Comparison of Two Derivative Methods for the Quantification of Amino Acids in PM2.5 Using GC-MS/MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sampling Site
2.3. Sample Preparation of AAs in PM2.5 Samples
2.4. GC-MS/MS Analysis
2.5. Method Validation
2.6. Statistics Analysis
3. Results and Discussion
3.1. Optimization of Two Derivatization Methods
3.2. Optimization of GC-MS/MS in MRM Mode
3.3. Method Validation of Two Derivative Methods
3.4. Comparative Analysis of Atmospheric PM2.5 Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alasady, D.; Alabbasy, A.J.; Hassen, H.S. Study of the chemistry of Amino Acids and their applications. Int. J. Chem. Stud. 2021, 5, 19–24. [Google Scholar]
- Dewangan, Y.; Berdimurodov, E.; Verma, D.K. Amino acids: Classification, synthesis methods, reactions, and determination. In Handbook of Biomolecules; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–23. [Google Scholar]
- Dahl-Lassen, R.; van Hecke, J.; Jørgensen, H.; Bukh, C.; Andersen, B.; Schjoerring, J.K. High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods 2018, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Sharma, A.; Kohli, S.K.; Yadav, P.; Bali, S.; Bakshi, P.; Parihar, R.D.; Yuan, H.; Yan, D.; He, Y. Amino acids distribution in economical important plants: A review. Biotechnol. Res. Innov. 2019, 3, 197–207. [Google Scholar] [CrossRef]
- Thiele, B.; Stein, N.; Oldiges, M.; Hofmann, D. Direct analysis of underivatized amino acids in plant extracts by LC-MS-MS. In Amino Acid Analysis: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2011; pp. 317–328. [Google Scholar]
- Otter, D.E. Standardised methods for amino acid analysis of food. Br. J. Nutr. 2012, 108, S230–S237. [Google Scholar] [CrossRef]
- Weber, P. Determination of amino acids in food and feed by microwave hydrolysis and UHPLC-MS/MS. J. Chromatogr. B 2022, 1209, 123429. [Google Scholar] [CrossRef]
- Ishikawa, N.F.; Ogawa, N.O.; Sun, Y.; Chikaraishi, Y.; Takano, Y.; Ohkouchi, N. Integrative assessment of amino acid nitrogen isotopic composition in biological tissue samples determined by GC/C/IRMS, LC× EA/IRMS, and LC× GC/C/IRMS. Limnol. Oceanogr. Methods 2022, 20, 531–542. [Google Scholar] [CrossRef]
- Shama, N.; Bai, S.W.; Chung, B.C.; Jung, B.H. Quantitative analysis of 17 amino acids in the connective tissue of patients with pelvic organ prolapse using capillary electrophoresis–tandem mass spectrometry. J. Chromatogr. B 2008, 865, 18–24. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Zhang, H.; Chingin, K.; Wei, Y.; Huang, K.; Feng, S. Direct quantitative profiling of amino acids in tissues for the assessment of lung cancer. Talanta 2021, 233, 122544. [Google Scholar] [CrossRef]
- Gałęzowska, G.; Ratajczyk, J.; Wolska, L. Determination of amino acids in human biological fluids by high-performance liquid chromatography: Critical review. Amino Acids 2021, 53, 993–1009. [Google Scholar] [CrossRef]
- Kaspar, H.; Dettmer, K.; Gronwald, W.; Oefner, P.J. Automated GC–MS analysis of free amino acids in biological fluids. J. Chromatogr. B 2008, 870, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Zinellu, A.; Sotgia, S.; Pisanu, E.; Scanu, B.; Sanna, M.; Franca Usai, M.; Chessa, R.; Deiana, L.; Carru, C. Quantification of neurotransmitter amino acids by capillary electrophoresis laser-induced fluorescence detection in biological fluids. Anal. Bioanal. Chem. 2010, 398, 1973–1978. [Google Scholar] [CrossRef]
- Holzgrabe, U.; Nap, C.J.; Beyer, T.; Almeling, S. Alternatives to amino acid analysis for the purity control of pharmaceutical grade L-alanine. J. Sep. Sci. 2010, 33, 2402–2410. [Google Scholar] [CrossRef]
- Piestansky, J.; Galba, J.; Olesova, D.; Kovacech, B.; Kovac, A. Determination of immunogenic proteins in biopharmaceuticals by UHPLC–MS amino acid analysis. BMC Chem. 2019, 13, 1–18. [Google Scholar] [CrossRef]
- Bahdanovich, P.; Axelrod, K.; Khlystov, A.Y.; Samburova, V. Characterization of organic species and functional groups in pollen, fungi, algae, and bacteria bioaerosols. Environ. Sci. Atmos. 2024, 4, 1091–1104. [Google Scholar] [CrossRef]
