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Abstract: Gut microbes and their metabolites are actively involved in the development and regula-
tion of host immunity, which can influence disease susceptibility. Herein, we review the most recent 
research advancements in the gut microbiota–immune axis. We discuss in detail how the gut micro-
biota is a tipping point for neonatal immune development as indicated by newly uncovered phe-
nomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We 
describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the 
metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate 
how disruption in the microbiota–immune axis results in immune-mediated diseases, such as gas-
trointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascu-
lar diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitiv-
ity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal 
and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebi-
otics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Con-
tinuing, we examine how the gut microbiota modulates immune therapies, including immune 
checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current chal-
lenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental 
understanding for how gut microbiota regulates immunity. Altogether, this review proposes im-
proving immunotherapy efficacy from the perspective of microbiome-targeted interventions. 
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1. Introduction 
‘No man is an island’, said John Donne, to describe relations between a human being 

and society [1]. However, this is also true when describing human metabolism. From 
birth, humans, like all other animals, are colonized by microbes, especially on the skin 
and mucosal surfaces, such as the gastrointestinal tract (GIT). The GIT harbors a substan-
tial collection of microorganisms known as the gut microbiota. It is a balanced composi-
tion of over 5000 species encompassed under bacteria (e.g., 99% of the intestinal microbi-
ota is composed of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria), fungi 
(e.g., Candida), viruses (e.g., bacteriophages), and parasites (e.g., flagellates) [2–8]. The 
gut microbiota acts like a ‘superorganism’ inside the human host and aids in the assimi-
lation of food, produces metabolites that nourish the host, protects the host from infection, 
maintains function and morphology of intestinal epithelial cells, and regulates host im-
munity [4,8–12]. Under healthy conditions, the gut microbiota is in a balanced state of 
‘eubiosis’. However, during diseased conditions, the gut microbiota enters an imbalanced 
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state of dysbiosis in which there is either a bloom of opportunistic pathogens or a reduc-
tion in beneficial commensals, or both. The beauty of the host–microbiota relationship lies 
in the fact that microbes shape every aspect of human metabolism. As such, in addition to 
digestive and skin disorders, the gut microbiota has the potential to influence the patho-
genesis of diseases, such as obesity and asthma, and psychological disorders, such as Par-
kinson’s disease [13,14]. 

Gut microbiota crosstalk with host immunity is one of the major features for physio-
logical stability and a mechanism for disease etiology. There are two branches of the im-
mune system, i.e., innate and adaptive, that work together to protect the body from exter-
nal and internal threats. The innate immune system is the ‘first line of defense’ and pro-
vides fast non-specific responses upon an immunological stimulus. Innate immunity in-
volves granulocytes, natural killer cells, dendritic cells, and macrophages that engulf the 
pathogen and secrete cytokines and chemokines. In addition to recruitment of more innate 
immune cells, cytokines attract lymphocytes, i.e., B cells, which produce antibodies 
unique to the specific pathogenic insult, and T cells (generally categorized into helper T 
cells, cytotoxic T cells, and regulatory T cells (Treg cells)), both of which form the basis of 
adaptive immunity [15,16]. Both arms of the immune system are tightly regulated to avoid 
extremes of over-activation or exhaustion, for which the gut microbiota is an essential 
factor (summarized in Graphical Abstract). In this review, we provide an in-depth outline 
and discussion about how the gut microbiota as a whole, in addition to specific bacterial 
species and microbial-derived metabolites, regulates immune responses. We further dis-
cuss how the gut microbiota–immune axis is aberrant in prevalent chronic inflammatory 
diseases and how modulation of the gut microbiota could be a therapy or possible adju-
vant for other current treatments. 

2. Role of Gut Microbiota and Their Metabolites in Neonatal Immune System  
Development 

The first microbial colonization in a neonate depends on the mode of delivery (C-
section vs. vaginal delivery) and feeding (formula vs. maternal milk) [17–19]. For instance, 
formula feeding was found to lower the diversity of the gut microbiota and expand path-
ogenic bacteria, such as Enterobacteriaceae and Enterococcaceae; this gut microbiota dysbio-
sis contributed to greater mucosa inflammatory activity and worsened pathology in a ne-
crotizing enterocolitis model [20]. Moreover, a possibility for C-section to disrupt mother-
to-neonate transmission of specific microbial strains (e.g., LPS-expressing bacteria) was 
reported [21]. However, the neonatal immune system may be primed during intra-uterine 
development since microbes generally present in maternal gut and mouth, such as Fir-
micutes, Actinobacteria, and Proteobacteria, are found in the placenta, umbilical cord, and 
amniotic fluid [22,23]. While an in utero microbiome is still under investigation, a 2020 
article by Rackaityte et al. proposes that bacterial colonization would be limited in the 
human intestine in utero [24]. Moreover, recent evidence for an in utero intestinal metab-
olome was delineated and found to be enriched with amino acids (e.g., tryptophan), vita-
mins (e.g., riboflavin), and, more interestingly, gut-microbiota-derived bile acids [25]. 

The hygiene hypothesis proposes that exposure to a plethora of microbes early in life 
is essential to develop a robust immune system [26]. During intra-uterine development, 
the fetal innate immune system is suppressed by Foxp3+ CD4+ Treg cells to prevent im-
mune development against maternal antigens [12]. At and after birth, antigens from com-
mensals are recognized by several pattern recognition receptors (PRRs), such as Toll-like 
receptors (TLRs), on intestinal epithelia, resulting in less production of antimicrobial pep-
tides and establishment of immune tolerance [27]. Alongside these, Paneth cells produce 
antimicrobial peptides, such as phospholipase-2, lysozyme, and defensins, but these mole-
cules do not act against commensals and rather protect the neonatal gut from opportunistic 
pathogens [22,28]. Bifidobacteria spp. is one of the major commensals that impact infantile 
immunity, such as T cell maturation [29]. The absence of Bifidobacteria resulted in the de-
pletion of human milk oligosaccharide production and was associated with greater 
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Th2/Th17 immune activation [30]. It is noteworthy that formula feeding is associated with 
less Bifidobacteria abundance, but the effect is transient [31]. After lactation, pups undergo 
a newly defined process called ‘weaning reaction’, which is a shift in the gut microbiota 
that occurs when the offspring transitions from breast milk to solid food [32]. Weaning 
reaction was found to increase bacterial and dietary metabolites, such as short-chain fatty 
acids (SCFA) and retinoic acid [32]. Inhibition of weaning causes a pathological imprint-
ing for increased risk to allergic inflammation and colitis [32]. This matches other reports 
that the absence of early exposure to microbiota can induce immunoglobin E (IgE) over-
production and hypersensitivity to a wide array of antigens, which leads to conditions 
such as asthma and inflammatory bowel diseases [33–35]. Overall, early immune system 
development is regulated by the gut microbiota and can have a long-lasting impact on 
disease susceptibility. 

3. Interaction between Gut Microbiota and Host Innate Immune System 
The interaction between the gut microbiota and host mucosal immune system is crit-

ical in maintaining host health because it is the first line of defense against encroaching 
gut microbes (summarized in Graphical Abstract). The mucosal surfaces are compart-
mentalized with immune responses, including a dense mucus layer, tight junction pro-
teins, and antimicrobial proteins. Intestinal innate immune cells develop tolerance to com-
mensal bacteria by identifying invasive pathogens and preventing their passage from the 
intestinal lumen to circulation [36]. After trespassing through the epithelial barrier, inva-
sive bacteria and pathogen-associated molecular patterns (PAMPs, i.e., lipopolysaccha-
rides/LPS) can stimulate the release of mucin by goblet cells and induce rapid reconstitu-
tion of the inner mucous layer [37]. PAMPs can also induce innate immune responses via 
activation of TLRs on neutrophils and macrophages [38]. 

Commensal bacteria can also prime dendritic cells (DCs) via their antigen presenta-
tion, which, in turn, can activate TLRs to train the innate immune system for recognition 
of pathogenic vs. commensal microbes [39]. Moreover, invading microbes are phagocy-
tosed and eradicated by mucosal innate immune cells, such as DCs and macrophages in 
healthy conditions [40]. Of note, specific DC subsets can engulf selective bacterial species 
in the lamina propria at steady state [41]. It was also recently uncovered that the matura-
tion of precursors of type 1 conventional DCs is mediated by gut-microbiota-induced tu-
mor necrosis factor (TNF) secretion by monocytes and macrophages [42]. In addition to 
macrophages, neutrophils, and DCs, there are additional specialized epithelial cells, i.e., 
goblet cells and Paneth cells, that release various antimicrobials, such as mucins, defen-
sins, lysozyme, secretory phospholipase A2, and cathelicidins; they serve as accessory im-
mune cells to sustain gut innate immunity [43,44]. Innate lymphoid cells (ILCs) are an-
other branch of the innate immune system that are mostly non-cytotoxic and secrete several 
effector cytokines [45]. Collectively, many innate immune cell populations maintain gut mi-
crobiota homeostasis. 

In clinical illness, alterations of the enteric microenvironment promote opportunistic 
pathogen growth and reduce the abundance of commensal bacteria, i.e., gut microbiota 
dysbiosis [46], which causes imbalanced immune responses (summarized in Graphical 
Abstract). In a pathologic environment, neutrophils are excessively engaged into the site 
of inflammation or infection and can induce collateral mucosal damage via increasing pro-
inflammatory cytokine secretion, matrix metalloprotease production, and pathologic im-
mune cell activation [43,47]. Neutrophils are normally kept in a quiescent state to prevent 
perturbation of gut microbial ecology, which is mediated by the adapter protein down-
stream of kinase 3 [48]. Interestingly, induction of neutrophil extracellular traps (NETs) 
led to pathogen clearance and lowered inflammation [49]. Antibiotic-induced gut micro-
biota dysbiosis was also found to induce NETs formation, but this was associated with 
worsened inflammation [50], emphasizing that more investigation is needed to determine 
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the role of intestinal NETs. Overall, an appropriate threshold or balance between the in-
nate immune system and gut microbiota is essential to sustain homeostasis and prevent 
pathophysiologic outcomes. 

