Healthcare Sector Dynamics in Turkey (2002–2022): Trends, Breakpoints, and Policy Implications (Privatization in the Hospital Sector)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focus of the Study
2.2. Research Design
2.3. Type of Research and Data Used
- (1)
- In the Ministry of Health datasets, data on university hospitals included public universities and foundation hospitals categorized as private hospitals, making them unsuitable for a clear public–private comparison.
- (2)
- University hospitals, mainly established for educational purposes, have unique developmental characteristics that do not align with the objectives of this analysis.
- Physical Capacity:
- ○
- Ratio of hospitals: The proportion of hospitals within the public and private sector relative to the total number of hospitals in the system.
- ○
- Ratio of hospital beds: The percentage share of public and private sector hospital beds in relation to the total hospital bed capacity.
- ○
- Ratio of qualified beds: The proportion of beds meeting regulatory qualifications (e.g., intensive care, specialized units) within public and private hospitals.
- ○
- Ratio of intensive care beds: The percentage of total intensive care unit beds allocated within public and private hospitals.
- ○
- Ratio of the dialysis devices: The total number of dialysis machines divided by the number of hospitals within each sector, reflecting the availability of dialysis services per institution.
- Service Utilization:
- ○
- Ratio of outpatient visits: The proportion of outpatient visits handled by public and private hospitals relative to the total number of outpatient visits.
- ○
- Ratio of inpatient cases: The share of inpatient admissions in public and private hospitals.
- ○
- Ratio of surgeries: The proportion of total surgical procedures performed in public and private hospitals
- ○
- Ratio of hospital days: The distribution of total hospitalization days spent in public versus private hospitals.
- Healthcare Workforce:
- ○
- Ratio of doctors: The proportion of employed doctors within public and private hospitals.
- ○
- Ratio of nurses and midwives: The share of nurses and midwives working in public versus private hospitals.
2.4. Research Hypotheses
2.5. Data Analysis
3. Results
3.1. Physical Capacity
3.1.1. Basic Physical Health Infrastructure
3.1.2. Advanced Physical Health Infrastructure
3.2. Healthcare Service Utilization
3.3. Healthcare Workforce
3.4. Comparison of the Public and Private Sector Trends
3.5. Evaluating Slopes After Breakpoints with Segmented Regression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craig, A.B. Understanding Augmented Reality: Concepts and Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Laruffa, F. Making Sense of (Post)Neoliberalism. Polit. Soc. 2024, 52, 586–629. [Google Scholar] [CrossRef]
- Marchionatti, R. Economics in Chicago and the New Chicago School. In Economic Theory in the Twentieth Century, An Intellectual History—Volume III; Springer International Publishing: Cham, Switzerland, 2024; pp. 197–274. [Google Scholar]
- Osborne, S.P.; Radnor, Z.; Nasi, G. A New Theory for Public Service Management? Toward a (Public) Service-Dominant Approach. Am. Rev. Public Adm. 2013, 43, 135–158. [Google Scholar] [CrossRef]
- Chakravarty, S.; Gaynor, M.; Klepper, S.; Vogt, W.B. Does the Profit Motive Make Jack Nimble? Ownership Form and the Evolution of the US Hospital Industry. Health Econ. 2006, 15, 345–361. [Google Scholar] [CrossRef]
- Vogel, J.F.A.; Barkhausen, M.; Pross, C.M.; Geissler, A. Defining Minimum Volume Thresholds to Increase Quality of Care: A New Patient-Oriented Approach Using Mixed Integer Programming. Eur. J. Health Econ. 2022, 23, 1085–1104. [Google Scholar] [CrossRef] [PubMed]
- Bishai, D.; Sachathep, K. The Role of the Private Sector in Health Systems. Health Policy Plan. 2015, 30, i1. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.; Witter, S.; Hellowell, M.; Allen, L.; Srinivasan, S.; Nixon, S.; Burney, A.; Bhattacharjee, D.; Cocozza, A.; Appleford, G.; et al. Approaches, Enablers and Barriers to Govern the Private Sector in Health in Low- and Middle-Income Countries: A Scoping Review. BMJ Glob. Health 2024, 8, e015771. [Google Scholar] [CrossRef] [PubMed]
- Republic of Türkiye Sağlık Bakanlığınca. Kamu Özel İş Birliği Modeli Ile Tesis Yaptırılması, Yenilenmesi ve Hizmet Alınması Ile Bazı Kanun ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun. Available online: https://www.Mevzuat.Gov.Tr/Mevzuatmetin/1.5.6428.Pdf (accessed on 20 January 2025).