- Chan, M.N.; Choi, M.Y.; Ng, N.L.; Chan, C.K. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: Amino acids and biomass burning derived organic species. Environ. Sci. Technol. 2005, 39, 1555–1562. [Google Scholar] [CrossRef]
- Di Filippo, P.; Pomata, D.; Riccardi, C.; Buiarelli, F.; Gallo, V.; Quaranta, A. Free and combined amino acids in size-segregated atmospheric aerosol samples. Atmos. Environ. 2014, 98, 179–189. [Google Scholar] [CrossRef]
- Mace, K.A.; Artaxo, P.; Duce, R.A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res. Atmos. 2003, 108, 4512. [Google Scholar] [CrossRef]
- Leck, C.; Keith Bigg, E. Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus B Chem. Phys. Meteorol. 2008, 60, 118–126. [Google Scholar] [CrossRef]
- Mandalakis, M.; Apostolaki, M.; Tziaras, T.; Polymenakou, P.; Stephanou, E.G. Free and combined amino acids in marine background atmospheric aerosols over the Eastern Mediterranean. Atmos. Environ. 2011, 45, 1003–1009. [Google Scholar] [CrossRef]
- Kristensson, A.; Rosenørn, T.; Bilde, M. Cloud droplet activation of amino acid aerosol particles. J. Phys. Chem. A 2010, 114, 379–386. [Google Scholar] [CrossRef]
- Pummer, B.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C.; Huber, R.; Liedl, K.; Loerting, T.; Moschen, T. Ice nucleation by water-soluble macromolecules. Atmos. Chem. Phys. 2015, 15, 4077–4091. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Seinfeld, J.H. Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 2012, 39, L24801. [Google Scholar] [CrossRef]
- Lang-Yona, N.; Shuster-Meiseles, T.; Mazar, Y.; Yarden, O.; Rudich, Y. Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments. Sci. Total Environ. 2016, 541, 365–371. [Google Scholar] [CrossRef]
- Dittmar, T.; Fitznar, H.P.; Kattner, G. Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D-and L-amino acids. Geochim. Cosmochim. Acta 2001, 65, 4103–4114. [Google Scholar] [CrossRef]
- Lin, X.; Xu, Y.; Zhu, R.G.; Xiao, H.W.; Xiao, H.Y. Proteinaceous matter in PM2.5 in suburban Guiyang, southwestern China: Decreased importance in long-range transport and atmospheric degradation. J. Geophys. Res. Atmos. 2023, 128, e2023JD038516. [Google Scholar] [CrossRef]
- Baek, K.-M.; Park, E.H.; Kang, H.; Ji, M.-J.; Park, H.-M.; Heo, J.; Kim, H. Seasonal characteristics of atmospheric water-soluble organic nitrogen in PM2.5 in Seoul, Korea: Source and atmospheric processes of free amino acids and aliphatic amines. Sci. Total Environ. 2022, 811, 152335. [Google Scholar] [CrossRef]
- Samy, S.; Robinson, J.; Rumsey, I.C.; Walker, J.T.; Hays, M.D. Speciation and trends of organic nitrogen in southeastern US fine particulate matter (PM2.5). J. Geophys. Res. Atmos. 2013, 118, 1996–2006. [Google Scholar] [CrossRef]
- Qiu, J.; Craven, C.; Wawryk, N.; Carroll, K.; Li, X.-F. Integration of solid phase extraction with HILIC-MS/MS for analysis of free amino acids in source water. J. Environ. Sci. 2022, 117, 190–196. [Google Scholar] [CrossRef]
- Chirita, R.-I.; West, C.; Finaru, A.-L.; Elfakir, C. Approach to hydrophilic interaction chromatography column selection: Application to neurotransmitters analysis. J. Chromatogr. A 2010, 1217, 3091–3104. [Google Scholar] [CrossRef]
- Németh, K.; Szatmári, I.; Tőkési, V.; Szabó, P.T. Application of Normal-Phase Silica Column in Hydrophilic Interaction Liquid Chromatography Mode for Simultaneous Determination of Underivatized Amino Acids from Human Serum Samples via Liquid Chromatography–Tandem Mass Spectrometry. Curr. Issues Mol. Biol. 2023, 45, 9354–9367. [Google Scholar] [CrossRef]
- Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—A powerful separation technique. Anal. Bioanal. Chem. 2012, 402, 231–247. [Google Scholar] [CrossRef]
- Kataoka, H.; Matsumura, S.; Yamamoto, S.; Makita, M. Capillary gas chromatographic analysis of protein and nonprotein amino acids in biological samples. In Amino Acid Analysis Protocols; Humana Press: Totowa, NJ, USA, 2000; pp. 101–122. [Google Scholar]
- Silva, B.M.; Casal, S.; Andrade, P.B.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Development and evaluation of a GC/FID method for the analysis of free amino acids in quince fruit and jam. Anal. Sci. 2003, 19, 1285–1290. [Google Scholar] [CrossRef]
