Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review
Abstract
1. Background
2. Methods
2.1. Literature Search Strategy
- “ACL reconstruction”, “ACLR rehabilitation”, “return to sport”,
- “arthrogenic muscle inhibition”, “motor learning”, “neurocognitive training”,
- “non-linear periodization”, “functional testing”, “criterion-based progression”.
2.2. Selection and Synthesis
- Limitations of linear, phase-based ACLR rehabilitation
- The role of AMI and neuromuscular inhibition
- Periodization strategies adapted to rehabilitation
- Testing as a dynamic diagnostic tool
- Functional and cognitive demands in RTS preparation
2.3. Clinical Integration
2.4. Limitations
3. Critique of the “Traditional” Phase-Based Model
4. Proposal: The Rehabilitation Continuum of Overlapping Macro-Blocks
5. Testing to Unlock New Abilities, Not Just a Passport for a New Phase
6. The Testing Continuum: From Foundational Control to Sport-Specific Chaos
6.1. Foundational Phase (Joint Health and Neuromuscular Reactivation)
6.2. Neuromuscular Control and Work Capacity Phase
6.3. Strength Development Phase
6.4. Power and Linear Running Phase
6.5. Change of Direction Phase (Planned)
6.6. Agility and Chaos Phase (Unplanned)
7. Visual Representations and Clinical Implications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-Contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-Analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Kiapour, A.M.; Flannery, S.W.; Murray, M.M.; Miller, P.E.; Team, B.T.; Proffen, B.L. Regional Differences in Anterior Cruciate Ligament Signal Intensity After Surgical Treatment. Am. J. Sports Med. 2021, 49, 3833–3841. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Paterno, M.V.; Ford, K.R.; Quatman, C.E.; Hewett, T.E. Rehabilitation After Anterior Cruciate Ligament Reconstruction: Criteria-Based Progression Through the Return-to-Sport Phase. J. Orthop. Sports Phys. Ther. 2006, 36, 385–402. [Google Scholar] [CrossRef]
- Ardern, C.L.; Taylor, N.F.; Feller, J.A.; Webster, K.E. Fifty-Five per Cent Return to Competitive Sport Following Anterior Cruciate Ligament Reconstruction Surgery: An Updated Systematic Review and Meta-Analysis Including Aspects of Physical Functioning and Contextual Factors. Br. J. Sports Med. 2014, 48, 1543–1552. [Google Scholar] [CrossRef]
- Coronado, R.A.; Seitz, A.L.; Pelote, E.; Archer, K.R.; Jain, N.B. Are Psychosocial Factors Associated with Patient-Reported Outcome Measures in Patients with Rotator Cuff Tears? A Systematic Review. Clin. Orthop. Relat. Res. 2018, 476, 810–829. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of Second ACL Injuries 2 Years After Primary ACL Reconstruction and Return to Sport. Am. J. Sports Med. 2014, 42, 1567–1573. [Google Scholar] [CrossRef]
- Piussi, R.; Simonson, R.; Kjellander, M.; Jacobsson, A.; Ivarsson, A.; Karlsson, J. When Context Creates Uncertainty: Experiences of Patients Who Choose Rehabilitation as a Treatment after an ACL Injury. BMJ Open Sport Exerc. Med. 2023, 9, e001501. [Google Scholar] [CrossRef] [PubMed]
- Lepley, A.S.; Gribble, P.A.; Thomas, A.C.; Tevald, M.A.; Sohn, D.H.; Pietrosimone, B.G. Quadriceps Neural Alterations in Anterior Cruciate Ligament Reconstructed Patients: A 6-month Longitudinal Investigation. Scand. J. Med. Sci. Sports 2015, 25, 828–839. [Google Scholar] [CrossRef]