- Custers, T.; Hurley, J.; Klazinga, N.S.; Brown, A.D. Selecting Effective Incentive Structures in Health Care: A Decision Framework to Support Health Care Purchasers in Finding the Right Incentives to Drive Performance. BMC Health Serv. Res. 2008, 8, 66. [Google Scholar] [CrossRef]
- Şentürk, T.; Terzi, F.; Dokmeci, V. Privatization of Health-Care Facilities in Istanbul. Eur. Plan. Stud. 2011, 19, 1117–1130. [Google Scholar] [CrossRef]
- Seçginel, F. Emeklilik Sistemi ve Sağlık Hizmetleri Açısından Sosyal Güvenlik Reformunun Değerlendirilmesi. Master’s Thesis, Uludag University, Bursa, Turkey, 2009. [Google Scholar]
- Karaca, T. Sağlık Dönüşüm Programı İçinde “Tam Gün Yasası” ve “Performans Sistemi”. Düşünce Dünyasında Türkiz 2022, 4, 29–40. [Google Scholar]
- Kıray, A.; Koç, O. Kurumsal Direniş Sürecinde Yapılan Kurumsal İşler: TTB ve Tam Gün Yasası Örneği. Kastamonu Üniversitesi İktisadi Ve İdari Bilim. Fakültesi Derg. 2022, 24, 226–244. [Google Scholar] [CrossRef]
- Guan, X.; Wu, H.; Xu, J.; Zhang, J. Privatization Reform in Public Healthcare System: Competition vs. Collaboration. IISE Trans. 2023, 55, 217–228. [Google Scholar] [CrossRef]
- Akgis Ilhan, O. Türkiye’de Sağlık Hizmetleri ve Hastanelere Erişebilirliğin Mekansal Profili: Sosyal Refah Açısından Bir Analiz. Ege Coğrafya Derg. (ECD) 2020, 29, 259–271. [Google Scholar]
- Kowalik, J. Profitability of Medical Entities in Poland Following Ownership Transformations. Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser. 2023, 2023, 355–366. [Google Scholar] [CrossRef]
- Waddan, A. Is Health Care in England Really on the Road to Privatization? Polit. Sci. Q. 2018, 133, 669–694. [Google Scholar] [CrossRef]
- Maarse, H. The Privatization of Health Care in Europe: An Eight-Country Analysis. J. Health Polit. Policy Law 2006, 31, 981–1014. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health of Republic of Türkiye. Health Statistics Yearbook; Ministry of Health of Republic of Türkiye: Ankara, Turkey, 2023. [Google Scholar]
- Kumar, N.; Tischbein, B.; Beg, M.K. Multiple Trend Analysis of Rainfall and Temperature for a Monsoon-Dominated Catchment in India. Meteorol. Atmos. Phys. 2019, 131, 1019–1033. [Google Scholar] [CrossRef]
- Osunmadewa, B.A.; Wessollek, C.; Karrasch, P. Linear and Segmented Linear Trend Detection for Vegetation Cover Using GIMMS Normalized Difference Vegetation Index Data in Semiarid Regions of Nigeria. J. Appl. Remote Sens. 2015, 9, 096029. [Google Scholar] [CrossRef]
- Masiliūnas, D.; Tsendbazar, N.-E.; Herold, M.; Verbesselt, J. BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sens. 2021, 13, 3308. [Google Scholar] [CrossRef]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting Change-Point, Trend, and Seasonality in Satellite Time Series Data to Track Abrupt Changes and Nonlinear Dynamics: A Bayesian Ensemble Algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package “Ggplot2”, Version 2; Create Elegant Data Visualisations Using the Grammar of Graphics. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 12 February 2025).
- Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. Available online: https://brieger.esalq.usp.br/CRAN/web/packages/trend/vignettes/trend.pdf (accessed on 12 February 2025).
- Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. Strucchange: An R Package for Testing for Structural Change in Linear Regression Models. J. Stat. Softw. 2002, 7, 1–38. [Google Scholar] [CrossRef]
- Hamed, K.H. Exact Distribution of the Mann–Kendall Trend Test Statistic for Persistent Data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Farsi, N.; Mahjouri, N.; Ghasemi, H. Breakpoint Detection in Non-Stationary Runoff Time Series under Uncertainty. J. Hydrol. 2020, 590, 125458. [Google Scholar] [CrossRef]
- Agate, C.S.; Iltis, R.A. Statistics of the RSS Estimation Algorithm for Gaussian Measurement Noise. IEEE Trans. Signal Process. 1999, 47, 22–32. [Google Scholar] [CrossRef]
- Bollen, K.A.; Harden, J.J.; Ray, S.; Zavisca, J. BIC and Alternative Bayesian Information Criteria in the Selection of Structural Equation Models. Struct. Equ. Model. 2014, 21, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, R.; Brame, R.; Mazerolle, P.; Piquero, A. Using The Correct Statistical Test for The Equality of Regression Coefficients. Criminology 1998, 36, 859–866. [Google Scholar] [CrossRef]
- Quessy, J.; Saïd, M.; Favre, A. Multivariate Kendall’s Tau for Change-point Detection in Copulas. Can. J. Stat. 2013, 41, 65–82. [Google Scholar] [CrossRef]
- Toms, J.D.; Lesperance, M.L. Piecewise Regression: A Tool for Identifying Ecological Thresholds. Ecology 2003, 84, 2034–2041. [Google Scholar] [CrossRef]
- Resmi Gazete Ayakta Teşhis ve Tedavi Yapılan Özel Sağlık Kuruluşları Hakkında Yönetmelik. Available online: https://www.Resmigazete.Gov.Tr/Eskiler/2008/02/20080215-4.Htm?Utm_ (accessed on 20 January 2025).
- Resmi Gazete Sağlık Kurum ve Kuruluşlarında Hasta ve Çalışan Güvenliğinin Sağlanması ve Korunmasına İlişkin Usul ve Esaslar Hakkında Tebliğ. Available online: https://www.Resmigazete.Gov.Tr/Eskiler/2009/04/20090429-12.Htm (accessed on 25 January 2025).
- Yasemin, S. Hastane Ruhsatı Taksi Plakası Gibi Satılıyor. Available online: https://www.ekonomim.com/gundem/hastane-ruhsati-taksi-plakasi-gibi-satiliyor-haberi-669433 (accessed on 12 February 2025).
- Gül, S.K.; Can, M. Türk Sağlık Sisteminde Dönüşüm Programının Değerlendirilmesi. Pearson J. Soc. Sci. Humanit. 2024, 8, 1729–1750. [Google Scholar] [CrossRef]
- Sözer, N. Sağlıkta Yeniden Yapılanmanın (Özelleştirmenin) Devamı Olarak Şehir Hastahaneleri. Dokuz Eylül Üniversitesi Hukuk Fakültesi Derg. 2013, 15, 215–254. [Google Scholar]
- Armağan Kaygusuz, H.E. Türkiye’de Kamu Sağlık Sektöründe Personel Rejimi, 1923–2023: Dönüşümler, Politikalar, Sorunlar ve Bakış Açıları. Doctoral Thesis, Pamukkale University, Denizli, Turkey, 2023. [Google Scholar]
- Eggleston, K.; Yip, W. Hospital Competition under Regulated Prices: Application to Urban Health Sector Reforms in China. Int. J. Health Care Financ. Econ. 2004, 4, 343–368. [Google Scholar] [CrossRef]
- Çelebi Çakıroğlu, O.; Harmancı Seren, A.K. The Impacts of Health Transformation Program on Healthcare Workers and Health System. Sağlık Ve Hemşirelik Yönetimi Derg. 2016, 3, 37–43. [Google Scholar] [CrossRef]
- Yılmaz, F.; Tosun, B.; Yavuz Çolak, M. Sağlıkta Dönüşüm Programı’nın Özel Hastaneler ve Sağlık Sistemi Üzerine Etkileri. Başkent Üniversitesi Sağlık Bilim. Fakültesi Derg. 2016, 1, 63–79. [Google Scholar]
- Baru, R.V. Privatisation of Health Services: A South Asian Perspective. Econ. Polit. Wkly. 2003, 38, 4433–4437. [Google Scholar]
- Brown, A.; Upshur, R.; Sullivan, T. Public Health and Primary Care: Competition or Collaboration. Healthc. Pap. 2013, 13, 4–8. [Google Scholar] [CrossRef]
- Flood, C.M.; Chen, Y.Y.B.; Deonandan, R.; Halabi, S.; Thériault, S. Pandemics, Public Health, and the Regulation of Borders; Routledge: London, UK, 2024; ISBN 9781003394006. [Google Scholar]
- van den Bogaart, E.H.; Spreeuwenberg, M.D.; Kroese, M.E.; Ruwaard, D. Substitution or Addition: An Observational Study of a New Primary Care Initiative in the Netherlands. J. Health Serv. Res. Policy 2023, 28, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Boudewijns, E.A.; Claessens, D.; van Schayck, O.C.P.; Twellaar, M.; Winkens, B.; Joore, M.A.; Keijsers, L.C.E.M.; Krol, S.; Urlings, M.; Gidding-Slok, A.H.M. Effectiveness of the Assessment of Burden of Chronic Conditions (ABCC)-Tool in Patients with Asthma, COPD, Type 2 Diabetes Mellitus, and Heart Failure: A Pragmatic Clustered Quasi-Experimental Study in the Netherlands. Eur. J. Gen. Pract. 2024, 30, 2343364. [Google Scholar] [CrossRef]
- Turkiye Istatistik Kurumu Sağlık Harcamaları İstatistikleri. 2023. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Saglik-Harcamalari-Istatistikleri-2023-53561 (accessed on 20 February 2025).
