Multivariate Calibration for Selective Analysis of Hydrogen Sulfide and Carbon Monoxide with Thermal Modulation of the SnO2–PdO Sensor
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of Tin Dioxide Nanopowder
2.2. Production of Gas-Sensitive Material SnO2–PdO
2.3. Experimental Methodology with the Manufactured Gas Sensor
3. Results
3.1. Morphological and Composition Characterization
3.2. Selective Determination of Hydrogen Sulfide
3.3. Selective Determination of Carbon Monoxide
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaposhnik, A.V.; Moskalev, P.V.; Chegereva, K.L.; Zviagin, A.A.; Vasiliev, A. Selective Gas Detection of H2 and CO by a Single MOX-sensor. Sens. Actuators B Chem. 2021, 334, 129376. [Google Scholar] [CrossRef]
- Heilig, A.; Bârsan, N.; Weimar, U.; Schweizer-Berberich, M.; Gardner, J.W.; Göpel, W. Gas Identification by Modulating Temperatures of SnO2-Based Thick Film Sensors. Sens. Actuators B Chem. 1997, 43, 45–51. [Google Scholar] [CrossRef]
- Nakata, S.; Okunishi, H.; Nakashima, Y. Distinction of Gases with a Semiconductor Sensor Depending on the Scanning Profile of a Cyclic Temperature. Analyst 2006, 131, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Krivetskiy, V.; Efitorov, A.; Arkhipenko, A.; Vladimirova, S.A.; Rumyantseva, M.; Dolenko, S.; Gaskov, A. Selective Detection of Individual Gases and CO/H2 Mixture at Low Concentrations in Air by Single Semiconductor Metal Oxide Sensors Working in Dynamic Temperature Mode. Sens. Actuators B Chem. 2018, 254, 502–513. [Google Scholar] [CrossRef]
- Shaposhnik, A.V.; Moskalev, P.V.; Arefieva, O.A.; Zviagin, A.A.; Kul, O.V.; Vasiliev, A.V. Selective Determination of Hydrogen in a Mixture with Methane Using a Single Metal Oxide Sensor. Int. J. Hydrogen Energy 2024, 82, 523–530. [Google Scholar] [CrossRef]
- Shaposhnik, A.V.; Moskalev, P.V.; Zviagin, A.A.; Duykova, M.V.; Ryabtsev, S.V.; Ghareeb, D.A.A.; Vasiliev, A.A. Selective Determination of Hydrogen Sulfide Using SnO2–Ag Sensor Working in Non-Stationary Temperature Regime. Chemosensors 2021, 9, 203. [Google Scholar] [CrossRef]
- Noh, H.W.; Jang, Y.; Park, H.D.; Kim, D.; Choi, J.H.; Ahn, C.-G. A Selective Feature Optimized Multi-Sensor Based e-Nose System Detecting Illegal Drugs Validated in Diverse Laboratory Conditions. Sens. Actuators B Chem. 2023, 390, 133965. [Google Scholar] [CrossRef]
- Haddi, Z.; Amari, A.; Ali, A.O.; Bari, N.E.; Barhoumi, H.; Maaref, A.; Jaffrezic-Renault, N.; Bouchikhi, B. Discrimination and Identification of Geographical Origin Virgin Olive Oil by an E-Nose Based on MOS Sensors and Pattern Recognition Techniques. Procedia Eng. 2011, 25, 1137–1140. [Google Scholar] [CrossRef]
- Anyfantis, A.; Silis, A.; Blionas, S. A Low Cost, Mobile e-Nose System with an Effective User Interface for Real Time Victim Localization and Hazard Detection in USaR Operations. Meas. Sens. 2021, 16, 100049. [Google Scholar] [CrossRef]
- Fedorov, F.S.; Simonenko, N.P.; Trouillet, V.; Volkov, I.A.; Plugin, I.A.; Rupasov, D.P.; Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Vlasov, I.S.; et al. Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an “Electronic Olfaction” Unit. ACS Appl. Mater. Interfaces 2020, 12, 56135–56150. [Google Scholar] [CrossRef] [PubMed]