4. Interaction between Gut Microbiota and Adaptive Immune System 
The adaptive immune system in the gut mucosa comprises mainly intraepithelial 

lymphocytes (IELs) and lamina propria lymphocytes (LPLs) [51]. Among the IELs, γδ T 
cells are a distinct subset of T cells because they express the Helios transcription factor [52]. γδ 
T lymphocytes inhibit the mucosal dissemination of bacteria by secreting pro-inflamma-
tory cytokines and antimicrobial proteins [53,54]. For example, γδ T cells stimulate CD4+ 
T cell responses, such as mucosal release of IL-22 and calprotectin [55]. Several gut bacteria 
species and their metabolites are noted to promote the expansion of γδ T cells, including 
Desulfovibrio-derived phosphatidylethanolamine and phosphatidylcholine [56]. Studies 
have shown that when intraepithelial γδ T cells are deficient, there is more bacterial trans-
location and expansion of invasive pathogens [57]. This is supported by diminished cir-
culating γδ T cells in acutely septic patients [58,59] and reduced colonic γδ T cells in in-
flammatory bowel disease patients [60]. 

Interaction between the gut microbiota and adaptive immune system prevents bac-
terial translocation and infection (summarized in Graphical Abstract). This is supported 
by the finding that the gut adaptive immune system is suppressed in germ-free mice, and 
introduction of commensal bacteria can stimulate development of mucosal lymphocytes, 
e.g., CD4+ T cell and cytotoxic CD8+ T cells [61]. Both primary and secondary phases of 
cytotoxic CD8+ T cell immunity depend on CD4+ T cells, which require priming by profes-
sional antigen-presenting cells and are amplified by CD4+ T cell signaling [62]. CD8+ T 
cells eliminate intracellular pathogens (e.g., Salmonella), usually assisted by DC-mediated 
antigen presentation [63]. Salmonella enterica serovar Typhi can promote CD8+ T cells via 
epigenetic modification, i.e., histone methylation and acetylation [64]. Tissue resident 
memory CD8+ T cells are essential to protect against re-infection cases, and this can be 
studied through the Transient Microbiota Depletion-boosted Immunization model, which 
temporarily restrains microbiota-mediated colonization resistance [65]. Of note, B cells 
can also phagocytose pathogens, such as Salmonella and reactivate memory CD8+ T cells, 
via cross-presentation [66]. 

T helper 17 cells (Th17) also display distinct roles in both host protection and inflam-
matory responses. It appears that most Th17 responses are pathological, where one novel 
finding is that stem-like intestinal Th17 cells promote pathogenic effector T cells in extra-
intestinal diseases [67]. Interestingly, Th17 cells stimulated by segmented filamentous bac-
teria (SFB) are non-inflammatory, whereas Th17 cells induced by Citrobacter spp. are pro-
inflammatory [68]. Studies have shown that Th17 cells are absent in germ-free mice and 
are induced by specific microbes, such as SFB [69] and other commensal bacteria [70]. SFB-
mediated IL-17 stimulation was found to be guided by cytokine (e.g., IL-6) signals [71]. 
The gut microbiota can also mediate Th17 responses. A study found that microbiome-
dependent Th17 inflammation is regulated by α2,6-sialyl ligands, where α2,6-sialyltrans-
ferase deficiency induced mucosal Th17 responses [72]. Pathological Th17 cells can also 
be promoted by the Actinobacterium Eggerthella lenta through help by the cardiac glycoside 
reductase 2 enzyme [73] and Fusobacterium nucleatum via the short-chain fatty acid, butyr-
ate [74]. 

Regulatory T cells (Treg) are another adaptive immune cell that provides immune 
tolerance in the GIT. Early in life, natural Treg cells are generated in the thymus via auto-
immune regulator for self-tolerance [75,76], and then exposure to diet and microbiota sets 
in motion peripheral or inducible Treg production [32,77–79]. Gut microbiota can induce 
Treg cells by multiple mechanisms. For instance, ILCs can select for microbiota-specific 
RORγt+ Treg cells and prevent the expansion of Th17 cells to maintain immune tolerance 
in the intestine [80]. Helicobacter spp. [81] and Akkermansia muciniphila (A. muciniphila) [82] 
can also induce RORγt+ Treg cell-mediated immune responses. Comparatively, lowered 
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levels of the gut-microbiota-derived metabolite propionate (a short chain fatty acid) can 
contribute to a pathological imbalance in the Th17/Treg cell differentiation [83,84]. 

The gut microbiota also performs a crucial role in regulating the production of secre-
tory immunoglobulin A (IgA), which is primarily aimed against enteric commensals and 
bacterial antigens [85,86]. Secretory IgA can be produced either via T cell-dependent or T 
cell-independent pathways; T cell-dependent IgA production is more important in shap-
ing gut microbiota homeostasis [87]. Early in life, IgA plasma cells have reactivity to com-
mensal microbiota, which contributes to a balanced microbiome [88]. Additional evidence 
highlights antigenic imprinting that is essential for antibody response later in life [88,89]. 
This includes IgA secretion into breastmilk, where maternal transfer of IgA is imperative for 
immune development in the offspring [90]. When IgA is deficient, as shown in mice, gut com-
mensals can easily cross the lamina propria, leading to enteric bacterial translocation [91]. 

5. Crosstalk between Microbial Metabolites and Immune Regulation 
5.1. Short-Chain Fatty Acids 

The gut microbiota has a huge metabolic capacity to convert host-derived and dietary 
components (lipids, carbohydrates, and proteins) into different metabolites that may be 
either favorable or dangerous for the host. Bacterial metabolites, such as short-chain fatty 
acids (SCFAs), secondary bile acids, lactic acid, and bacteriocins, have antimicrobial ac-
tivities that protect against pathogenic bacteria [92,93]. SCFAs are produced by fermenta-
tion of indigestible carbohydrates by some commensals, including Faecalibacterium 
prausnitzii, Roseburia intestinalis, and Anaerostipes butyraticus [94]. SCFAs maintain intesti-
nal homeostasis in normal colon by participating in intestinal repair through cellular pro-
liferation and differentiation (Figure 1A). Acetate, mostly produced by Bifidobacteria spp., 
maintains gut–epithelial barrier function and regulates intestinal inflammation by activat-
ing the G-protein receptor (GPR) 43 [95]. Through GPR43 signaling, acetate promotes mi-
crobiome-reactive IgA production [96]. This relates to acetate being one of the major gut 
microbial metabolites to increase colonic IgA production and IgA coating on bacteria in-
cluding Enterobacterales [97]. Acetate induction of IgA is essential to sustain gut microbiota 
in homeostasis. In pathophysiologic conditions, acetate and propionate, either alone or in 
combination, can effectively reduce inflammation by reducing Th1/Th17 and elevating Treg 
levels [98]. Likewise, acetate supplementation to dams with preeclampsia can restore fetal 
thymic Treg cell output [99], and acetate feeding to non-obese diabetic mice can reduce 
autoreactive T cells [100]. Acetate was also found to promote T cell differentiation into 
both effector and Treg cells, which minimized Citrobacter infection [101]. 

Butyrate acts predominantly in intestinal homeostasis as an important energy source 
for colonocytes [95] and promotes release of mucin to maintain gut barrier homeostasis 
(Figure 1A) [102]. In addition to mucin, butyrate can promote the epithelial barrier 
through IL-10Rα-dependent repression of claudin-2 [103]. In regulating immune re-
sponses, butyrate can promote monocyte-to-macrophage differentiation by inhibiting his-
tone deacetylase 3 (HDAC3) [104] and increasing the expression of IFN-γ and granzyme 
B in CD8+ T cells [105]. Moreover, butyrate can induce IL-22 secretion from T cells via 
promoting aryl hydrocarbon receptor (AhR) and hypoxia-inducible factor 1α expressions 
[106]. Similar to acetate, butyrate can modulate immune responses by activating GPR43 
and inducing differentiation of Foxp3+ CD4+ Treg cells [100,107]. Butyrate can also pro-
mote inducible Treg production by accelerating fatty acid oxidation [108] and inhibiting 
HDAC [109,110]. Comparatively, the HDAC inhibitory effects of butyrate and propionate 
at high doses decreased class-switch DNA recombination in B cells, resulting in impair-
ment of intestinal and systemic T-dependent and T-independent antibody responses 
[111]. This could explain findings from another report regarding an inverse correlation 
between high IgA levels and low SCFA levels that was associated with better immune 
tolerance [112]. Of note, in contrast to butyrate, propionate reduced IL-17 and IL-22 pro-
duction by intestinal γδ T cells [113]. Overall, the main mechanisms that SCFAs maintain 
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immune homeostasis in the intestine include HDAC inhibition, GPR signaling, inhibiting 
pro-inflammatory cytokine secretion, and promoting IgA production (Figure 1A). 

 
Figure 1. Possible mechanisms of short-chain fatty acids and bile acids positive effects on immune 
system in IBD. (A) Short-chain fatty acids (SCFAs) are fermented byproducts of dietary fiber. SCFAs 
are the ligands for G-protein receptors (GPRs) in which GPR activation upregulates mucin levels in 
goblet cells, antimicrobial peptides in Paneth cells, and tight junction proteins in intestinal epithelial 
cells. Moreover, SCFAs inhibit the secretion of pro-inflammatory cytokines (TNF-α, IL-2, IL-6, etc.) 
by macrophages, inhibit the expression of dendritic cell-migrated proteins (CXCL, CD40), and in-
hibit HDAC activity. HDAC inhibition allows for acetylation of histone 3 (H3Ac), which induces 
Treg differentiation and their secretion of anti-inflammatory cytokines, such as IL-10. Similarly, 
SCFA can promote DC-dependent anti-inflammatory IL-10 secretion. Finally, SCFAs induce IgA 
production from B cells. (B) Primary bile acids produced in the liver are metabolized by intestinal 
microbiota into secondary bile acids. Bile acids induce the polarization of macrophages and helper 
T cells into M2 macrophages and Treg, respectively, promoting anti-inflammatory IL-10 secretion. 
In addition, bile acids inhibit the secretion of pro-inflammatory cytokines (TNF-α, IL-2, IL-6, etc.) 
by DCs. Moreover, bile acids inhibit IL-17 secretion from ILC3 and Th17. Likewise, bile acids can 
promote DC-dependent IL-10 secretion. Overall, SCFA and bile acids reduce gut inflammation. 
SCFAs: Short-chain fatty acids, AMPs: Antimicrobial peptides, Mφ: Macrophages, DC: Dendritic 
cells, Tregs: T-Regulatory cells, Th1: T-helper 1, Th17: T helper 17, ILC3: Innate lymphoid cells type 
3, IL: Interleukin, HDAC: Histone deacetylase, H3Ac: Acetylation of histone 3, TNF: Tumor necrosis 
factor, NOS2: Nitric oxide synthase 2, IgA: Immunoglobulin A, and CXCL: Chemokine (C-X-C mo-
tif) ligand. Red arrows denote activation, and black arrows denote inhibition. 