- Ichihara, K.i.; Kohsaka, C.; Yamamoto, Y. Determination of proteinaceous free amino acids by gas chromatography. Anal. Biochem. 2021, 633, 114423. [Google Scholar] [CrossRef]
- Soni, N.R. Improve GC separations with derivatization for selective response and detection in novel matrices. J. Environ. Life Sci. 2016, 1, 14–25. [Google Scholar]
- Orata, F. Derivatization reactions and reagents for gas chromatography analysis. In Advanced Gas Chromatography-Progress in Agricultural, Biomedical and Industrial Applications; BoD–Books on Demand: Norderstedt, Germany, 2012; Volume 91. [Google Scholar]
- Atapattu, S.N.; Temerdashev, A. Recent advances in gas chromatography injection port derivatization in analytical method development. TrAC Trends Anal. Chem. 2023, 168, 117334. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; David, V. Derivatization methods in GC and GC/MS. In Gas Chromatography-Derivatization, Sample Preparation, Application; IntechOpen: London, UK, 2018. [Google Scholar]
- Li, C.; Chu, S.; Tan, S.; Yin, X.; Jiang, Y.; Dai, X.; Gong, X.; Fang, X.; Tian, D. Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers. Front. Chem. 2021, 9, 813359. [Google Scholar] [CrossRef]
- Vékey, K. Mass spectrometry and mass-selective detection in chromatography. J. Chromatogr. A 2001, 921, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.-L.; Gao, Y.; Wang, X.; Han, X.X.; Zhao, B. Comprehensive strategy for sample preparation for the analysis of food contaminants and residues by GC–MS/MS: A review of recent research trends. Foods 2021, 10, 2473. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, F.; Cervera, M.; Portolés, T.; Beltrán, J.; Pitarch, E. The role of GC-MS/MS with triple quadrupole in pesticide residue analysis in food and the environment. Anal. Methods 2013, 5, 5875–5894. [Google Scholar] [CrossRef]
- Jo, J.; Lee, E.; Choi, N.R.; Lee, J.Y.; Yoo, J.W.; Ahn, D.S.; Ahn, Y.G. Comparison of Sample Preparation and Detection Methods for the Quantification of Synthetic Musk Compounds (SMCs) in Carp Fish Samples. Molecules 2024, 29, 5444. [Google Scholar] [CrossRef] [PubMed]
- Cardinael, P.; Casabianca, H.; Peulon-Agasse, V.; Berthod, A. Sample derivatization in separation science. In Analytical Separation Science; Anderson, J.L., Berthod, A., Pino Estevez, V., Stalcup, A.M., Eds.; Wiley-VCH: Weinheim, Germany, 2015; Volume 5, pp. 1725–1781. [Google Scholar]
- Poole, C.F. Alkylsilyl derivatives for gas chromatography. J. Chromatogr. A 2013, 1296, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xiao, H.-W.; Xiao, H.; Xiao, H.-Y. Amino Acid and Amine Compounds in Fine Aerosol Particles: A Review of Determination Methods, Abundances, Origins, and Atmospheric Processes. Aerosol Sci. Eng. 2025, 1–16. [Google Scholar] [CrossRef]
- Proestos, C.; Kapsokefalou, M.; Komaitis, M. Analysis of naturally occurring phenolic compounds in aromatic plants by RP-HPLC and GC-MS after silylation. J. Food Qual. 2008, 31, 402–414. [Google Scholar] [CrossRef]
- Engel, B.; Suralik, P.; Marchetti-Deschmann, M. Critical considerations for trimethylsilyl derivatives of 24 primary metabolites measured by gas chromatography–tandem mass spectrometry. Sep. Sci. Plus 2020, 3, 407–418. [Google Scholar] [CrossRef]
- Hušek, P. Chloroformates in gas chromatography as general purpose derivatizing agents. J. Chromatogr. B Biomed. Sci. Appl. 1998, 717, 57–91. [Google Scholar] [CrossRef]
- Silverman, S.N.; Phillips, A.A.; Weiss, G.M.; Wilkes, E.B.; Eiler, J.M.; Sessions, A.L. Practical considerations for amino acid isotope analysis. Org. Geochem. 2022, 164, 104345. [Google Scholar] [CrossRef]
- Mudiam, M.K.R.; Jain, R.; Dua, V.K.; Singh, A.K.; Sharma, V.; Murthy, R. Application of ethyl chloroformate derivatization for solid-phase microextraction–gas chromatography–mass spectrometric determination of bisphenol-A in water and milk samples. Anal. Bioanal. Chem. 2011, 401, 1695–1701. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Guide to Method Flexibility and Approval of EPA Water Methods; EPA: Washington, DC, USA, 1996. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/guide-method-flexibility-approval-epa-water-methods_draft-1996.pdf (accessed on 22 July 2025).