- Söyük, S. The Impact of Public Health Expenditure and Gross Domestic Product per Capita on the Risk of Catastrophic Health Expenditures for OECD Countries. Front. Public Health 2023, 11, 1122424. [Google Scholar] [CrossRef] [PubMed]
- Torun, N.; Atan, M.; Ayanoglu, Y. İstatistiki Bölge Sınıflamasına Göre Kamu Hastanelerinin Finansal Etkinliklerinin Değerlendirilmesi. Muhasebe Bilim Dünyası Derg. 2020, 22, 476–505. [Google Scholar] [CrossRef]
- Demir Avcı, Y.; Gözüm, S. Kırsal Alanda Yaşayan Yaşlılar Için Sağlık Hizmeti Sunum Modelleri ve Tele-Sağlık. Turk. J. Fam. Med. Prim. Care 2018, 12, 56–67. [Google Scholar] [CrossRef]
- Kasapoglu, A. Türkiye’de Sağlık Hizmetlerinin Dönüşümü. Sosyol. Araştırmaları Derg. 2016, 9, 131–174. [Google Scholar] [CrossRef]
- Yin, S.; Jia, C.; Yang, C.; Wu, Y.; An, S.; Mao, Z.; Cui, D.; Wang, Q. Efficiency Comparison of Public and Private Hospitals before and after the COVID-19 Pandemic: The Case of Hubei, China. 2023. Available online: https://www.researchsquare.com/article/rs-2530414/v1 (accessed on 12 February 2025).
- Montás, M.C.; Klasa, K.; van Ginneken, E.; Greer, S.L. Strategic Purchasing and Health Systems Resilience: Lessons from COVID-19 in Selected European Countries. Health Policy 2022, 126, 853–864. [Google Scholar] [CrossRef] [PubMed]
Variables | Hospitals | Hospital Beds | Qualified Hospital Beds | Intensive Care Beds | Dialysis Machines | Outpatient Visits | Inpatients | Surgeries | Hospitalization Days | Physicians | Nurses and Midwives | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sectors | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) | Public (%) | Private (%) |
2002 | 66.96 | 23.44 | 65.30 | 7.53 | 36.12 | 30.07 | 39.25 | 44.81 | 30.87 | 51.30 | 88.32 | 4.58 | 75.70 | 10.10 | 67.09 | 13.69 | 73.79 | 5.37 | 62.40 | 15.70 | 82.40 | 9.70 |
2003 | 57.00 | 20.99 | 65.13 | 7.81 | 36.13 | 31.42 | 41.63 | 40.04 | 32.62 | 51.71 | 87.82 | 4.75 | 74.59 | 10.79 | 66.73 | 13.99 | 73.03 | 5.55 | 61.30 | 16.80 | 82.10 | 10.00 |
2004 | 56.12 | 20.79 | 65.09 | 7.60 | 36.34 | 35.70 | 42.36 | 37.04 | 32.69 | 53.00 | 88.43 | 4.58 | 75.46 | 10.23 | 69.41 | 12.52 | 74.04 | 5.02 | 61.00 | 17.60 | 82.10 | 10.20 |
2005 | 66.30 | 24.50 | 64.40 | 8.12 | 41.24 | 33.80 | 42.66 | 35.71 | 33.48 | 54.24 | 88.00 | 5.86 | 72.27 | 13.03 | 66.66 | 15.49 | 70.74 | 6.61 | 59.80 | 19.10 | 81.80 | 10.30 |
2006 | 63.76 | 27.51 | 63.56 | 8.40 | 40.45 | 37.00 | 41.08 | 36.60 | 31.76 | 57.84 | 87.07 | 7.14 | 68.97 | 15.87 | 64.60 | 18.86 | 69.57 | 7.33 | 58.70 | 19.80 | 82.00 | 10.30 |