5.2. Secondary Bile Acids 
Bile acids are cholesterol-derived surfactants that primarily function to assimilate di-

etary lipids and fat-soluble vitamins. Primary bile acids (cholate and chenodeoxycholate) 
are produced in the liver and are secreted into the gallbladder conjugated to either taurine 
or glycine [114]. After traveling in the small intestine, 95% of bile acids are reabsorbed in 
the ileum, and the other 5% enter the colon. Conjugated cholate and chenodeoxycholate 
are then susceptible by the gut microbiota to a two-step bile salt hydrolase and dehydrox-
ylation process that metabolizes them into the secondary bile acids deoxycholate (DCA) 
and lithocholate (LCA), respectively [115]. Secondary bile acids are regulated by intestinal 
clock-controlled bacteria, where a disruption in rhythmicity of the microbiota suppressed 
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immune cell recruitment [116]. Moreover, gut microbiota regulation of secondary bile ac-
ids is apparent with the evidence that self-reinoculation (i.e., coprophagy) favored conju-
gated bile acids possibly due to the reduced total microbial load and low abundance of 
anaerobic microbiota [117]. Of note, oral administration of conjugated bile acids to new-
born mice accelerated postnatal microbiota maturation [118]. 

Bile acids can drive metabolic and inflammatory mechanisms through activation of 
the nuclear receptor, Farnesoid X Receptor (FXR), or the G-protein coupled receptor, 
Takeda G protein-coupled receptor 5 (TGR5) [119]. Recent evidence implicates the role of 
secondary bile acids in both innate and adaptive immune responses. In terms of innate 
immunity, secondary bile acids, such as DCA, can activate TGR5, where this signaling 
inhibits monocyte-derived DC activation and NF-κB signaling [120] and promotes IL-10-
dependent M2 macrophage polarization [121]. In relation to adaptive immunity, second-
ary bile acids were first noted to modulate gut RORγ+ Treg homeostasis, where genetic 
ablation of bile acid synthesis significantly depleted RORγ+ Treg cell counts [122]. Like-
wise, 3β-hydroxydeoxycholic acid (isoDCA) and isoDCA-producing Bacteroides consor-
tia enhanced the peripheral generation of RORγt+ Treg cells by antagonizing FXR on DCs 
[123]. In addition to Treg cells, secondary bile acids, such as 3-oxoLCA and isoLCA, sup-
press Th17 cell function by inhibiting RORγT, a key Th17 cell-promoting transcription 
factor [124,125]. Unconjugated LCA also impeded Th1 activation by inhibiting ERK-1/2 
phosphorylation via activation of the vitamin D receptor [126]. Furthermore, bile acid me-
tabolism is also regulated by humoral immune responses, but dysfunction in the latter 
results in bile-acid-dependent small intestine enteropathy [127]. Overall, secondary bile 
acids modulate the gut microbiota–immune axis by lowering Th17/Treg cell differentia-
tion, limiting pro-inflammatory cytokine secretion, and promoting M2 macrophage po-
larization (Figure 1B). 

6. Influence of Environmental Microbiome Perturbation on the immune System 
6.1. Antibiotic-Induced Microbiome Disturbances 

Antibiotics have greatly improved humanity’s ability to fight infections. However, 
the impact of antibiotics on the microbiome was not considered until more recently. The 
neonatal gut microbiota and immune system can be susceptible to maternal programming 
when the dam microbiota is exposed to antibiotic treatment; as a result, the offspring has 
increased risk for developing disorders, including inflammatory bowel diseases and au-
toimmune diseases, and hypersensitivity, such as asthma [128–134]. Similarly, direct an-
tibiotic treatment to infants, especially preterm infants, alters their microbial composition 
and increases susceptibility to various infections, such as necrotizing enterocolitis (NEC) [135–
137]. It is notable that fecal microbiota transfer from NEC patients to germ-free mice 
demonstrated a significant reduction in butyrate and Treg levels [138]. Transient antibiotic 
exposure to infants can also cause microbiota-dependent suppression of type 3 ILCs, re-
sulting in late-onset sepsis [139]. 

Antibiotics can have several direct and indirect negative impacts on adult human 
health, such as the development of antibiotic resistance for select microbial species and 
the loss of beneficial taxa [140]. For instance, a combined administration of meropenem, 
gentamicin, and vancomycin increased the abundance of pathobionts, such as Enterobac-
teriaceae, and diminished butyrate-producing commensals, such as Bifidobacterium [141]. 
Similar observations were seen when oral antibiotics lowered probiotic bacteria in the mi-
crobiota [142]. It has also been reported that ciprofloxacin rapidly decreased the richness 
and diversity of gut microbiota accompanied by shifts in Bacteroidetes, Lachnospiraceae, 
and Ruminococcaceae [143]. 

Exposure to antibiotics affects host immune responses, and this is linked to microbi-
ota changes. For example, a study in mice demonstrated that antibiotic-induced altera-
tions in the microbiota shifted the Th1/Th2 balance toward Th2-dominant immunity, 



Biomedicines 2023, 11, 294 8 of 43 
 

which reduced lymphocytes [144]. Similar findings were found in newborn macaques af-
ter early-life antibiotic exposure that rendered the animals more susceptible to bacterial 
pneumonia, concurrent with neutrophil senescence, hyperinflammation, and macrophage 
dysfunction [145]. While changes in microbial populations after antibiotic treatment vary 
widely [141,146], a persistent theme appears to be the short-term (and in some cases, long-
term) loss of certain keystone taxa and SCFA-producing bacteria [141,147]. As emphasized 
in Section 5.1, SCFAs stimulate CD4+ T cells and ILCs to produce anti-inflammatory IL-22 
by several mechanisms [80], including inhibition of HDAC and stimulation of GPR41/43 [106]. 
SCFAs also maintain epithelial barrier function [148]. Consistent reports demonstrate that 
antibiotic exposure decreases SCFA levels [149–151]. Overall, increase of antibiotics use in 
both infants and adults suggests that these complications are likely to develop more acutely 
or more dominant in the future. Cautious use of antibiotics and continued research into the 
structure and function of the gut microbiota is a prerequisite to address these challenges. 

6.2. Fecal Microbiota Transplantation 
Fecal microbiota transplantation (FMT) is a procedure in which feces are transferred 

from one individual to another. The goal is to restore eubiosis by introducing beneficial 
commensals for reversing gut microbiota dysbiosis and restoring immune function. FMT 
has established itself as a widely used treatment for recurrent C. difficile infection [152]. 
Recent data suggest FMT may also be effective in the treatment of type I diabetes mellitus 
and IBD [153–156]. Ongoing research is investigating the potential of FMT in a multitude 
of other disorders with established links to gut microbiota dysbiosis, including cardiometa-
bolic syndrome, autoimmune diseases, sleep apnea, depression, and schizophrenia [157–161]. 
Several mechanisms have been suggested regarding the benefits of FMT. One example 
involves the Gram-negative anaerobic bacterium Bacteroides fragilis (B. fragilis). B. fragilis 
contains an extraordinary part of the genomic DNA that has been used to produce capsu-
lar polysaccharides, which are known to be central virulence factors. Among the eight 
capsular polysaccharides loci of B. fragilis, there are two capsular polysaccharides that 
possess a zwitterionic charge motif [162]. A recent study demonstrated that B. fragilis and 
its metabolite polysaccharide A (one of the zwitterionic polymers) have the ability to re-
store dysfunctional Th1/Th2 balance in germ-free mice via TLR2-mediated activation of 
NF-κB [163]. It is the polysaccharide’s dual-charge structural motif that confers this ability 
[164,165]. Another mechanistic example for FMT includes rebalancing Th17 and Treg pop-
ulations as seen in colitis patients [166]. Furthermore, restoration of SCFA levels is one 
other mechanism of the benefits of FMT, as shown with stroke recovery [167]. As can be 
expected, enteral broad-spectrum antibiotics can negate the positive effects of FMT, as 
seen in pre-term piglets with NEC [168]. While several beneficial effects of FMT have been 
mentioned, it is important to acknowledge that FMT could result in the possible transfer 
of pathogenic microbes present in the donor feces to the transplant patient, which can 
cause sepsis and other diseases [8,169]. 

6.3. Diet-, Probiotic-, and Prebiotic-Induced Microbiome Alterations 
The gut microbiome has a wide range of metabolic activities, including metabolizing 

lipids, carbohydrates, and proteins. Many recent studies have focused specifically on the 
link between the microbiome and diet. Dietary food additives, such as emulsifying agents, 
ubiquitous in highly processed foods, increase host inflammation by altering the gut mi-
crobiome [170]. On the other hand, Mediterranean style diets increase the levels of SCFA-
producing bacteria and minimize inflammation [171]. In addition, low-fat vegan diets im-
prove insulin sensitivity and body composition in obese adults by changing the preva-
lence of Bacteroides and other gut microbes [172]. Other diets, such as a high protein diet, 
have limited effects on microbiota composition [173]. Below, we highlight in detail other 
dietary sources that can have either a negative or positive impact on the gut microbiota-
immune axis. 
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6.3.1. High-Salt Diet 
A high-salt diet (HSD) is associated with metabolic disorders, such as hypertension 

and obesity. Salt consumption greater than 20% of daily allowance is considered to be 
high salt intake. Salt, especially sodium, plays a crucial role in maintaining homeostasis. 
Sodium content in the blood regulates blood volume; higher salt increases blood volume, 
and, therefore, raises the blood pressure [174]. Apart from its direct effects on hemody-
namics, high salt consumption can also alter the gut microbiota, which, in turn, aggravates 
metabolic disorders. The effect of HSD on gut microbial composition has been reported in 
several mouse models of various diseases [175–178]. A study by Hu et al. showed that 
chronic high salt intake led to enteric dysbiosis; particularly, the percentages of Actino-
bacteria, Firmicutes, and Bacteroidetes were markedly altered, and HSD caused gut leak-
iness, renal injury, and systolic blood pressure elevation [178]. Another recent study 
showed that administering HSD to mice for 3 weeks caused a significant increase in the 
Firmicutes/Bacteroidetes (F/B) ratio and Proteobacteria [179], both of which are classic 
markers of gut microbiota dysbiosis and are associated with metabolic disorders. Simi-
larly, another study showed that HSD increased the F/B ratio and abundances of Lachno-
spiraceae and Ruminococcus but decreased the abundance of Lactobacillus [177]. The report 
by Miranda et al. further demonstrated that HSD decreases Lactobacillus spp. and butyrate 
production in a colitis mouse model [175]. In addition to microbiota changes, salt can af-
fect immune responses. The main component of salt, i.e., sodium chloride (NaCl), induces 
pathogenic Th17 cells (IL-17-producing T helper cells) in both human and mouse naïve 
CD4+ T cell culture in vitro [180]. Similarly, HSD enhanced TNF-α and IL-17A in a p38-
dependent manner from human lamina propria mononuclear cells [181] and stimulated 
intestinal Th17 responses but inhibited the function of Treg cells [182], all of which exac-
erbated the severity of colitis in mice. Furthermore, increased dietary salt intake upregu-
lates Th17 cells and pro-inflammatory cytokines GM-CSF, TNF-α, and IL-2, which has 
made HSD an environmental risk factor for the development of autoimmune diseases 
[183]. Altogether, high salt intake is considered detrimental by causing negative effects on 
the gut microbiota and promoting pro-inflammatory mediators. 