- Lepley, L.K.; Palmieri-Smith, R.M. Quadriceps Strength, Muscle Activation Failure, and Patient-Reported Function at the Time of Return to Activity in Patients Following Anterior Cruciate Ligament Reconstruction: A Cross-Sectional Study. J. Orthop. Sports Phys. Ther. 2015, 45, 1017–1025. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Thomas, A.C. A Neuromuscular Mechanism of Posttraumatic Osteoarthritis Associated with ACL Injury. Exerc. Sport Sci. Rev. 2009, 37, 147–153. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Nielsen-Le Roux, M.; Miraglia, N.; Gaspar, M.; Stergiou, M. Stay in the Game: Comprehensive Approaches to Decrease the Risk of Sports Injuries. Cureus 2024, 16, e76461. [Google Scholar] [CrossRef]
- McPherson, A.L.; Feller, J.A.; Hewett, T.E.; Webster, K.E. Psychological Readiness to Return to Sport Is Associated with Second Anterior Cruciate Ligament Injuries. Am. J. Sports Med. 2019, 47, 857–862. [Google Scholar] [CrossRef]
- Kakavas, G.; Forelli, F.; Malliaropoulos, N.; Hewett, T.E.; Tsaklis, P. Periodization in Anterior Cruciate Ligament Rehabilitation: New Framework Versus Old Model? A Clinical Commentary. Int. J. Sports Phys. Ther. 2023, 18, 541. [Google Scholar] [CrossRef] [PubMed]
- Kakavas, G.; Malliaropoulos, N.; Bikos, G.; Pruna, R.; Valle, X.; Tsaklis, P. Periodization in Anterior Cruciate Ligament Rehabilitation: A Novel Framework. Med. Princ. Pract. 2021, 30, 101–108. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Mazeas, J.; Dugernier, J.; Cerrito, A. Rethinking the Assessment of Arthrogenic Muscle Inhibition After ACL Reconstruction: Implications for Return-to-Sport Decision-Making—A Narrative Review. J. Clin. Med. 2025, 14, 2633. [Google Scholar] [CrossRef] [PubMed]
- Moiroux-Sahraoui, A.; Forelli, F.; Mazeas, J.; Rambaud, A.J.; Bjerregaard, A.; Riera, J. Quadriceps Activation After Anterior Cruciate Ligament Reconstruction: The Early Bird Gets the Worm! Int. J. Sports Phys. Ther. 2024, 19, 1044. [Google Scholar] [CrossRef]
- Moiroux-Sahraoui, A.; Mazeas, J.; Gold, M.; Kakavas, G.; Forelli, F. Neuromuscular Control Deficits After Anterior Cruciate Ligament Reconstruction: A Pilot Study Using Single-Leg Functional Tests and Electromyography. J. Funct. Morphol. Kinesiol. 2025, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Sonnery-Cottet, B.; Hopper, G.P.; Gousopoulos, L.; Vieira, T.D.; Thaunat, M.; Fayard, J.M. Arthrogenic Muscle Inhibition Following Knee Injury or Surgery: Pathophysiology, Classification, and Treatment. Video J. Sports Med. 2022, 2, 26350254221086296. [Google Scholar] [CrossRef]
- Lisee, C.; Lepley, A.S.; Birchmeier, T.; O’Hagan, K.; Kuenze, C. Quadriceps Strength and Volitional Activation After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Health Multidiscip. Approach 2019, 11, 163–179. [Google Scholar] [CrossRef]
- Norte, G.E.; Sherman, D.A.; Rush, J.L.; Ingersoll, C.D.; Bodkin, S.G.; Snyder-Mackler, L. Advancing Clinical Evaluation and Treatment of Arthrogenic Muscle Inhibition: A Need for Validation and Innovation—Letter to the Editor. Am. J. Sports Med. 2024, 52, NP34–NP36. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Gokeler, A.; Herrington, L.; Hughes, M.; Grassi, A.; Wadey, R. Optimising the Early-Stage Rehabilitation Process Post-ACL Reconstruction. Sports Med. 2024, 54, 49–72. [Google Scholar] [CrossRef]
- Kim, M.; Gu, M.; Kim, H.Y.; Kim, J.; Lee, J.H.; Lee, H.Y. Assessment of Arthrogenic Quadriceps Muscle Inhibition by Physical Examination in the Supine Position during Isometric Contraction Is Feasible as Demonstrated by Electromyography: A Cross-Sectional Study. J. Orthop. Surg. Res. 2024, 19, 458. [Google Scholar] [CrossRef]
