai, N.; De Leersnyder, F.; Copot, D.; Stock, M.; Ionescu, C.M.; Gernaey, K.V.; Nopens, I.; De Beer, T. Liquid-to-solid ratio control as an advanced process control solution for continuous twin-screw wet granulation. Aiche J. 2018, 64, 2500–2514. [Google Scholar] [CrossRef]
- Ryckaert, A.; Stauffer, F.; Funke, A.; Djuric, D.; Vanhoorne, V.; Vervaet, C.; De Beer, T. Evaluation of torque as an in-process control for granule size during twin-screw wet granulation. Int. J. Pharm. 2021, 602, 120642. [Google Scholar] [CrossRef] [PubMed]
No. | Formula (w/w) | CPP | DoE Method | CQA for Granules | Modeling Method | Reference |
---|---|---|---|---|---|---|
1 | Powder: API; povidone; hypromellose. Liquid: water | Screw speed; mill speed. | Central composite response surface statistical design | Granule chord length; particle size. | Bivariate fit | [19] |
2 | Powder: MCC; lactose monohydrate; starch. Liquid: HPC; HPMC; PVP. | Water-binding capacity; barrel temperature; powder feed rate; liquid addition; screw configuration. | A two-level full-factorial design. | PSD; Span; HR; bulk/tapped density; moisture content; flowability. | PLS | [20] |
3 | Powder: α-Lactose monohydrate. Liquid: water | Screw speed; throughput; L/S ratio; number and stagger angle of the kneading discs. | Full factorial experimental design. | RTD; mixing capacity. | PLS | [21] |
4 | Powder: acetaminophen;a-lactose monohydrate; MCC; PVP K 29-32. Liquid: water. | L/S ratio; throughput; rotation speed. | Face-centered cubic design. | Granule size, porosity, flowability, particle morphology. | ANOVA model | [22] |
5 | Powder: API; MCC; lactose monohydrate; HPMC; croscarmellose sodium; Calcium carbonate; Polysorbate 80. Liquid: water. | Screw speed; throughput; L/S ratio. | Central composite face-centered experimental design. | Torque; granule residence time; fines, yield; over-sized; volume average granule diameter; relative width; Carr Index. | Second-order polynomial models | [23] |
6 | Powder: Ibuprofen; dibasic calcium phosphate anhydrous. Liquid: ethanol | DCPA/Polymer ration; binder amount (%); L/S ratio. | Fractional factorial design of experiment. | Release (%), d50; specific surface area. | Regression analysis | [24] |
7 | Powder: MCC; α-lactose monohydrate; mannitol. Liquid: HPMC; PVP. | 3 PCs to include the overarching properties of 8 selected pharmaceutical fillers; binder type; binder concentration. | D-optimal interaction design | Bulk/tapped density; HR; d63.2; fine fraction; yield fraction; coarse fraction; flowability; friability; specific surface area; torque. | Multiple linear regression | [25] |
8 | Powder: API; MCC; HPMC. Liquid: HPMC. | PC 1; PC 2; L/S ratio. | D-optimal screening design; D-optimal optimization design | Span; friability; fine fraction. | MLR model | [26] |
9 | Powder: API; Lactose monohydrate; croscarmellose Sodium; PVP K29/32. Liquid: water. | Throughput; screw speed; the screw element. | Box–Behnken experimental design | Fines; yield; over-sized; volume average granule diameter; relative width; Carr Index. | Non-linear quadratic mathematical model | [14] |
10 | Powder: caffeine anhydrous; α-lactose monohydrate; MCC; PVP K30. Liquid: water. | Barrel temperature; L/S ratio; throughput. | Sequential experimental strategy: D-optimal design and response surface design. | d10, d50, d90, Span; Eccentricity; porosity; bulk density; tapped density; HR; torque. | Stepwise least squares regression | [27] |
11 | Powder: APIs; MCC; HPMC. Liquid: water. | L/S ratio; screw speed. | Central composite circumscribed designs. | Fines; yield; HR; oversized; tapped density; friability; torque. | Quadratic polynomial models | [28] |
12 | Powder: metformin hydrochloride; mebendazole; MCC; α-lactose monohydrate; HPMC. Liquid: water. | Fraction of KE in the first; kneading zone; KE thickness; screw speed; throughput; L/S ratio. | D-optimal design | Yield; over-sized; fines; bulk density; HR; friability. | MLR models | [29] |
13 | Powder: Ibuprofen; MCC; lactose monohydrate; Croscarmellose sodium; Hydroxypropyl cellulose; Colloidal silicon dioxide. Liquid: water. | L/S; throughput; screw speed; screw configuration; barrel temperature. | A full factorial design | The angle of repose; bulk/tapped density; PSD; granule strength; granule morphology. | Forward stepwise regression | [30] |
14 | Powder: (1) lactose; PVP. (2) lactose; HPMC. (3) lactose; MCC; PVP. (4) lactose; MCC; HPMC. Liquid: water. | Nozzle diameter; nozzle orientation; throughput; screw speed; screw configuration; barrel temperature; L/S ratio; total binder content; the relative fraction of binder added dry. | Plackett–Burman design for screening. | Oversized; fines; HR; bulk density; tapped density; yield; the angle of repose, torque. | Linear models | [31] |
15 | Powder: metformin hydrochloride; α-Lactose monohydrate; MCC; HPMC. Liquid: water. | 3 PCs to include the MCC properties; L/S ratio; screw speed; drying time. | Two-level full factorial design. | Fines; HR; torque; LOD. | MLR | [32] |
16 | Powder: lactose monohydrate; MCC; PVP K25. Liquid: water. | L/S; SFL; screw length; DFS | Two-level full factorial design. | RTD; particle Size; shape distributions. | Multiple linear regression | [33] |
17 | Powder: MCC; α-lactose monohydrate Liquid: PVP. | Liquid feed rate; powder feed rate; L/S ratio; screw speed; viscosity. | Full factorial DoE. | RTD; PSD; liquid content distribution. | [34] | |
18 | Powder: lactose; copovidone, PVP, hyprolose, hypromellose Liquid: water. | L/S; SFL; screw speed; powder feed rate. | 32 experimental design and single-factor experiment. | PSD; span. | - | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Tian, G.; Qu, H. Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines 2023, 11, 1923. https://doi.org/10.3390/biomedicines11071923
Zhao J, Tian G, Qu H. Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines. 2023; 11(7):1923. https://doi.org/10.3390/biomedicines11071923
Chicago/Turabian StyleZhao, Jie, Geng Tian, and Haibin Qu. 2023. "Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation" Biomedicines 11, no. 7: 1923. https://doi.org/10.3390/biomedicines11071923
APA StyleZhao, J., Tian, G., & Qu, H. (2023). Pharmaceutical Application of Process Understanding and Optimization Techniques: A Review on the Continuous Twin-Screw Wet Granulation. Biomedicines, 11(7), 1923. https://doi.org/10.3390/biomedicines11071923