6.3.2. Dietary Polyphenols 
Dietary polyphenols have also been increasingly recognized for their effects on gut 

microbiota. These micronutrients, including, but not limited to, flavonoids, anthocyanins, 
catechins and tannins, can be found in a variety of foods and beverages, such as vegeta-
bles, fruits, coffee, and tea. Though only a fraction of polyphenols is absorbed in the intestines 
[184], a larger unabsorbed portion remains in the gut and supports the growth of select 
bacterial groups [185]. For example, epigallocatechin-3-gallate (EGCG; a major catechin in 
green tea) promotes the growth of beneficial Bacteroides and Bifidobacterium and sup-
presses the bloom of pathogenic Fusobacterium, Bilophila, and Enterobacteriaceae [186]. Such 
microbiota-modulating effects of EGCG are noted to protect against colitis [187], high-fat 
diet-induced obesity [188–190], radiation-induced mucositis [191], and Clostridium difficile 
infection (CDI) [192] in mice. Though how EGCG impacts the microbiota is not well un-
derstood, several studies propose that it could be due to the bactericidal effects of EGCG, 
i.e., (i) generating H2O2 that damages the bacterial cell wall [193,194], (ii) inhibiting bac-
terial fatty acid and folate biosynthesis [195,196], and (iii) inducing oxidative stress and 
reactive oxidative species (ROS) formation in susceptible bacteria [197]. Beneficial effects 
of polyphenols, aside from EGCG, on gut microbiota were also noted and could be referred to 
in a review by Plamada and Vodnar [198]. Taken together, advances in this research area help 
to portray tea and other polyphenol-rich foods as a new subset of prebiotics. 
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6.3.3. Probiotics, Prebiotics, and Dietary Fiber 
There is an abundance of research regarding the use of probiotics and prebiotics and 

studying their effects on microbiome composition. Probiotics, which often include organ-
isms such as Lactobacillus, Bifidobacteria, and yeast, maintain integrity of the intestinal epi-
thelial barrier by decreasing levels of LPS, protecting tight junctions, and decreasing levels 
of pro-inflammatory cytokines [199,200]. For a specific example, Lactobacillus johnsonii pro-
biotic supplementation to dams stabilized both the maternal and offspring gut microbiota 
and protected pups from retroviral infection due to fewer Th2 immune responses [201]. 
Of note, it was recently shown that Peyer’s patches enhance and transmit probiotic (e.g., 
L. reuteri) signals to CCR6-expressing pre-germinal center-like B cells, promoting their dif-
ferentiation and autocrine TGFβ-1 activation; this resulted in induction of PD-1-express-
ing Th1-dependent IgA, alleviation of gut microbiota dysbiosis, and protection from in-
testinal inflammation [202]. 

Prebiotics, including dietary fibers such as inulin, fructo-oligosaccharides, and 
galacto-oligosaccharides, selectively increase several probiotic populations, primarily Lac-
tobacillus and Bifidobacteria. Increasing intake of dietary fiber, particularly fructans and 
galacto-oligosaccharides, elevated the abundance of Bifidobacterium and Lactobacillus spp. 
without changing the α-diversity [203]. A study has shown that when mice fed a chow 
diet were switched to a plant-based diet, there was a significant increase in Bacteroides and 
Alloprevotella and a decrease in Porphyromonadaceae and Erysipelotrichaceae [204]. Similarly, 
humans on a plant-based diet tend to have a higher population of Prevotella and are cor-
related with less susceptibility to gut disorders, such as IBD [2,205,206]. 

Both pro- and prebiotics increase SCFA levels, benefitting host immunity in various 
ways, including the inhibition of pro-inflammatory NF-κB pathways and induction of 
Treg cells [107,207]. The collective benefits of pro- and prebiotics explain their success in 
attenuating certain metabolic, allergic, and autoimmune diseases linked to gut microbiota 
dysbiosis [200,208–211]. However, it is important to acknowledge that probiotics only 
work when actively administered and have no proven long-term benefits. This relates to 
the limited knowledge about how long probiotic prophylaxis could stabilize the gut mi-
crobiota in preterm infants who are at greater risk for inflammatory diseases [212]. Albeit 
rarely, probiotic microbes themselves can cause bacterial infections and endotoxemia (Lacto-
bacillus spp.), or negative side effects could come from a possible contamination (Mu-
cormycetes) [8]. Similar thoughts and concerns should be applied to prebiotics as well. 

7. Dysregulation of Microbiome–Immunity Interaction in Various Diseases 
7.1. Gut Microbiota Dysbiosis and Immune Dysregulation 

Gut epithelial cells and the mucosa serve as physical barriers against infection and 
endotoxemia. Gut microbiota metabolites, such as SCFA and secondary bile acids, also 
regulate gut permeability via immunomodulation. Of note, another gut-microbiota-de-
rived metabolite inosine, produced by Bifidobacterium and A. muciniphila, heightens Th1 
differentiation and effector function of naïve T cells [213]. Gut-microbiota-mediated im-
mune responses are essential for preventing intestinal permeability. It is hypothesized 
that gut microbiota dysbiosis increases intestinal permeability from a ‘leaky gut,’ which 
allows opportunistic pathogens and their microbial products/toxins to invade the blood-
stream and ultimately mount an inflammatory response [214–216]. Support for this idea 
comes from a number of known metabolites, such as phenolic and sulfur-containing com-
pounds, that can harm the intestinal epithelia [217], disrupt intercellular tight junctions 
[218], and promote bacterial translocation [219]. These consequences, which also include 
immune cell dysfunction and inability to eliminate the invading pathogens, lead to in-
flammatory diseases [220,221]. This section of the review will discuss the microbiota-im-
mune axis in prevalent intra- and extraintestinal diseases (Figure 2 and Table 1). 

  



Biomedicines 2023, 11, 294 11 of 43 
 

Table 1. Summary of gut microbiota–immune axis in various diseases. 

Diseases Reference Findings 

Gastrointestinal Infections 

Singer et al; 2019 [222] Provide resistance against colonization 
and invasion by pathobiont. 

Tovaglieri et al; 2019 [223] 

Human gut microbiome metabolites 
induce expression of flagellin (a 

bacterial protein) increases EHEC 
motility and epithelial injury. 

IBD 

Lee and chang, 2021 [224] 
 

Gut microbiota dysbiosis of IBD 
patients is consistently marked by an 

overgrowth in Proteobacteria. 

Furusawa et al; 2013 [110] 

SCFA confers protection against IBD 
by maintaining gut barrier integrity, 
promoting Treg cell differentiation, 
and inhibiting histone deacetylases. 

Colorectal 
carcinoma 

 

Sepich-Poore et al., 2021 [225] 
 

Generation of genotoxin such as 
Bacteroides fragilis toxin (Bft), 

cytolethal distending toxin (CDT), and 
colibactin. 

Hale et al., 2017 [226] 
 

Bacterial-derived secondary bile acids 
and hydrogen sulfide promote 

proinflammatory milieu that increases 
CRC risk. 

Yeoh et al., 2020 [227] 
Bacteria such as F. nucleatum can 

adhere to colon tumors and aggravate 
tumorigenesis. 

Hepatocellular carcinoma 

Lin et al., 1995 [228] 
 

Systemic translocation of LPS 
promotes chronic liver injury and 

predisposes to HCC. 
Singh et al., 2018 [229] 

 
Excess butyrate production promotes 

HCC progression. 

Yoshimoto et al., 2013 [230] 
Secondary bile acids promote 

carcinogenesis and impede anti-tumor 
immunosurveillance in the liver. 

Cardiometabolic disease 

Cani et al; 2007 [231] 
 

Guasch-Ferré et al; 2017 [232] 
 

Millard et al; 2018 [233] 

LPS and other microbial ligands drive 
low-grade chronic inflammation and 

predispose to CVD. 
Bacterial trimethylamine and its 

conversion to trimethylamine-N-oxide 
in the liver increases the risk of 

coronary artery disease, metabolic 
syndrome, stroke, and vascular 

inflammation. 

Rheumatoid 
Arthritis Scher et al., 2013 [234] 

Prevotella spp. Abundance is positively 
associated with new-onset rheumatoid 

arthritis. 

Allergic 
Diseases 

Fazlollahi et al., 2018 [235] 
Bunyavanich et al., 2016 [236] 

Gut microbiota dysbiosis increases risk 
for allergic disease, e.g., food allergy 

and asthma. 
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Figure 2. Gut microbiota dysbiosis gives rise to several pathophysiological conditions. Gut micro-
biota dysbiosis can be induced by diet, antibiotics, and genetic factors. Gut microbiota dysbiosis can 
cause and sustain cancers, such as colorectal cancer and hepatocellular carcinoma, along with in-
flammatory diseases, autoimmune conditions, and cardiometabolic disorders. Gut microbiota 
dysbiosis-induced immune dysregulation is another etiological factor for disease among the many 
others listed, including age, sex, and medication. 

7.2. Gastrointestinal Infections 
Depending on the context, the gut microbiota can either protect the host or increase 

risk of infection from exogenous pathogens. The role of the microbiome as a protective 
force is supported by research indicating that immature microbiomes of neonates are 
more susceptible to invasion by pathobionts [222]. There are several different mechanisms 
in which commensals can prevent colonization by pathogens and protect against infec-
tions, including competing for resources, releasing bacteriophages, and producing anti-
microbial metabolites [237–241]. In contrast, microbiome metabolites, such as 4-methyl 
benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid, have been 
shown to increase colonic epithelial damage, as seen by enterohemorrhagic E. coli in an 
organ-on-a-chip model [223]. Moreover, supernatant taken from commensal Escherichia 
albertii can also increase virulence of diarrheagenic E. coli species, resulting in a TLR5-medi-
ated increase in IL-8 and an overall increased pro-inflammatory response by host intestinal 
cells [242]. 