- Machan, T.; Krupps, K. The Neuroplastic Adaptation Trident Model: A Suggested Novel Framework for ACL Rehabilitation. Int. J. Sports Phys. Ther. 2021, 16, 896. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Della Villa, F.; Della Villa, S.; Roi, G.S. On-Field Rehabilitation Part 1: 4 Pillars of High-Quality On-Field Rehabilitation Are Restoring Movement Quality, Physical Conditioning, Restoring Sport-Specific Skills, and Progressively Developing Chronic Training Load. J. Orthop. Sports Phys. Ther. 2019, 49, 565–569. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Tamisari, A.; Villa, F.D. A ten task-based progression in rehabilitation after acl reconstruction: From post-surgery to return to play—A clinical commentary. Int. J. Sports Phys. Ther. 2020, 15, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Joreitz, R.; Lynch, A.; Popchak, A.; Irrgang, J. Criterion-Based Rehabilitation Program with Return to Sport Testing Following Acl Reconstruction: A Case Series. Int. J. Sports Phys. Ther. 2020, 15, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M. Optimising the Late-Stage Rehabilitation and Return-to-Sport Training and Testing Process After ACL Reconstruction. Sports Med. 2019, 49, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Della Villa, F. Optimising the “Mid-Stage” Training and Testing Process After ACL Reconstruction. Sports Med. 2020, 50, 657–678. [Google Scholar] [CrossRef]
- Kotsifaki, R.; Korakakis, V.; King, E.; Barbosa, O.; Maree, D.; Pantouveris, M. Aspetar Clinical Practice Guideline on Rehabilitation after Anterior Cruciate Ligament Reconstruction. Br. J. Sports Med. 2023, 57, 500–514. [Google Scholar] [CrossRef]
- Van Melick, N.; Van Cingel, R.E.H.; Brooijmans, F.; Neeter, C.; Van Tienen, T.; Hullegie, W. Evidence-Based Clinical Practice Update: Practice Guidelines for Anterior Cruciate Ligament Rehabilitation Based on a Systematic Review and Multidisciplinary Consensus. Br. J. Sports Med. 2016, 50, 1506–1515. [Google Scholar] [CrossRef]
- Fleck, S. Non-Linear Periodization for General Fitness & Athletes. J. Hum. Kinet. 2011, 29A, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Gamble, P. Periodization of Training for Team Sports Athletes. Strength Cond. J. 2006, 28, 56–66. [Google Scholar] [CrossRef]
- Turner, A. The Science and Practice of Periodization: A Brief Review. Strength Cond. J. 2011, 33, 34–46. [Google Scholar] [CrossRef]
- Kiely, J. Periodization Paradigms in the 21st Century: Evidence-Led or Tradition-Driven? Int. J. Sports Physiol. Perform. 2012, 7, 242–250. [Google Scholar] [CrossRef]
- Chaput, M.; Ness, B.M.; Lucas, K.; Zimney, K.J. A Multi-Systems Approach to Human Movement after ACL Reconstruction: The Nervous System. Int. J. Sports Phys. Ther. 2022, 17, 47. [Google Scholar] [CrossRef]
- Gokeler, A.; Neuhaus, D.; Benjaminse, A.; Grooms, D.R.; Baumeister, J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med. 2019, 49, 853–865. [Google Scholar] [CrossRef]
- Chaput, M.; Simon, J.E.; Taberner, M.; Grooms, D.R. From Control to Chaos: Visual-Cognitive Progression During Recovery from ACL Reconstruction. J. Orthop. Sports Phys. Ther. 2024, 54, 431–439. [Google Scholar] [CrossRef]
- Boggenpoel, B.Y.; Nel, S.; Hanekom, S. The Use of Periodized Exercise Prescription in Rehabilitation: A Systematic Scoping Review of Literature. Clin. Rehabil. 2018, 32, 1235–1248. [Google Scholar] [CrossRef]
- Issurin, V.B. Biological Background of Block Periodized Endurance Training: A Review. Sports Med. 2019, 49, 31–39. [Google Scholar] [CrossRef]