- Bobkov, A.; Varezhnikov, A.; Plugin, I.; Fedorov, F.S.; Trouillet, V.; Geckle, U.; Sommer, M.; Goffman, V.; Moshnikov, V.; Sysoev, V. The Multisensor Array Based on Grown-On-Chip Zinc Oxide NanoRoD Network for Selective Discrimination of Alcohol Vapors at Sub-Ppm Range. Sensors 2019, 19, 4265. [Google Scholar] [CrossRef]
- Rescalli, A.; Marzorati, D.; Gelosa, S.; Cellesi, F.; Cerveri, P. Temperature Modulation of MOS Sensors for Enhanced Detection of Volatile Organic Compounds. Chemosensors 2023, 11, 501. [Google Scholar] [CrossRef]
- Iwata, T.; Saeki, M.; Okura, Y.; Yoshikawa, T. Gas Discrimination Based on Enhanced Gas-Species Related Information Obtained by a Single Gas Sensor with Novel Temperature Modulation. Sens. Actuators B Chem. 2021, 354, 131225. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Multivariate Estimation of the Limit of Detection by Orthogonal Partial Least Squares in Temperature-Modulated MOX Sensors. Anal. Chim. Acta 2018, 1019, 49–64. [Google Scholar] [CrossRef]
- Herrero-Carrón, F.; Yáñez, D.J.; De Borja Rodríguez, F.; Varona, P. An Active, Inverse Temperature Modulation Strategy for Single Sensor Odorant Classification. Sens. Actuators B Chem. 2014, 206, 555–563. [Google Scholar] [CrossRef]
- Nakata, S.; Takahara, N. Distinction of Gaseous Mixtures Based on Different Cyclic Temperature Modulations. Sens. Actuators B Chem. 2022, 359, 131615. [Google Scholar] [CrossRef]
- Fan, H.; Jia, X. Selective Detection of Acetone and Gasoline by Temperature Modulation in Zinc Oxide Nanosheets Sensors. Solid State Ion. 2010, 192, 688–692. [Google Scholar] [CrossRef]
- Meng, F.; He, L.; Ji, H.; Yuan, Z. Sawtooth Wave Temperature Modulation Measurement Method for Recognizing Five Kinds of VOCs Based on ZnO Gas Sensor. Measurement 2024, 228, 114342. [Google Scholar] [CrossRef]
- Gosangi, R.; Gutierrez-Osuna, R. Active Temperature Modulation of Metal-Oxide Sensors for Quantitative Analysis of Gas Mixtures. Sens. Actuators B Chem. 2013, 185, 201–210. [Google Scholar] [CrossRef]
- Fernandez, L.; Guney, S.; Gutierrez-Galvez, A.; Marco, S. Calibration Transfer in Temperature Modulated Gas Sensor Arrays. Sens. Actuators B Chem. 2016, 231, 276–284. [Google Scholar] [CrossRef]
- Ionescu, R.; Llobet, E.; Brezmes, J.; Vilanova, X.; Correig, X. Dealing with Humidity in the Qualitative Analysis of CO and NO2 Using a WO3 Sensor and Dynamic Signal Processing. Sens. Actuators B Chem. 2003, 95, 177–182. [Google Scholar] [CrossRef]
- Vergara, A.; Llobet, E.; Brezmes, J.; Ivanov, P.; Cané, C.; Gràcia, I.; Vilanova, X.; Correig, X. Quantitative Gas Mixture Analysis Using Temperature-Modulated Micro-Hotplate Gas Sensors: Selection and Validation of the Optimal Modulating Frequencies. Sens. Actuators B Chem. 2006, 123, 1002–1016. [Google Scholar] [CrossRef]
- Ding, H.; Ge, H.; Liu, J. High Performance of Gas Identification by Wavelet Transform-Based Fast Feature Extraction from Temperature Modulated Semiconductor Gas Sensors. Sens. Actuators B Chem. 2005, 107, 749–755. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Catini, A.; Comini, E.; Zappa, D.; Di Natale, C.; Martinelli, E. Optimizing MOX Sensor Array Performances with a Reconfigurable Self-Adaptive Temperature Modulation Interface. Sens. Actuators B Chem. 2021, 333, 129509. [Google Scholar] [CrossRef]