Presence of certain commensals and changes in microbiome composition are linked 
to infection susceptibility by organisms such as Clostridium difficile, Salmonella typhi-
murium, Escherichia coli, vancomycin-resistant Enterococcus spp., and Citrobacter rodentium 
[238,239,241,243–245]. One of the best examples involves CDI, where innate immune cells 
are stimulated by C. difficile-toxins through the inflammasome and the TLR4, TLR5, and 
nucleotide-binding oligomerization domain-containing protein 1 (NOD1) signaling path-
ways [246,247]. Numerous pro-inflammatory cytokines (such as interleukin (IL)-12, IL-1β, 
IL-18, interferon gamma (IFN-γ), and tumor necrosis factor α (TNFα)) and chemokines 
(MIP-1a, MIP-2, and IL-8) are subsequently produced, resulting in increased mucosal per-
meability, mast cell degranulation, epithelial cell death, and neutrophilic infiltration [248]. 
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Importantly, CDI is usually a result of antibiotic-mediated disruption of the gut microbi-
ota [249]. Eradication of beneficial bacteria in the gut by certain antibiotics, particularly 
clindamycin, enables C. difficile to flourish [250], resulting in colitis and subsequent diar-
rhea [251,252]. Besides gut microbiota dysbiosis, immune cell populations, such as Th17- 
and IL-17-expressing cells, can promote recurrent CDI [253]. Comparatively, IL-33-acti-
vated ILCs can prevent CDI [254]. As gut microbiota depletion is a main cause for CDI, 
interventions that restore microbes could be of therapeutic value. 

Prebiotics, such as dietary fiber and their fermented byproducts, i.e., SCFA, are pos-
sible treatments for CDI. For instance, dietary fibers, such as pectin, were able to restore 
gut microbiota eubiosis (denoted by increased Lachnospiraceae and decreased Enterobacte-
riaceae) and alleviate inflammation following C. difficile-induced colitis [255]. The butyrate 
producing bacterium Clostridium butyricum was similarly found to protect against CDI by 
increasing neutrophils, Th1, and Th17 cells in the early phase of infection; this was inde-
pendent of GPR43 and GPR109a signaling [256]. As mentioned in Section 6.2, CDI can be 
effectively treated by FMT [152]. FMT is further supported in a prior study that showed 
that a Microbial Ecosystem Therapeutic, consisting of 33 bacterial strains isolated from 
human stool, could treat antibiotic-resistant C. difficile colitis [257]. Of note, similar obser-
vations were seen when the Microbial Ecosystem Therapeutic was applied to Salmonella 
typhimurium infection [258]. These findings emphasize that appropriate modulation of the 
gut microbiota and immune responses are imperative for preventing and fighting against 
infection. 

7.3. Inflammatory Bowel Diseases 
Inflammatory bowel diseases (IBD) develop due to defects in various factors, such as 

environment, gut microbes, immune system, and genetic factors. IBD involves chronic 
inflammation of the GIT. Crohn’s disease (CD) and ulcerative colitis (UC) are two distinct 
clinical conditions of IBD based on histopathological features, location of disease in the 
GIT, and symptoms [259]. In IBD, mucolytic bacteria and pathogenic bacteria degrade the 
mucosal barrier and increase the invasion of pathogens into deep intestinal tissues 
[224,260–262]. Alterations in the gut microbiota composition have been highly linked to 
the development and progression of IBD. IBD patients show reduced populations of Fir-
micutes and an expansion of Proteobacteria, Bacteroidetes, Enterobacteriaceae, and Bilophila 
[263–265]. In addition, many pro-inflammatory bacterial species are coated with IgA, as 
seen in IBD patients and colitis mouse models [266,267]. Gut microbes appear to play a 
direct role in IBD development on the basis of the evidence that germ-free mice are pro-
tected against colitis [268]. This is reinforced by the discovery that implantation of gut 
microbes from IBD mice to germ-free mice resulted in IBD for the latter group [268]. Like-
wise, dams with IBD can essentially transfer an ‘IBD microbiota’ to the offspring, for 
which the pups have reduced microbial diversity and fewer class-switched memory B 
cells and Treg cells in the colon [269]. The strong link between microbiota and IBD has 
moved forward metagenomic approaches to help better identify diagnostic and therapeu-
tic targets [270]. 

FMT is proposed as a potential treatment, where treated UC patients were found to 
have an increased abundance of Faecalibaterium that corresponded with less RORγt+ Th17 
cells and more Foxp3+ CD4+ Treg cells [166]. Administration of SCFAs is also thought to 
be a potential therapeutic for IBD patients [271]. Supporting evidence includes butyrate-
mediated inhibition of pro-inflammatory neutrophil responses, i.e., NETs in colitic mice 
[272]. There are conflicting reports as to whether dietary fiber, the precursor for SCFA, 
could be a beneficial intervention for IBD patients. On one side, a specific multi-fiber mix 
was found to counteract intestinal inflammation via increasing IL-10 and Treg cells [273]. 
Opposingly, our research findings indicate a dichotomy in prebiotic fiber reactions for 
colitic mice, where pectin could alleviate inflammation compared with inulin, which ag-
gravated the disease pathology [274]. Moreover, our study suggested that butyrate could 
be a detrimental microbial metabolite by increasing NLRP3 inflammatory signaling [274]. 
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A probiotic cocktail, comparatively, alleviated inflammation by shifting the gut microbi-
ota to an anti-inflammatory profile which included Akkermansia and Bifidobacterium [275]. 
These findings collectively indicate that more investigation is required to understand 
prebiotic fibers and SCFAs in IBD before implementing it in the clinics. 

In addition to SCFA, secondary bile acids are implicated in IBD. DCA has been well-
established to induce intestinal inflammation [276,277]. This could be due, in part, to bile-
acid-mediated inhibition of Paneth cell function [278]. Yet, cholecystectomy-associated 
secondary bile acids, including DCA, ameliorated colitis in mice by inhibiting mono-
cytes/macrophages recruitment [279]. Moreover, UDCA can also lower colitis severity by 
preventing the loss of Clostridium cluster XIVa and increasing the abundance of A. mucini-
phila [280]. The varying effects of bile acids could be related to their chemical structure 
and potential conjugated moieties. For instance, sulphated secondary bile acids may exert 
more pro-inflammatory effects compared with their unconjugated counterparts, as seen 
in IBD patients [281]. Certainly, more metabolomic profiling is necessary to understand 
the bile acid profile in IBD patients and determine the pro- or anti-inflammatory effects 
for each type of bile acid. In general, it appears that both SCFA and secondary bile acids 
have anti-inflammatory effects in the intestine (Figure 1A,B). 

Several susceptibility genes that increase risk for IBD have been identified in recent 
years. Current research is focused on the idea that genetic predisposition, dysbiosis, and 
environmental factors, such as antibiotics, work in concert toward IBD. Nucleotide-bind-
ing oligomerization domain-containing protein 2 (NOD2, an immunological intracellular 
recognition protein) identifies intracellular muramyl dipeptide (MDP), an integral com-
ponent of bacterial cell walls [282]. Loss of NOD2 function impairs inhibition of TLR2-
mediated activation of NF-κB, resulting in an overactive Th1 response and weakened im-
munological tolerance to microbes [282]. Moreover, several other genes that increase sus-
ceptibility to IBD, including autophagy-related 16-like 1 (ATG16L1), caspase recruitment 
domain-containing protein 9 (Card9), and C-type lectin domain family 7 member A 
(CLEC7A), dysregulate T cell responses and create gut microbiota dysbiosis, also contrib-
uting to IBD [283–285]. Future studies should explore whether there are single nucleotide 
polymorphisms in genes related to microbial metabolite production for IBD patients. 

7.4. Colorectal Carcinoma (CRC) 
A growing body of literature suggests a role for microbiota in the development and 

progression of cancer. In scenarios where the immune system has maladaptive develop-
ment, gut microbiota dysbiosis becomes a high risk, and the expansion of certain microbes 
can result in the production of mutagenic toxins [286]. These genotoxins include Bac-
teroides fragilis toxin (Bft), cytolethal distending toxin (CDT), and colibactin [225]. How-
ever, these highlight only a small number of bacterial-related toxins where more research 
is needed to identify and understand the carcinogenic potential with the full breadth of 
gut microbes [225]. 

Adenomatous and serrated polyps are two precancerous lesions that often progress 
to colorectal cancer (CRC). In patients with adenomas, several species, including Bilophila, 
Desulfovibrio, Mogibacterium, and the phylum Bacteroidetes, are increased in the feces, 
while patients with serrated polyps showed increases in the taxa Fusobacteria and class 
Erysipelotrichia [226]. Fusobacterium nucleatum (F. nucleatum) is characterized as an im-
portant microbe in CRC progression [287,288]. F. nucleatum promotes TLR4 signaling and 
E-cadherin/β-catenin signaling, ultimately leading to activation of NF-κB and reduced 
miR-1322 expression [289]. Regulatory micro-RNAs, such as miR-1322, can directly regu-
late the expression of CCL20, a cytokine that promotes CRC metastasis [287]. Other liter-
ature points to F. nucleatum adhesin A (FadA) as a key virulence factor that allows F. nu-
cleatum to adhere, invade, and erode the colonic epithelia [227]. More recently, one study 
found that F. nucleatum can promote CRC by suppressing anti-tumor immunity through 
activation of the inhibitory receptors CEACAM1 and TIGIT1, which downregulate NK 
cells and T cells [290]. The F. nucleatum strain Fn7-1 was also demonstrated to aggravate 
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CRC development by elevating Th17 responses [74]. These findings on F. nucleatum are 
alarming because this is a SCFA-producing bacterium [291], and SCFA have been, in gen-
eral, highlighted as a potential therapeutic avenue for many inflammatory diseases. F. 
nucleatum predominantly produce acetate and butyrate, where it was recently suggested 
that F. nucleatum induces Th17 via free fatty acid receptor 2 (FFAR2), a SCFA receptor [74]. 
Yet, loss of FFAR2 in mice aggravated tumor bacterial load and over activated DCs, even-
tually promoting T cell exhaustion [292]. Moreover, butyrate from dietary fiber was found 
to be less metabolized in CRC cells because of the Warburg effect, allowing it to act as an 
HDAC inhibitor and promote acetylation of genes related to apoptosis [293]. These find-
ings emphasize that the pathologic effects of F. nucleatum could be SCFA-independent, 
but further studies are needed to determine this possibility. 