2007 | 64.39 | 27.71 | 62.94 | 9.77 | 41.94 | 36.55 | 43.89 | 33.22 | 30.96 | 60.11 | 84.14 | 9.83 | 65.08 | 20.44 | 62.20 | 22.08 | 69.10 | 8.35 | 57.40 | 21.30 | 80.00 | 11.70 |
2008 | 62.74 | 29.63 | 62.47 | 11.43 | 48.18 | 32.75 | 45.98 | 31.62 | 29.32 | 62.79 | 79.18 | 14.14 | 61.54 | 24.14 | 58.82 | 25.95 | 66.45 | 10.58 | 56.20 | 22.70 | 77.00 | 13.10 |
2009 | 60.04 | 32.40 | 61.20 | 13.35 | 47.21 | 33.94 | 45.89 | 32.35 | 28.91 | 63.61 | 77.31 | 16.13 | 59.94 | 25.29 | 52.16 | 32.25 | 66.41 | 12.08 | 56.50 | 22.50 | 75.50 | 14.40 |
2010 | 58.58 | 33.98 | 60.02 | 14.01 | 52.20 | 31.01 | 45.00 | 34.65 | 28.73 | 64.05 | 77.62 | 15.75 | 60.42 | 25.24 | 53.23 | 31.72 | 65.69 | 12.61 | 58.70 | 20.70 | 74.50 | 15.60 |
2011 | 57.81 | 34.62 | 62.36 | 16.27 | 50.29 | 30.93 | 45.67 | 35.78 | 28.98 | 64.04 | 75.28 | 17.48 | 59.24 | 26.70 | 52.60 | 32.70 | 65.34 | 13.88 | 58.20 | 20.80 | 77.00 | 12.70 |
2012 | 56.10 | 36.48 | 61.14 | 17.88 | 49.34 | 32.27 | 43.57 | 38.55 | 28.67 | 63.17 | 73.59 | 18.77 | 57.53 | 29.09 | 52.13 | 32.80 | 62.43 | 16.84 | 56.80 | 22.40 | 74.60 | 14.20 |
2013 | 56.30 | 36.26 | 60.02 | 18.80 | 48.89 | 32.83 | 42.19 | 38.88 | 29.70 | 63.21 | 73.25 | 18.83 | 56.76 | 30.06 | 51.55 | 33.17 | 63.02 | 16.94 | 56.40 | 22.40 | 73.80 | 14.80 |
2014 | 56.68 | 36.39 | 59.80 | 19.59 | 51.35 | 29.72 | 41.56 | 40.49 | 30.87 | 61.79 | 73.66 | 18.24 | 56.74 | 29.92 | 50.96 | 33.09 | 61.85 | 18.36 | 57.40 | 21.80 | 73.00 | 15.20 |
2015 | 56.43 | 36.66 | 58.35 | 20.82 | 52.49 | 29.66 | 39.84 | 43.10 | 31.24 | 61.31 | 73.30 | 18.45 | 54.71 | 31.31 | 49.57 | 33.63 | 60.13 | 20.00 | 58.50 | 21.10 | 72.80 | 15.90 |
2016 | 58.01 | 37.42 | 61.04 | 21.65 | 55.00 | 27.42 | 41.21 | 42.40 | 32.54 | 60.23 | 75.97 | 15.89 | 56.21 | 30.10 | 51.83 | 31.43 | 61.54 | 19.15 | 59.60 | 19.20 | 73.60 | 15.00 |
2017 | 57.91 | 37.62 | 59.92 | 21.78 | 56.98 | 25.24 | 41.38 | 42.44 | 33.64 | 59.03 | 76.09 | 15.53 | 55.48 | 30.06 | 52.53 | 30.94 | 60.65 | 19.64 | 60.20 | 19.70 | 73.30 | 15.40 |
2018 | 57.95 | 37.61 | 60.22 | 21.64 | 59.74 | 23.68 | 42.22 | 41.93 | 34.40 | 58.90 | 76.27 | 15.10 | 56.23 | 29.44 | 53.19 | 29.45 | 61.18 | 20.00 | 59.80 | 19.20 | 72.70 | 15.20 |
2019 | 58.19 | 37.39 | 60.38 | 21.54 | 61.47 | 22.41 | 43.52 | 40.96 | 35.08 | 58.38 | 76.53 | 14.35 | 56.08 | 28.91 | 53.53 | 28.30 | 61.27 | 19.72 | 60.40 | 18.60 | 72.60 | 14.80 |
2020 | 58.67 | 36.90 | 62.49 | 20.79 | 63.46 | 21.41 | 50.19 | 35.42 | 35.66 | 57.81 | 72.15 | 18.31 | 51.95 | 33.49 | 43.36 | 37.60 | 59.46 | 22.19 | 60.80 | 17.90 | 73.90 | 13.50 |