- Deng, Q.; Gao, S.; Lei, T.; Ling, Y.; Zhang, S.; Xie, C. Temperature & Light Modulation to Enhance the Selectivity of Pt-Modified Zinc Oxide Gas Sensor. Sens. Actuators B Chem. 2017, 247, 903–915. [Google Scholar] [CrossRef]
- Huang, X.-J.; Choi, Y.-K.; Yun, K.-S.; Yoon, E. Oscillating Behaviour of Hazardous Gas on Tin Oxide Gas Sensor: Fourier and Wavelet Transform Analysis. Sens. Actuators B Chem. 2005, 115, 357–364. [Google Scholar] [CrossRef]
- Nakata, S.; Neya, K.; Takemura, K.K. Non-Linear Dynamic Responses of a Semiconductor Gas Sensor—Competition Effect on the Sensor Responses to Gaseous Mixtures. Thin Solid Films 2001, 391, 293–298. [Google Scholar] [CrossRef]
- Kato, Y.; Mukai, T. A Real-Time Intelligent Gas Sensor System Using a Nonlinear Dynamic Response. Sens. Actuators B Chem. 2006, 120, 514–520. [Google Scholar] [CrossRef]
- Ge, H.; Liu, J. Identification of Gas Mixtures by a Distributed Support Vector Machine Network and Wavelet Decomposition from Temperature Modulated Semiconductor Gas Sensor. Sens. Actuators B Chem. 2005, 117, 408–414. [Google Scholar] [CrossRef]
- Olivieri, A.C. Handling Non-Linearities and Pre-Processing in Multivariate Calibration of Vibrational Spectra. Microchem. J. 2024, 208, 112323. [Google Scholar] [CrossRef]
- Iurgenson, N.; Monakhova, Y.; Kirsanov, D. Multivariate Calibration Transfer between ATR-FTIR and NIR Spectrometers: Electronic Cigarette Refill Fluids Case Study. Microchem. J. 2025, 212, 113375. [Google Scholar] [CrossRef]
- Ahumada, F.D.A.; Acevedo, I.; Magkanas, G.; Palomar, T.; Pastor, P.; Saurina, J.; García, J.F. Multivariate Calibration Strategies for Improved Elemental Determination of Heritage Glass Objects by Using Portable X-Ray Fluorescence. Microchem. J. 2025, 213, 113838. [Google Scholar] [CrossRef]
- Yeganeh, F.N.; Bahram, M.; Olivieri, A.C.; Abdollahi, H. Area of Feasible Figures of Merit (AF-FOMs) for Second-Order Multivariate Calibrations in Multivariate Curve Resolution (MCR). Anal. Chim. Acta 2024, 1319, 342987. [Google Scholar] [CrossRef] [PubMed]
- Tanzilli, D.; Strani, L.; Metz, M.; Roger, J.M.; Lesnoff, M.; Ruckebusch, C.; Cocchi, M.; Vitale, R. Locally-Weighted-RoBoost-PLS: A Multivariate Calibration Approach to Simultaneously Cope with Non-Linearities and Outliers. Anal. Chim. Acta 2025, 1362, 344167. [Google Scholar] [CrossRef]
- Rexhepi, F.; Surleva, A.; Gjinovci, V. Application of FTIR Spectroscopy and Multivariate Calibration for Prediction of Acrylamide in Potato Chips Commercial Samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 329, 125655. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, S.; Wu, G.; Jiao, F.; Li, W.; Wang, X.; An, Y.; Hu, Y.; Sun, J.; Dong, X.; et al. Highly Sensitive H2 Sensor Based on PdO-Decorated WO3 Nanospindle p-n Heterostructure. Int. J. Hydrogen Energy 2020, 45, 31327–31340. [Google Scholar] [CrossRef]
- Mineo, G.; Moulaee, K.; Neri, G.; Mirabella, S.; Bruno, E. H2 Detection Mechanism in Chemoresistive Sensor Based on Low-Cost Synthesized WO3 Nanorods. Sens. Actuators B Chem. 2021, 348, 130704. [Google Scholar] [CrossRef]