Another proposed mechanism in the development of CRC suggests that excessive 
dietary intake of sugars, proteins, and lipids could promote the growth of bile-tolerant 
microbes, which increase production of secondary bile acids, such as DCA and LCA, and 
by-products, such as hydrogen sulfide. Excessive secondary bile acids are genotoxic and 
may produce a pro-inflammatory environment that could promote the development of CRC 
[226]. In particular, DCA can stimulate intestinal carcinogenesis by activating epidermal 
growth factor receptor-dependent release of the metalloprotease ADAM-17 [294]. DCA 
also activates β-catenin signaling [295] and drives malignant transformations in Lgr5-ex-
pressing (Lgr5+) cancer stem cells [296] for CRC growth and invasiveness. However, bac-
teria associated with secondary bile acid production, i.e., Clostridium cluster XlVa, were 
significantly decreased in IBD patients, which was accompanied by reduced transfor-
mation of primary to secondary bile acids [297]. In addition to bile acids, the gut microbial 
metabolite folate can worsen CRC pathogenesis by triggering AhR signaling and expand-
ing Th17 levels [298]. Similar to SCFA, more investigation is needed to discern the poten-
tial pro-tumorigenic effects of gut-microbiota-derived bile acids. 

There are distinct microbiota-dependent immunological responses in CRC. In terms 
of innate immune responses, A. muciniphila enrichment facilitated M1 macrophage polar-
ization in an NLRP3-dependent manner that suppressed colon tumorigenesis [299]. Like-
wise, intestinal adherent E. coli can increase IL-10-producing macrophages, which limits 
intestinal inflammation and restricts tumor formation [300]. In terms of adaptive immun-
ity, microbial dysbiosis hyperstimulates CD8+ T cells to promote chronic inflammation 
and early T cell exhaustion, which contributes to colon tumor susceptibility [301]. Intesti-
nal cancer cells can also respond to the microbiota by inducing calcineurin-dependent IL-
6 secretion, which promotes tumor expression of the co-inhibitory molecules B7H3/B7H4 
that diminish anti-tumor CD8+ T cells [302]. Comparatively, introduction of Helicobacter 
hepaticus induced T follicular helper cells that restored anti-tumor immunity in a mouse 
CRC model [303]. Compared with macrophages and Th17 cells, γδ T cells and resident 
memory T cells were found at lower frequencies in the colonic tissue of CRC patients [60]. It 
would be interesting to investigate whether an immune cell panel could be developed for 
early diagnosis of CRC. 

7.5. Hepatocellular Carcinoma (HCC) 
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is the 

fourth leading cause of cancer-related mortality worldwide [304]. The main etiology for 
HCC pathogenesis comes from pre-existing liver diseases, such as nonalcoholic fatty liver 
disease (NAFLD) and steatohepatitis, that lead to cirrhosis [305]. This is further compli-
cated by other concomitants in NAFLD patients, including insulin resistance, obesity, and 
metabolic disorders that further promote hepatic inflammation and tumorigenesis 
through IL-6 and TNF-α [306]. The liver is the ‘first stop’ for venous blood coming from 
the intestines, making it vulnerable to the gut microbiota via microbial translocation 
across the intestinal–epithelial barrier or contact with absorbed microbial metabolites 
[307]. The aforementioned well-known effects of gut microbiota dysbiosis, including dis-
ruption of gut barrier, translocation of microbes into the bloodstream, and subsequent 
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inflammatory immune responses via induction of PRRs by PAMPs, such as LPS, are 
strongly correlated to the pathogenesis of NAFLD, liver cirrhosis, and HCC [228,307]. 
While it has long been thought that gut microbiota dysbiosis precedes the development 
of HCC, this causal relationship has not been explored in depth until more recently. 
Behary, Raposo et al. recently found, before HCC progression, that gut microbiota dysbio-
sis is in tandem with early onset liver injury that is followed by an LPS-dependent Th1- 
and Th17-mediated cytokine response [308]. Further investigation should determine 
whether gut microbiota dysbiosis is a cause or consequence in the liver injury preceding 
HCC. 

Increased Enterobacteriaceae and Streptococcus and reduction in Akkermansia, alongside 
elevated levels of inflammatory mediators, such as CCL3, CCL4, CCL5, IL-8, and IL-13, 
have been noted in patients with NAFLD-associated HCC [309]. A more recent study 
found decreased abundance of SCFA-producing bacteria and increased LPS-producing 
bacteria in patients with cirrhosis-induced HCC but no significant evidence of gut microbiota 
dysbiosis in other liver diseases, such as hepatitis C, hepatitis B, or alcoholic liver disease [310]. 
Broadly speaking, however, it should be noted that altered microbial populations ob-
served among multiple studies are not consistent with each other [309,311–313]. Further-
more, while it is generally thought that SCFAs produced by gut microbes have several 
benefits for humans, it was recently discovered that inulin, a precursor of the SCFA bu-
tyrate, can promote the progression to HCC in genetically altered dysbiotic mice [229]. 
Other studies have focused on the impact of microbial metabolites on HCC. For instance, 
a high-fat diet led to gut overgrowth of Gram-positive organisms that generate secondary 
bile acids, i.e., DCA [230]. DCA can work in concert with lipoteichoic acid to activate TLR2 
and subsequently downregulate anti-tumor immunity, creating a microenvironment fa-
vorable for the development of HCC [314,315]. Overall, it appears that gut microbiota me-
tabolites are potentially pro-tumorigenic for the liver. 

7.6. Cardiovascular Disease 
Cardiovascular disease (CVD) is heavily linked to metabolic syndrome, a condition 

which involves a set of interrelated diseases—mainly atherosclerosis, NAFLD, hyperten-
sion, and type II diabetes mellitus (TIIDM)—that arise from chronic, low-grade inflamma-
tion [316]. Many cells with high metabolic activity, such as parenchymal cells in the liver 
and pancreas, adipocytes, and skeletal myocytes, participate in extensive crosstalk with 
immune cells. Any perturbation of the microbiome has the potential to alter host immune 
function and, by extension, may have the ability to cause or alter disease processes in met-
abolically active tissues. The recognition of LPS and other microbial PAMPs by PRRs are 
thought to be a key driver in this low-grade inflammatory state [231]. Trimethylamine-N-
oxide (TMAO), a microbial co-metabolite, is also noted to cause low-grade inflammation 
through NF-κB signaling, inflammasome activation, and increased production of free rad-
icals [317,318]. Furthermore, TMAO leads to atherosclerosis and, thus, heart disease by 
impairing cholesterol metabolism in macrophages and contributing to the formation of 
foam cells [319]. Indeed, higher serum TMAO is correlated with increased risk of athero-
sclerosis, coronary artery disease, stroke, and vascular inflammation [232,233], and TMAO 
is currently being considered as a biomarker for adverse cardiovascular events [320]. More 
recent research has discovered phenylacetylglutamine (PAGln) as a microbial metabolite 
related to CVD via adrenergic receptor activation and pro-thrombotic effects [321,322]. 
There are multiple potential emerging roles for PAGln in cardiovascular medicine, such 
as being used as a diagnostic marker or even as a predictor for responsiveness to β-blocker 
therapy for CVD patients [322]. 

7.7. Diabetes 
Diabetes mellitus is a disease separated into two classes: type I diabetes mellitus 

(TIDM) involves autoimmune destruction of pancreatic islet cells, while type II diabetes 
mellitus (TIIDM) involves acquired insulin insensitivity. Though much research involving 
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microbiota and diabetes revolves around TIIDM and obesity, it has been shown that in-
creasing dietary SCFA consumption can lead to altered microbiota and distinct immune 
profiles in TIDM patients [323]. Increasing dietary SCFAs, such as butyrate and acetate, 
were also shown to work synergistically to confer protection against autoreactive T cell 
populations and TIDM in mice [100]. Comparatively, administration of Parabacteroides dis-
tasonis accelerated the development of T1DM in a mouse model, and this was because of 
aberrant immune responses, including elevated CD8+ T cells and decreased Foxp3+ CD4+ 
Treg cells [324]. Of note, dysregulated bile acid metabolism was found to be a potential 
predisposing factor for islet autoimmunity and type 1 diabetes [325]. 

The microbiome and immune systems are both heavily involved in the pathogenesis 
of TIIDM. Branched-chain amino acids are produced by Prevotella copri (P. copri) and Bac-
teroides vulgatus spp., and P. copri directly induces insulin resistance in mouse models 
[326,327]. Depletion of commensal A. muciniphila compromises the intestinal barrier, re-
sulting in translocation of endotoxin into the bloodstream and subsequent activation of 
CCR2+ monocytes. This results in conversion of pancreatic B1a cells into 4BL cells, which 
release inflammatory mediators and cause reversible or irreversible insulin resistance 
[328]. On the other hand, microbial metabolites, such as linoleic acid and docosahexaenoic 
acid, have protective effects against insulin resistance and TIIDM through anti-inflamma-
tory effects and prevention of lipotoxicity [329]. FMT has also been shown to reduce fast-
ing blood glucose levels and decrease insulin resistance in mice with TIIDM [330]. Fur-
thermore, some of the therapeutic effects of several anti-diabetic drugs can be due, in part, 
to their ability to alter the microbiota [331–333]. 

7.8. Hypertension 
Several studies have observed significantly altered microbiome compositions be-

tween normotensive and hypertensive mice, though specific microbial profiles in hyper-
tensive mice are dependent on the hypertension model used [334–337]. In the angiotensin 
II model of hypertension, lack of microbiota in germ-free mice protected against hyper-
tension partly by decreasing inflammatory cell populations in the blood [338]. Yet, germ-
free mice were more prone to kidney injury following an angiotensin II and high-salt diet 
combination regimen [339]. Furthermore, reintroduction of microbiota to hypotensive 
germ-free mice re-established vascular contractility [340]. Generally, the microbiota com-
position differs between hypertensive and normotensive animals and, interestingly, cross-
fostering hypertensive pups with normotensive dams can reduce blood pressure in the 
former group [341]. Similar to CVD, the gut metabolite TMAO also has relevance to hy-
pertension. A recent study discovered TMAO exacerbated vasoconstriction via ROS in 
angiotensin II-induced hypertensive mice [342]. In a similar manner, high-salt-induced 
DC activation is associated with microbial dysbiosis-mediated hypertension [343]. Com-
paratively, the ketone body β-hydroxybutyrate has been shown to be decreased in high-
salt-fed hypertensive rats; rescuing with the β-hydroxybutyrate precursor 1,3 butanediol 
decreased blood pressure and kidney inflammation through prevention of the NLRP3-
mediated inflammasome [344]. While HSD has been shown elsewhere to decrease Lacto-
bacillus spp. and induce Th17 cell populations, this appears to be through a distinctly dif-
ferent mechanism [176]. 