2021 | 58.69 | 36.91 | 61.97 | 21.14 | 63.38 | 21.41 | 49.77 | 35.88 | 36.77 | 56.81 | 73.60 | 16.72 | 51.85 | 32.38 | 46.58 | 33.44 | 58.69 | 22.03 | 58.40 | 20.00 | 72.20 | 14.70 |
2022 | 58.84 | 36.78 | 62.25 | 21.00 | 64.10 | 20.91 | 49.46 | 36.15 | 37.06 | 56.44 | 75.72 | 15.07 | 53.97 | 30.63 | 51.92 | 29.42 | 60.12 | 20.61 | 60.10 | 18.30 | 74.40 | 13.10 |
Proportional Variables | Public | Private | Z-Diff. | p | ||||
---|---|---|---|---|---|---|---|---|
z | τ | p | z | τ | p | |||
All PV | −1.63 | −0.258 | 0.1040 | 2.35 | 0.373 | 0.0187 * | 4.516 | 1.33 × 10−15 * |
H&HB | −2.51 | −0.400 | 0122 * | 5.10 | 0.809 | 3.338 × 10−7 * | 5.380 | 7.41 × 10−8 * |
PI | 3.53 | 0.562 | 4.11 × 10−4 * | 2.567 | 0.410 | 0.0102 * | 0.683 | 0.4944 |
Hospitals | −0.634 | −0.105 | 0.526 | 4.92 | 0.781 | 8.56 × 10−7 * | 3.93 | 8.54 × 10−5 * |
Hospital Beds | −3.05 | −0.486 | 0.002 * | 5.10 | 0.810 | 3.34 × 10−7 * | 5.77 | 8.16 × 10−9 * |
Qualified Hospital Beds | 5.71 | 0.905 | 1.15 × 10−8 * | −4.38 | −0.695 | 1.19 × 10−5 * | 7.13 | 9.91 × 10−13 * |
Intensive Care Beds | 1.36 | 0.220 | 0.174 | 0.755 | 0.124 | 0.450 | 0.427 | 0.6690 |
Dialysis Machines | 2.45 | −0.391 | 0.014 * | −0.030 | −0.010 | 0.976 | 1.75 | 0.0799 |
HU | −4.74 | −0.752 | 8.56 × 10−7 * | 4.26 | 0.676 | 2.06 × 10−5 * | 6.46 | 1.98 × 10−10 * |
Outpatient Visits | 3.65 | −0.581 | 1.10 × 10−4 * | 2.66 | 0.425 | 0.008 * | 4.64 | 8.06 * |
Inpatients | −5.65 | −0.895 | 1.63 × 10−8 * | 4.92 | 0.781 | 8.56 × 10−7 * | 7.47 | 7.82 × 10−9 * |
Surgeries | −4.02 | −0.639 | 5.91 × 10−5 * | 3.17 | 0.505 | 0.002 * | 5.08 | 3.73 × 10−7 * |
Hospitalization Days | −5.59 | −0.895 | 2.32 × 10−8 * | 5.71 | 0.905 | 1.15 × 10−8 * | 7.99 | 1.33 × 10−9 * |
HW | −2.90 | −0.465 | 0.0036 * | 1.72 | 0.278 | 0.0849 | 3.27 | 1.07 × 10−3 * |
Physicians | 0.000 | 0.005 | 1.000 | −0.091 | −0.019 | 0.928 | 0.064 | 0.9488 |
Nurses/Midwives | −4.81 | −0.766 | 1.54 × 10−6 * | 3.12 | 0.500 | 0.002 * | 5.60 | 2.12 × 10−8 * |
Models | β | SE | t | p | ||
---|---|---|---|---|---|---|
General (All Variables) | Public | Intercept a | 5.7595373 | 1.2542574 | 4.592 | 0.000199 * |
Years a | −0.0025720 | 0.0006234 | −4.126 | 0.000575 * | ||
U1-Breakpoint (2008) | 0.0103504 | 0.0010273 | 1.07 | 1.39 × 10−8 * | ||
a: Newey–West estimator; df: 17; F: 17.02; p = 0.0005748; R2: 0.4726 and adjusted R2: 0.4448 | ||||||
Private | Intercept a | −9.4028199 | 1.6206106 | −5.802 | 1.37 × 10−5 * | |