- Zhou, R.; Lin, X.; Xue, D.; Zong, F.; Zhang, J.; Duan, X.; Li, Q.; Wang, T. Enhanced H2 Gas Sensing Properties by Pd-Loaded Urchin-like W18O49 Hierarchical Nanostructures. Sens. Actuators B Chem. 2018, 260, 900–907. [Google Scholar] [CrossRef]
- Kim, H.; Pak, Y.; Jeong, Y.; Kim, W.; Kim, J.; Jung, G.Y. Amorphous Pd-Assisted H2 Detection of ZnO Nanorod Gas Sensor with Enhanced Sensitivity and Stability. Sens. Actuators B Chem. 2018, 262, 460–468. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-Fast Response and Highly Selectivity Hydrogen Gas Sensor Based on Pd/SnO2 Nanoparticles. Int. J. Hydrogen Energy 2021, 47, 3157–3169. [Google Scholar] [CrossRef]
- Liewhiran, C.; Tamaekong, N.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Ultra-Sensitive H2 Sensors Based on Flame-Spray-Made Pd-Loaded SnO2 Sensing Films. Sens. Actuators B Chem. 2012, 176, 893–905. [Google Scholar] [CrossRef]
- Qiu, T.; Zhou, S.; Ji, J.; Wu, G.; Yan, W.; Ling, M.; Liang, C. High Performance H2 Sensor Based on rGO-Wrapped SnO2–Pd Porous Hollow Spheres. Ceram. Int. 2022, 48, 15056–15063. [Google Scholar] [CrossRef]
- Zhang, S.; Yin, C.; Yang, L.; Zhang, Z.; Han, Z. Investigation of the H2 Sensing Properties of Multilayer Mesoporous Pure and Pd-Doped SnO2 Thin Film. Sens. Actuators B Chem. 2018, 283, 399–406. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Gao, W. Rapid Response Hydrogen Sensor Based on Pd@Pt/SnO2 Hybrids at near-Ambient Temperature. Sens. Actuators B Chem. 2022, 370, 132406. [Google Scholar] [CrossRef]
- Shaposhnik, A.V.; Shaposhnik, D.A.; Turishchev, S.Y.; Chuvenkova, O.A.; Ryabtsev, S.V.; Vasiliev, A.A.; Vilanova, X.; Hernandez-Ramirez, F.; Morante, J.R. Gas Sensing Properties of Individual SnO2 Nanowires and SnO2 Sol–Gel Nanocomposites. Beilstein J. Nanotechnol. 2019, 10, 1380–1390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaposhnik, A.; Moskalev, P.; Vasiliev, A.; Oreshkin, K.; Zviagin, A.; Vysotskaya, E.; Turishchev, S.; Kakuliia, I. Multivariate Calibration for Selective Analysis of Hydrogen Sulfide and Carbon Monoxide with Thermal Modulation of the SnO2–PdO Sensor. Chemosensors 2025, 13, 323. https://doi.org/10.3390/chemosensors13090323
Shaposhnik A, Moskalev P, Vasiliev A, Oreshkin K, Zviagin A, Vysotskaya E, Turishchev S, Kakuliia I. Multivariate Calibration for Selective Analysis of Hydrogen Sulfide and Carbon Monoxide with Thermal Modulation of the SnO2–PdO Sensor. Chemosensors. 2025; 13(9):323. https://doi.org/10.3390/chemosensors13090323
Chicago/Turabian StyleShaposhnik, Alexey, Pavel Moskalev, Alexey Vasiliev, Kirill Oreshkin, Alexey Zviagin, Elena Vysotskaya, Sergey Turishchev, and Iuliia Kakuliia. 2025. "Multivariate Calibration for Selective Analysis of Hydrogen Sulfide and Carbon Monoxide with Thermal Modulation of the SnO2–PdO Sensor" Chemosensors 13, no. 9: 323. https://doi.org/10.3390/chemosensors13090323
APA StyleShaposhnik, A., Moskalev, P., Vasiliev, A., Oreshkin, K., Zviagin, A., Vysotskaya, E., Turishchev, S., & Kakuliia, I. (2025). Multivariate Calibration for Selective Analysis of Hydrogen Sulfide and Carbon Monoxide with Thermal Modulation of the SnO2–PdO Sensor. Chemosensors, 13(9), 323. https://doi.org/10.3390/chemosensors13090323