7.9. Rheumatoid Arthritis 
The pathogenesis of rheumatoid arthritis (RA), a systemic autoimmune disease char-

acterized primarily by inflammation of joints, is becoming more understood. RA is a mul-
tifactorial disease with multiple identified alleles and environmental factors conferring 
increased susceptibility to the disease. A potentially important microbial genus in the de-
velopment of RA is Prevotella. This was first identified in 2013 by Scher et al., which found 
that patients with new onset RA had significantly increased abundance of Prevotella spp., 
particularly Prevotella copri, compared with healthy controls [234]. However, the Prevotella 
population did not increase in patients with chronic RA [234]. Since then, multiple studies 
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have found further correlations between various Prevotella species and RA [345–347]. How-
ever, it is unclear whether Prevotella spp. itself contributes to the pathogenesis of RA, or the 
immunological environment created by RA increases abundance of Prevotella in the gut. 

Other notable bacterial shifts in the gut microbiota for RA patients include a bloom 
in Proteobacteria, Clostridium cluster XlVa, and Ruminococcus, which were correlated with 
less CD4+ T cells and Treg cells [348]. Using the K/BxN autoimmune arthritis model, it was 
found that SFB-mediated cytotoxic T lymphocyte antigen-4 (CTLA-4) reduction caused 
autoreactive T follicular helper cells [349,350]. The accumulation of T follicular helper cells 
and Th17 cells in arthritis appears to be age-dependent [351], which helps to explain why 
RA is found mostly in the older population. Interestingly, though, the gut microbiota 
seems to predominantly affect T follicular helper cells, not Th17 cells, as confirmed by 
antibiotic treatment of the K/BxN autoimmune arthritis model [352]. Of note, it was re-
cently reported that collagen-induced RA in mice causes an aberrancy in circadian rhyth-
mic patterns in the gut microbiome, resulting in reduced barrier integrity due to an alter-
ation in circulating microbial-derived factors, such as tryptophan metabolites [353]. 

SCFAs, specifically butyrate, have been proposed as a therapeutic option for RA. Bu-
tyrate supplementation was found to promote Treg cells by inhibiting HDAC expression, 
and it downregulated pro-inflammatory cytokine genes in RA [354]. Moreover, butyrate 
alleviated arthritis by directly inducing the differentiation of functional follicular Treg 
cells in vitro by enhancing histone acetylation via HDAC inhibition [355]. Furthermore, 
butyrate reduced arthritis severity by increasing the levels of AhR ligands, i.e., serotonin-
derived metabolite 5-hydroxyindole-3-acetic acid, where AhR activation supported regu-
latory B cell function [356]. In addition to SCFA, the gut-microbiota-derived metabolites 
LCA, DCA, isoLCA, and 3-oxoLCA were also very recently found to exhibit anti-arthritis 
effects. Specifically, isoLCA and 3-oxoLCA inhibited Th17 differentiation and promoted 
M2 macrophage polarization [357]. These effects of secondary bile acids could be syner-
gized with Parabacteroides distasonis probiotic supplementation [357]. The newfound find-
ings of secondary bile acids are monumental and need additional investigation. 

7.10. Allergic Diseases 
Allergies occur when the immune system becomes hypersensitized to nonpathogenic 

foreign antigens. Common hypersensitivities include allergic rhinitis, food allergy, ec-
zema, atopic dermatitis, and asthma. Several factors responsible for the development of 
allergies, such as reduced microbial exposure, cesarean delivery, diet, and antibiotic use 
are strongly linked to changes in gut microbiome composition [358–361]. Gut microbiota 
dysbiosis, in turn, increases risk for allergies, particularly food allergies [235,236]. Dysbio-
sis induced by antibiotic use is sufficient to increase allergic symptoms, elevate intestinal 
inflammation, and disrupt gut mucosal tight junction in sensitized mice [362]. A high-fat 
diet generally has effects similar to antibiotics, causing gut microbiota dysbiosis and sub-
sequently increasing risk for food allergies [363]. Changes in gut microbiota composition 
immediately after birth, when the microbiome is still establishing, appears to have a par-
ticularly large impact on the development of allergic diseases later in life [364]. Of note, 
the vaginal microbiota can also reflect allergy risk, where Lactobacillus-dominated vaginal 
microbiota clusters were related to infant serum IgE status at 1 year of age [365]. 

Several studies reinforce the concept that dysbiosis is heavily linked to allergic dis-
ease, especially asthma. Individuals with atopic asthma have significantly higher fecal 
levels of Lactobacillus and E. coli compared with healthy individuals [366]. In terms of mi-
crobiota metabolites, 12,13-diHOME (a relatively uncharacterized linoleic acid) is com-
monly found in neonates at high risk for asthma [367]. It was recently found that the bac-
terial epoxide hydrolase, which produces 12,13-diHOME, is also higher in concentration 
during pulmonary inflammation, and 12,13-diHOME reduced Treg cells in the lung 
[368,369]. Comparatively, the AhR ligand tetrachlorodibenzo-p-dioxin was able to atten-
uate delayed-type hypersensitivity by inducing Treg cells, suppressing Th17 cells, and 
reversing gut microbiota dysbiosis [370]. Likewise, individuals with higher fecal SCFAs, 
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such as butyrate and propionate, early in life had markedly decreased risk for develop-
ment of asthma and atopy [371]. Of potential therapeutic value, SCFA supplementation 
could modulate T cells and DCs to alleviate asthma [372]. Similarly, maternal supplemen-
tation with dietary fiber or acetate was shown to protect neonates from asthma by pro-
moting acetylation of the Foxp3 gene [373]. Dietary fiber feeding also gave protection from 
food allergens via retinal dehydrogenase activity in CD103+ DCs [374]. Of note, the dietary 
fiber inulin was recently found to promote allergen- and helminth-induced type 2 inflam-
mation, and this was bile-acid dependent [375]. Overall, it appears that the influence of 
gut microbiota on allergies is highly regulated by metabolites, but each microbial product 
has independent effects that can either promote or demote hypersensitivity. 

7.11. Psychiatric Disorders: The Gut–Brain Axis 
The aforementioned information describes the gut microbiota to influence both intra- 

and extraintestinal diseases. One other organ that the gut microbiota can impact is the 
brain where a ‘stressed gut’ is becoming more recognized as a pathologic entity in several 
neurological disorders. For pre-term infants with an immature gut microbiota, Klebsiella 
overgrowth has been found to be highly predictive for brain damage and is associated 
with a pro-inflammatory immunological tone [376]. Parkinson’s disease is marked by an 
accumulation of alpha-synuclein in the gut, and patients often suffer from a leaky gut due 
to microbiota dysbiosis with higher populations of Prevotellaceae [13]. These symptoms 
can be reversed by administering probiotics [377,378]. Recently, the idea that microbiota 
shapes mental health has started gaining traction. Taxonomic and metabolic signatures 
have been proposed as a biomarker for stratifying major depressive disorder into mild, 
moderate, and severe symptom categories [379]. Several studies studying differences in 
microbiota between those who are mentally healthy and those with mental health disor-
ders, such as anxiety and/or depression, have suggested that microbial colonization before 
and after birth plays a major role later in life. For instance, maternal stress can induce abnor-
mal neurodevelopment in the offspring, which has been marked with a significant reduction 
of Bifidobacterium spp. [380]. Moreover, neonates delivered by C-section, as opposed to vaginal 
birth, have a greater risk of developing psychosis later in life [377,381]. Impressively, early-life 
oxytocin treatment can minimize behavior deficits seen in C-section delivered pups [382]. 

A cocktail of broad-spectrum, gut-microbiota-depleting antibiotics, specifically at the 
postnatal and weaning stages, can cause long-lasting effects of anxiety-related behavioral 
outcomes into adolescence and adulthood [383]. A recent elegant study by Li et al. delin-
eated that infant exposure to antibiotics resulted in anxiety- and depression-like behaviors 
and memory impairments that were concurrent with an increase inflammatory milieu; 
similar findings were seen following long-term antibiotic treatment at the adolescent and 
adult stages in mice [384]. Early-life disruption of the gut microbiota could also cause sex-
specific anxiety-like behavior, where LPS treatment to Wistar rats resulted in less social 
interaction in males compared with the females, who had an increase in social behavior 
[385]. It is noteworthy that FMT from an ‘aged microbiome’ to germ-free mice decreased 
SCFAs, and this was associated with cognitive decline [386]. The gut microbiota–immun-
ity–brain axis is still in its nascency and requires investigation to establish mechanisms 
involved in immune regulation responsible for behavioral abnormalities and neurological 
disorders. However, it must be emphasized to look at other microorganisms besides bac-
teria because mucosal fungi were found to promote social behavior through complemen-
tary Th17 immune mechanisms [387]. 

8. Relationship between the Gut Microbiota and Their Metabolites in  
Immunotherapy 

Presently, frontline immunotherapy treatments include T cells (checkpoint inhibi-
tors, costimulatory receptor agonists), T cell modification, adoptive T cell transfer, autol-
ogous cytokine-induced killer cells, chimeric antigen receptor therapy, cytokines, onco-
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lytic viruses, and vaccines [388,389]. In recent years, immunotherapy based on the appli-
cation of immune checkpoint inhibitors (ICIs), including antibodies against CTLA-4, pro-
grammed cell death protein 1 (PD-1), and programmed death ligand 1 (PD-L1), has been 
approved as first- or second-line treatments in a variety of tumors [390]. In particular, ICIs 
that target PD-1 and its ligand PD-L1 have been approved by the U.S. Food and Drug 
Administration (FDA) for the treatment of 10 different cancer types [391]. Recent studies 
suggest the gut microbiota could be a significant determinant of the response to cancer 
immunotherapy in some preclinical and clinical studies [392–394]. Matson et al. showed 
that Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium have higher 
abundance in patients responding to PD-1 inhibitors [395]. Several studies have found 
significant differences in the microbiomes of responders vs. non-responders to PD-1 in-
hibitors, including increases in Faecalibacterium, Ruminococcus, and Akkermansia in re-
sponders and increases in Bacteroides in non-responders [392,396,397]. In addition, anti-
PD-1 treatment for liver cancer patients resulted in elevated Faecalibacterium abundance 
and better progression-free survival [398]. 