- McClenny, W.; Holdren, M. Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using Specially Prepared Canisters with Subsequent Analysis by Gas Chromatography; US Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Rozio, M.G.; Angelini, D.; Carrara, S. Uncertainty factors and relative response factors: Correcting detection and quantitation bias in extractables and leachables studies. Anal. Bioanal. Chem. 2025, 417, 4331–4349. [Google Scholar] [CrossRef]
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics (2014); Eurachem: Bucharest, Romania, 2014. [Google Scholar]
- United States Environmental Protection Agency. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2; Environmental Protection Agency EPA: Washington, DC, USA, 2016. [Google Scholar]
- Jones, R.P.; Clarke, J.U. Analytical Chemistry Detection Limits and the Evaluation of Dredged Sediment; ERDC/TN EEDP-04-36; United States Army Engineer Research and Development Center: Vicksburg, MS, USA, 2005. [Google Scholar]
- Zhu, R.-G.; Xiao, H.-Y.; Cheng, L.; Zhu, H.; Xiao, H.; Gong, Y. Measurement report: Characterization of sugars and amino acids in atmospheric fine particulates and their relationship to local primary sources. Atmos. Chem. Phys. 2022, 22, 14019–14036. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, S.; Xie, J.; Li, R. Identification of multiple dysregulated metabolic pathways by GC-MS-based profiling of liver tissue in mice with OVA-induced asthma exposed to PM2.5. Chemosphere 2019, 234, 277–286. [Google Scholar] [CrossRef]
- Mandalakis, M.; Apostolaki, M.; Stephanou, E.G. Trace analysis of free and combined amino acids in atmospheric aerosols by gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 143–150. [Google Scholar] [CrossRef]
- Ding, W.H.; Chiang, C.C. Derivatization procedures for the detection of estrogenic chemicals by gas chromatography/mass spectrometry. Rapid Commun. Mass. Spectrom. 2003, 17, 56–63. [Google Scholar] [CrossRef]
- Gunnar, T.; Ariniemi, K.; Lillsunde, P. Determination of 14 benzodiazepines and hydroxy metabolites, zaleplon and zolpidem as tert-butyldimethylsilyl derivatives compared with other common silylating reagents in whole blood by gas chromatography–mass spectrometry. J. Chromatogr. B 2005, 818, 175–189. [Google Scholar] [CrossRef]
- Khakimov, B.; Motawia, M.S.; Bak, S.; Engelsen, S.B. The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography–mass spectrometry based metabolomics. Anal. Bioanal. Chem. 2013, 405, 9193–9205. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.S.; Chary, V.N.; Pavankumar, P.; Prabhakar, S. Characterization of N-methylated amino acids by GC-MS after ethyl chloroformate derivatization. J. Mass. Spectrom. 2016, 51, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Namera, A.; Yashiki, M.; Nishida, M.; Kojima, T. Direct extract derivatization for determination of amino acids in human urine by gas chromatography and mass spectrometry. J. Chromatogr. B 2002, 776, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Teri, G.; Eveleigh, T. A Tolerance-based Approach for Validating Analytical Methods Using Design of Experiments. J. Pharm. Innov. 2025, 20, 56. [Google Scholar] [CrossRef]