Years a | 0.004803 | 0.0008055 | 5.964 | 9.70 × 10−6 * | ||
U1-Breakpoint (2005) | 0.0164313 | 0.0035258 | 4.660 | 0.0002 * | ||
U2-Breakpoint (2008) | −0.0083473 | 0.0023082 | −3.616 | 0.0021 * | ||
U3-Breakpoint (2011) | −0.0100074 | 0.0014394 | −6.952 | 2.33 × 10−6 * | ||
a: Newey–West estimator; df: 13; F: 35.56; p = 9.702 × 10−6; R2: 0.6518 and adjusted R2: 0.6335 | ||||||
Hospitals and Hospital Beds | Public | Intercept a | 5.3710283 | 10.2808635 | 0.5224 | 0.6074 |
Years a | −0.0023680 | 0.0051304 | −0.4616 | 0.6496 | ||
U1-Breakpoint (2008) | 0.009080 | 0.002470 | 3.676 | 0.00187 * | ||
a: Newey–West estimator; df: 17; F: 11.94; p = 0.002647343; R2: 0.3859715 and adjusted R2: 0.3499 | ||||||
Private | Intercept a | −17.0964123 | 6.2524081 | −2.7344 | 0.01317 * | |
Years a | 0.0086171 | 0.0031057 | 2.7746 | 0.01207 * | ||
U1-Breakpoint (2008) | 0.024939 | 0.008181 | 3.048 | 0.0111 * | ||
U2-Breakpoint (2011) | 0.005851 | 0.005836 | 1.002 | 0.3379 | ||
U3-Breakpoint (2015) | −0.010535 | 0.001507 | −6.991 | 2.30 × 10−5 * | ||
U4-Breakpoint (2019) | −0.007374 | 0.001829 | −4.031 | 0.00198 * | ||
a: Newey–West estimator; df: 11; F: 126.71; p = 7.572117 × 10−10; R2: 0.8696018 and adjusted R2: 0.8577 | ||||||
Physical Investment | Public | Intercept a | 5.759537 | 6.154448 | 0.9358 | 0.3611 |
Years a | −0.002572 | 0.003060 | −0.841 | 0.4111 | ||
U1-Breakpoint (2004) | 0.015931 | 0.011228 | 1.419 | 0.1836 | ||
U2-Breakpoint (2011) | −0.009180 | 0.003675 | −2.498 | 0.0296 * | ||
U3-Breakpoint (2015) | 0.014515 | 0.002307 | 6.292 | 5.90 × 10−5 * | ||
U4-Breakpoint (2019) | −0.009019 | 0.010858 | −0.831 | 0.4236 | ||
a: Newey–West estimator; df: 11 F: 28.28; p = 3.926051 × 10−5; R2: 0.472558 and adjusted R2: 0.4447979 | ||||||
Private | Intercept a | −9.4028199 | 8.6919303 | −1.082 | 0.2929 | |
Years a | 0.0048035 | 0.0043144 | 1.1134 | 0.2794 | ||
U1-Breakpoint (2005) | 0.020309 | 0.009746 | 2.084 | 0.0613 | ||
U2-Breakpoint (2008) | −0.003415 | 0.006953 | −0.491 | 0.6331 | ||
U3-Breakpoint (2011) | −0.004980 | 0.003567 | −1.396 | 0.1903 | ||
U4-Breakpoint (2016) | −0.010437 | 0.003775 | −2.765 | 0.0184 * | ||
U5-Breakpoint (2019) | 0.005925 | 0.007062 | 0.839 | 0.4193 | ||
a: Newey–West estimator; df: 9; F: 12.94; p = 0.001920514; R2: 0.6517855 and adjusted R2: 0.6334584 | ||||||
Healthcare Utilization | Public | Intercept b | 8.2529810 | 8.8192971 | 0.936 | 0.3618 |
Years b | −0.0037907 | 0.0043710 | −0.867 | 0.3972 | ||
U1-Breakpoint (2004) | −0.025300 | 0.008822 | −2.868 | 0.0107 * | ||