Additional studies have further shown that the composition of gut bacteria can in-
fluence the metabolism of certain immunotherapeutic drugs. The fecal transfer from PD-
1-treated responding patients to germ-free mice enhanced T cell responses and improved 
the effectiveness of PD-1 inhibitor therapy [395]. Inosine, which is produced by Bifidobac-
terium pseudolongum and Akkermansia muciniphila, also promoted anti-CTLA-4 and anti-
PD-L1 therapy by activating T cells [213]. Comparatively, a recent study by Coutzac et al. 
showed that butyrate and propionate limited the efficacy of CTLA-4 inhibitors, which was 
associated with a higher Treg population and lower survival [399]. Of note, a newly iso-
lated probiotic Lactobacillus strain (L. paracasei sh2020) promoted anti-PD-1 effects in CRC 
tumor-bearing mice by upregulating the expression of CXCL10 in the tumors and subse-
quently enhancing CD8+ T cell recruitment [400]. Remarkably, these anti-tumor effects oc-
curred even in the presence of gut microbiota dysbiosis. These preclinical and clinical 
pieces of evidence support continued investigation to determine the requirement for gut 
microbiota to provide the maximum efficacy of immunotherapies (Figure 3). This includes 
possibly utilizing the gut microbiota to limit negative side effects from immunotherapies, 
such as ICI-related cardiotoxicity. Chen et al. elegantly described PD-1/PD-L1 inhibitor to 
deplete the Prevotellaceae and Rikenellaceae microbiota populations, reduce butyrate levels, 
and promote pro-inflammatory macrophage M1 polarization via downregulation of the 
PPARα-CYP4 × 1 axis [401]. Of therapeutic relevance, Prevotella loescheii recolonization 
and butyrate supplementation alleviated PD-1/PD-L1 inhibitor-related cardiotoxicity 
[401]. As immune checkpoints are often heterogeneous and not persistent, which can re-
sult in lower treatment response rate, drug resistance, and adverse reactions [402–404], 
gut-microbiota-targeted therapies could be essential adjuvants (Figure 3). 

The currently approved and available IBD therapies are anti-TNF agents, anti-integ-
rin agents, anti-β7 monoclonal antibody, and Janus kinase (JAK) inhibitors. JAK inhibitors 
(e.g., baricitinib) were successful in restoring insulin signaling and improving myosteato-
sis following high-fat–high-sugar feeding, but it did not reverse diet-induced alterations 
to the gut microbiota in mice [405]. Anti-TNF inhibitors have improved clinical outcomes 
in both CD and UC, but they still require more randomized clinical trials [402]. However, 
it is notable that FMT was recently found to be a potential alternative therapy for CD 
patients with prior loss of response or intolerance to anti-TNF therapy (i.e., infliximab) 
[406]. Impressively, the probiotic Bifidobacterium longum (B. longum) CECT 7894 promoted 
infliximab efficacy in a mouse colitis model by reducing the abundance of opportunistic 
pathogens, i.e., Enterococcus and Pseudomonas, and increasing secondary bile acids [407]. 
Another recent study similarly found that both anti-TNF and anti-IL-12/23 therapies al-
tered the gut microbiota to favor microbial species capable of secondary bile acid produc-
tion [408]. The elevation in secondary bile acids may be due to anti-TNF treatment pro-
moting the bloom of Clostridia spp. as part of the restoration of intestinal microbiota [409]. 
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Bile acids are considered to be a potential metabolic biomarker for anti-TNF therapy re-
sponse [410], but more research is needed to determine whether bile acids improve im-
munotherapy efficacy (Figure 3). There is a hint that secondary bile acids could be bene-
ficial when considering the evidence for UDCA treatment to prevent CRC reoccurrence 
by inhibiting NF-κB signaling [411,412]. Moreover, UDCA was found to synergize with 
anti-PD1 effects to inhibit cancer progression in tumor-bearing mice [413]. Overall, it ap-
pears that the gut microbiota could be exploited as both a biomarker and therapeutic tar-
get to improve immunotherapy response. 

 
Figure 3. Modifying the abundance of gut microbiota population may influence the outcomes of 
immunotherapy. A healthy gut microbiome can increase the bioavailability and efficacy of drugs in 
the host. Dysbiosis, caused by several depicted factors, may decrease the efficacy of the therapeutic 
drugs, leading to poor therapeutic outcomes. Modifying gut microbiota could increase the effective-
ness of certain immunotherapeutic drugs, such as anti-PD-1 antibody, anti-PD-L1 antibody, and 
anti-CTL4 antibody treatments. Gut microbiota can be changed by supplementation with either an-
tibiotics, probiotics, prebiotics, secondary bile acids, short-chain fatty acids (e.g., butyrate), inosine, 
or fecal matter transplantation. 

9. Promises, Challenges, and Risks in Immune–Microbiome Research 
The interplay between the microbiota and immune systems and their impact on dis-

eases, including IBD, autoimmune arthritis, and cancer, is incredibly complex. One layer 
of complexity includes the challenge of showing the exact implication of a certain single 
or group of bacteria in the onset of disease or general host physiology. Colonization of 
microbes to germ-free models is a relevant strategy to better understand the potential ef-
fects of gut microorganisms in host health and disease [414]. However, the gut microbiota 
is much more than just a select few species. There is a strong dynamic in the microbiome 
environment, where species are either mutually exclusive or competitive for resources, 
and many microbes depend on one another for growth [415]. Another layer of complexity 
is including other interacting genetic and environmental factors, such as diet, smoking, 
drugs, and medications (Figure 2). This includes differences in the microbiota (and poten-
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tially immune responses) between urban vs. rural areas for individuals [416]. Notwith-
standing, observations seen in rodent models is not always translatable to humans. It can 
be generally stated that humans and other mammals live in a ‘dirtier’ environment when 
compared with research rodents living in specific pathogen-free environments. Therefore, 
the cleanliness of the environment, reflecting the hygiene hypothesis, could impact the 
microbiota composition and disease susceptibility. This notion is supported with the re-
cent finding that feralized mice (animals continuously exposed to a livestock farmyard-
type environment) had a more stable gut microbiota and remained resistant to mutagen- 
and colitis-induced neoplasia when compared with hygienically born mice [417]. 

Several studies focusing on microbiome–immunity research have employed 16S 
rRNA sequencing to characterize the microbiome, but this method has limitations in that 
it can successfully identify genera but cannot provide distinctions at the species level 
[418]. Therefore, to achieve a more inclusive study of microbiomes, it is advisable that 
metagenomics must be combined with other -omics approaches [419]. Most recently, 
metatranscriptomics and metabolomics are rapidly becoming important to microbiome 
studies. Metagenomics generates the taxonomical profile of the sample, meta-
transcriptomics obtains a functional profile, and metabolomics finalizes the depiction by 
determining which byproducts are released by the microbiota in the environment [419]. 
Though each of these -omics approaches provide valuable information by themselves, it 
is suggested that a more complete picture come from combined -omics. One important 
benefit with these -omics approaches is that the raw files can be deposited into databases 
and then later mined for analysis by other research groups. One limitation that can arise 
when applying machine learning to compare multiple databases is the unevenness in sam-
ple size [420]. Moreover, -omics results could be considered study-specific, as it can be 
difficult to find overlapping patterns of gut microbiota changes between research and/or 
clinical studies. This is because the gut microbiota (plus their metabolites) and disease 
susceptibility can vary in humans depending on their geographic origin [421], and even 
the bacterial composition in common laboratory rodents can be different among research 
facilities and vendors [422]. Overall, -omics are surely advancing the biomedical field to 
identify potential diagnostic and therapeutic targets, but there are still some limitations to 
overcome. 

10. Conclusions 
In summary, the host immune system and the gut microbiome are heavily dependent 

upon each other for normal function and well-being of the host (summarized in Graphical 
Abstract). This review covered novel findings, including how fetal immune fitness is en-
vironmentally dependent on the maternal microbiota (healthy vs. dysbiosis or stressed). 
New mechanistic pathways have been discussed, such as SCFA and secondary bile acids 
modulating gut homeostasis by inducing Treg cells and IL-10 secretion (Figure 1A,B). 
Throughout the review, butyrate and its precursor dietary fiber were repeatedly men-
tioned to influence immune responses and act as potential therapeutics for many diseases, 
but some evidence suggest that their clinical practice may need to be disease contextual-
ized. Comparatively, probiotics and FMT look to be more promising to restore gut micro-
biota eubiosis and alleviate inflammatory diseases. Moreover, gut microbiota appears to 
be a relevant target to improve current immunotherapies and abate their negative side 
effects (Figure 3). We also discussed the current challenges in microbiome research, which 
is essentially rooted in genetic and environmental factors (Figure 2), that makes each in-
dividual microbiota unique among humans and when comparing species models. We 
posit that recent developments in multi-omics methods, including epigenomics, meta-ge-
nomics, meta-proteomics, metabolomics, culturomics, and single-cell transcriptomics, 
will elucidate interactions between the gut microbiome and the immune system in health 
and disease [423]. As such, it will be exciting to predict the ‘specific’ host immune re-
sponses on the basis of gut microbiome profiles, which will support the development of 
‘personalized microbiome-targeted’ therapy for immunologic diseases. 
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Abbreviations 
GIT Gastrointestinal tract 
TLRs Toll-like receptors 
Treg Foxp3+ regulatory T cells 
Th17 T helper 17 cells 
PRRs Pattern recognition receptors 
PAMPs Pathogen-associated molecular patterns 
DCs Dendritic cells 
APCs Antigen-presenting cells 
SCFAs Short-chain fatty acids 
ILCs Innate lymphoid cells 
FMT Fecal microbiota transplantation 
IBD Inflammatory bowel disease 
NOD2 Nucleotide-binding oligomerization domain-containing protein 2 
MDP Muramyl dipeptide 
TMAO Trimethylamine-N-oxide 
CRC Colorectal carcinoma 
HCC Hepatocellular carcinoma 
ICIs Checkpoint inhibitors 
CTLA-4 Cytotoxic T lymphocyte antigen-4 
PD-1 Programmed cell death protein 1 
PD-L1 Programmed death ligand 1 
RA Rheumatoid arthritis 
LPS Lipopolysaccharide 
SFB Segmented filamentous bacteria 
CD Crohn’s disease 
UC Ulcerative colitis 
IEB Intestinal–epithelial barrier 
NAFLD Non-alcoholic fatty liver disease 
GPR G-protein receptor 
ROS Reactive oxygen species 
TNF Tumor necrosis factor 
NET Neutrophil extracellular trap 
NLR NOD-like receptor 
IEL Intraepithelial lymphocytes 
IL Interleukin 
RORγ RAR-related orphan receptor gamma 
Ig Immunoglobulin 
GPR G-protein receptor 
HDAC Histone deacetylase 
AhR Aryl hydrocarbon receptor 
HSD High-salt diet 
F/B ratio Firmicutes/Bacteroidetes ratio 
NaCl Sodium chloride 
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CDI Clostridium difficile infection 
TGFβ Tumor growth factor beta 
CA Cholic acid 
DCA Deoxycholic acid 
UDCA Ursodeoxycholic acid 
LCA Lithocholic acid 
CVD Cardiovascular diseases 
TIDM Type I diabetes mellitus 
TIIDM Type II diabetes mellitus 
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