- Little, T. Establishing acceptance criteria for analytical methods. BioPharm Int. 2016, 29, 44–48. [Google Scholar]
- Chakrabarty, S.; Shelver, W.L.; Smith, D.J. Electrospray ionization rapid screening sans liquid chromatography column: A sensitive method for detection and quantification of chemicals in animal tissues and urine. Rapid Commun. Mass. Spectrom. 2020, 34, e8876. [Google Scholar] [CrossRef] [PubMed]
- Molnar-Perl, I.; Katona, Z.F. GC-MS of amino acids as their trimethylsilyl/t-butyldimethylsilyl derivatives: In model solutions III. Chromatographia 2000, 51, S228–S236. [Google Scholar] [CrossRef]
- Gao, S.; Xu, B.; Zheng, X.; Wan, X.; Zhang, X.; Wu, G.; Cong, Z. Developing an analytical method for free amino acids in atmospheric precipitation using gas chromatography coupled with mass spectrometry. Atmos. Res. 2021, 256, 105579. [Google Scholar] [CrossRef]
- Jo, J.; Son, Y.; Park, M.-K.; Lee, J.Y.; Chu, H.; Ahn, Y.G. Statistical comparison for assessing agreement between two mass spectrometric methods for the analysis of polychlorinated dibenzo-p-dioxins and furans (PCDDs/Fs) in contaminated soils. Chemosphere 2024, 363, 142806. [Google Scholar] [CrossRef] [PubMed]
AAs | Linearity | Limits of Detection and Quantification | Recovery ± RSD % (n = 3) | |||||
---|---|---|---|---|---|---|---|---|
Range (ng/μL) | RRF a RSD (%) | R2 | MDL (ng/m3) | MQL (ng/m3) | RSD (%) | 2 ng (Low Level) | 20 ng (High Level) | |
(a) MTBSTFA w/1% t-BDMCS | ||||||||
Ala | 0.008–0.02 | 21.9 | 0.9990 | 0.229 | 0.688 | 5.7 | 107.0 ± 5.8 | 104.2 ± 4.3 |
Asn | 0.005–0.5 | 4.3 | 0.9993 | 0.189 | 0.566 | 11.3 | 93.2 ± 11.9 | 102.7 ± 23.5 |
Asp | 0.005–0.4 | 24.8 | 0.9999 | 0.259 | 0.777 | 15.6 | 98.5 ± 2.7 | 105.4 ± 16.6 |
Gly | 0.04–0.4 | 21.0 | 0.9999 | 2.336 | 7.009 | 14.6 | 114.8 ± 15.1 | 103.7 ± 14.9 |
Ile | 0.005–0.2 | 9.9 | 0.9995 | 0.338 | 1.014 | 13.9 | 85.6 ± 5.2 | 93.6 ± 5.1 |
Leu | 0.005–0.1 | 11.7 | 0.9995 | 0.264 | 0.792 | 19.0 | 84.5 ± 7.1 | 109.2 ± 7.4 |
Met | 0.002–0.2 | 2.7 | 0.9999 | 0.094 | 0.281 | 6.9 | 90.5 ± 2.0 | 100.4 ± 4.7 |
Phe | 0.005–0.4 | 5.7 | 0.9999 | 0.099 | 0.297 | 5.0 | 98.5 ± 2.7 | 104.6 ± 3.3 |
Ser | 0.01–0.2 | 17.4 | 0.9960 | 0.778 | 2.335 | 15.8 | 105.3 ± 4.7 | 108.4 ± 3.6 |
Thr | 0.005–0.1 | 17.8 | 0.9984 | 0.295 | 0.885 | 16.0 | 106.3 ± 10.0 | 119.7 ± 11.8 |
Trp | 0.005–0.1 | 18.8 | 0.9988 | 6.3 ± 16.4 | 43.7 ± 6.7 | |||
Tyr | 0.005–0.2 | 7.1 | 0.9980 | 0.185 | 0.555 | 7.1 | 90.7 ± 12.7 | 109.2 ± 15.5 |