U2-Breakpoint (2007) | −0.030030 | 0.009672 | −2.834 | 0.0064 * | ||
U3-Breakpoint (2011) | 0.023520 | 0.004443 | 5.294 | 0.00006 * | ||
U4-Breakpoint (2019) | 0.025960 | 0.006323 | 4.106 | 0.00074 * | ||
b: Cochran–Orcutt estimator; df: 19 F: 0.80; p = 0.3972; R2: 0.0401 and adjusted R2: 0.0132 | ||||||
Private | Intercept a | −18.4437580 | 12.6577409 | −1.457 | 0.1614 | |
Years a | 0.0092662 | 0.0062892 | 1.4733 | 0.1570 | ||
U1-Breakpoint (2004) | 0.029997 | 0.010714 | 2.800 | 0.0173 * | ||
U2-Breakpoint (2007) | −0.01806 | 0.008099 | −2.230 | 0.0475 * | ||
U3-Breakpoint (2011) | −0.009753 | 0.005898 | −1.654 | 0.1264 | ||
a: Newey–West estimator; df: 13; F: 62.73; p = 1.945415 × 10−7; R2: 0.7675136 and adjusted R2: 0.7552775 | ||||||
Healthcare Workforce | Public | Intercept b | 0.23765250 | 3.76066574 | 0.063 | 0.9503 |
Years b | 0.00021141 | 0.00186510 | 0.113 | 0.9110 | ||
U1-Breakpoint (2004) | −0.016000 | 0.010842 | −1.476 | 0.156 | ||
U2-Breakpoint (2007) | 0.021366 | 0.010592 | 2.017 | 0.058 | ||
b: Cochran–Orcutt estimator; df: 15 F: 0.10; p = 0.911; R2: 0.0007 and adjusted R2: −0.0548 | ||||||
Private | Intercept b | 4.5364067 | 3.5686851 | 1.271 | 0.2199 | |
Years b | −0.0021629 | 0.001769 | −1.222 | 0.2374 | ||
U1-Breakpoint (2004) | 0.007557 | 0.005160 | 1.465 | 0.171 | ||
U2-Breakpoint (2007) | −0.012800 | 0.004777 | −2.679 | 0.021 * | ||
U3-Breakpoint (2015) | −0.003710 | 0.002107 | −1.761 | 0.106 | ||
b: Cochran–Orcutt estimator; df: 13; F: 1.50; p = 0.02374; R2: 0.0766 and adjusted R2: 0.0253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ünal, E.; Yılmaz, S. Healthcare Sector Dynamics in Turkey (2002–2022): Trends, Breakpoints, and Policy Implications (Privatization in the Hospital Sector). Healthcare 2025, 13, 622. https://doi.org/10.3390/healthcare13060622
Ünal E, Yılmaz S. Healthcare Sector Dynamics in Turkey (2002–2022): Trends, Breakpoints, and Policy Implications (Privatization in the Hospital Sector). Healthcare. 2025; 13(6):622. https://doi.org/10.3390/healthcare13060622
Chicago/Turabian StyleÜnal, Erdinç, and Salim Yılmaz. 2025. "Healthcare Sector Dynamics in Turkey (2002–2022): Trends, Breakpoints, and Policy Implications (Privatization in the Hospital Sector)" Healthcare 13, no. 6: 622. https://doi.org/10.3390/healthcare13060622
APA StyleÜnal, E., & Yılmaz, S. (2025). Healthcare Sector Dynamics in Turkey (2002–2022): Trends, Breakpoints, and Policy Implications (Privatization in the Hospital Sector). Healthcare, 13(6), 622. https://doi.org/10.3390/healthcare13060622