Val | 0.005–0.4 | 16.7 | 0.9999 | 0.315 | 0.944 | 15.5 | 90.2 ± 9.1 | 119.3 ± 4.4 |
(b) ECF-MeOH | ||||||||
Ala | 0.005–0.4 | 4.9 | 0.9998 | 0.112 | 0.335 | 6.4 | 115.4 ± 1.3 | 115.8 ± 2.6 |
Asn | 0.005–0.4 | 14.7 | 0.9995 | 0.179 | 0.537 | 17.1 | 116.6 ± 1.4 | 109.6 ± 1.8 |
Asp | 0.005–0.4 | 8.7 | 0.9999 | 0.091 | 0.274 | 8.4 | 118.7 ± 10.5 | 113.7 ± 13.8 |
Gly | 0.008–0.4 | 12.0 | 0.9996 | 0.338 | 1.015 | 10.6 | 117.2 ± 4.6 | 115.5 ± 4.1 |
Ile | 0.001–0.08 | 15.0 | 0.9998 | 0.096 | 0.289 | 5.4 | 81.5 ± 3.8 | 113.6 ± 15.1 |
Leu | 0.001–0.08 | 19.2 | 0.9999 | 0.118 | 0.354 | 11.2 | 80.0 ± 1.8 | 97.5 ± 12.9 |
Met | 0.001–0.08 | 9.5 | 1.0000 | 0.104 | 0.312 | 13.4 | 90.5 ± 2.0 | 100.4 ± 4.7 |
Phe | 0.001–0.2 | 8.7 | 0.9999 | 0.016 | 0.048 | 10.5 | 115.3 ± 9.7 | 114.2 ± 3.6 |
Ser | 0.001–0.05 | 23.3 | 0.9993 | 0.145 | 0.435 | 15.5 | 103.1 ± 21.2 | 103.7 ± 13.6 |
Thr | 0.002–0.1 | 15.7 | 0.9987 | 0.225 | 0.675 | 6.7 | 98.2 ± 16.8 | 119.4 ± 13.2 |
Trp | 0.005–0.2 | 13.1 | 0.9991 | 0.106 | 0.319 | 4.1 | 118.8 ± 0.5 | 117.6 ± 14.1 |
Tyr | 0.005–0.2 | 11.0 | 0.9985 | 0.411 | 1.234 | 15.9 | 94.1 ± 11.2 | 95.6 ± 1.3 |
Val | 0.002–0.2 | 19.8 | 0.9999 | 0.086 | 0.259 | 10.1 | 110.3 ± 13.2 | 99.4 ± 4.5 |
AAs | Mean ± SD (ng/m3, n = 23) | Relative Difference (%) * | |
---|---|---|---|
MTBSTFA w/1% t-BDMCS (Ma) | ECF-MeOH (Mb) | ||
Ala | 3.599 ± 3.957 | 3.197 ± 3.070 | −11.2 |
Asn | 0.419 ± 0.894 | 0.757 ± 1.363 | 80.9 |
Asp | 3.030 ± 2.634 | 4.348 ± 5.388 | 43.5 |
Gly | 16.929 ± 11.878 | 17.918 ± 10.527 | 5.8 |
Ile | 1.346 ± 1.807 | 1.141 ± 1.848 | −15.3 |
Leu | 0.903 ± 1.301 | 0.762 ± 1.226 | −15.6 |
Met | 0.240 ± 0.393 | 0.180 ± 0.325 | −23.5 |
Phe | 0.538 ± 0.721 | 0.549 ± 0.801 | 2.1 |
Ser | 11.488 ± 14.773 | 0.485 ± 0.769 | −95.8 |
Thr | 5.177 ± 4.249 | 3.883 ± 6.640 | −24.8 |
Tyr | 0.845 ± 1.377 | 0.604 ± 0.961 | −28.5 |
Val | 1.182 ± 1.818 | 1.045 ± 1.643 | −11.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, J.; Choi, N.R.; Lee, E.; Lee, J.Y.; Ahn, Y.G. Comparison of Two Derivative Methods for the Quantification of Amino Acids in PM2.5 Using GC-MS/MS. Chemosensors 2025, 13, 292. https://doi.org/10.3390/chemosensors13080292
Jo J, Choi NR, Lee E, Lee JY, Ahn YG. Comparison of Two Derivative Methods for the Quantification of Amino Acids in PM2.5 Using GC-MS/MS. Chemosensors. 2025; 13(8):292. https://doi.org/10.3390/chemosensors13080292
Chicago/Turabian StyleJo, Jungmin, Na Rae Choi, Eunjin Lee, Ji Yi Lee, and Yun Gyong Ahn. 2025. "Comparison of Two Derivative Methods for the Quantification of Amino Acids in PM2.5 Using GC-MS/MS" Chemosensors 13, no. 8: 292. https://doi.org/10.3390/chemosensors13080292
APA StyleJo, J., Choi, N. R., Lee, E., Lee, J. Y., & Ahn, Y. G. (2025). Comparison of Two Derivative Methods for the Quantification of Amino Acids in PM2.5 Using GC-MS/MS. Chemosensors, 13(8), 292. https://doi.org/10.3390/chemosensors13080292