- Creighton, D.W.; Shrier, I.; Shultz, R.; Meeuwisse, W.H.; Matheson, G.O. Return-to-Play in Sport: A Decision-Based Model. Clin. J. Sport Med. 2010, 20, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Ardern, C.L.; Glasgow, P.; Schneiders, A.; Witvrouw, E.; Clarsen, B.; Cools, A. 2016 Consensus Statement on Return to Sport from the First World Congress in Sports Physical Therapy, Bern. Br. J. Sports Med. 2016, 50, 853–864. [Google Scholar] [CrossRef]
- Taberner, M.; Allen, T.; O’keefe, J.; Cohen, D.D. Contextual Considerations Using the “control-Chaos Continuum” for Return to Sport in Elite Football—Part 1: Load Planning. Phys. Ther. Sport 2022, 53, 67–74. [Google Scholar] [CrossRef]
- Taberner, M.; Allen, T.; Cohen, D.D. Progressing Rehabilitation after Injury: Consider the “Control-Chaos Continuum”. Br. J. Sports Med. 2019, 53, 1132–1136. [Google Scholar] [CrossRef]
- Whittier, T.T.; Patrick, C.M.; Fling, B.W. Somatosensory Information in Skilled Motor Performance: A Narrative Review. J. Mot. Behav. 2023, 55, 453–474. [Google Scholar] [CrossRef]
- Kaya, D.; Guney-Deniz, H.; Sayaca, C.; Calik, M.; Doral, M.N. Effects on Lower Extremity Neuromuscular Control Exercises on Knee Proprioception, Muscle Strength, and Functional Level in Patients with ACL Reconstruction. BioMed Res. Int. 2019, 2019, 1694695. [Google Scholar] [CrossRef]
- Dingenen, B.; Gokeler, A. Optimization of the Return-to-Sport Paradigm After Anterior Cruciate Ligament Reconstruction: A Critical Step Back to Move Forward. Sports Med. 2017, 47, 1487–1500. [Google Scholar] [CrossRef] [PubMed]
- Risberg, M.A.; Mørk, M.; Jenssen, H.K.; Holm, I. Design and Implementation of a Neuromuscular Training Program Following Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2001, 31, 620–631. [Google Scholar] [CrossRef]
- Heale, G. Dynamic Assessment and Active Rehabilitation in Clinical Practice. Br. J. Chiropr. 1998, 2, 20–21. [Google Scholar] [CrossRef]
- Forelli, F.; Mazeas, J.; Korakakis, V.; Ramtoola, H.; Vandebrouck, A.; Duffiet, P. Criteria-Based Decision Making for Introducing Open Kinetic Chain Exercise after-ACL Reconstruction: A Scoping Review. Sports Med. Open 2025, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Rambaud, A.J.M.; Ardern, C.L.; Thoreux, P.; Regnaux, J.P.; Edouard, P. Criteria for Return to Running after Anterior Cruciate Ligament Reconstruction: A Scoping Review. Br. J. Sports Med. 2018, 52, 1437–1444. [Google Scholar] [CrossRef]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the Nervous System. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef]
- Schnittjer, A.J.; Simon, J.E.; Whittier, T.T.; Grooms, D.R. The Neuroplastic Outcomes from Impaired Sensory Expectations (NOISE) Hypothesis: How ACL Dysfunction Impacts Sensory Perception and Knee Stability. Musculoskelet. Sci. Pract. 2025, 75, 103222. [Google Scholar] [CrossRef]
- Belloir, M.; Mazeas, J.; Traullé, M.; Vandebrouck, A.; Duffiet, P.; Ratte, L.; Forelli, F. Influence of the Open Kinetic Chain on the Distension of the Transplant After Anterior Cruciate Ligament Surgery with Hamstring Graft: Search for Risk Factors. Int. J. Physiother. 2020, 7. [Google Scholar] [CrossRef]
- Macadam, P.; Feser, E.H. Examination of Gluteus Maximus Electromyographic Excitation Associated with Dynamic Hip Extension during Body Weight Exercise: A Systematic Review. Int. J. Sports Phys. Ther. 2019, 14, 14–31. [Google Scholar] [CrossRef]
- Lewek, M.; Rudolph, K.; Axe, M.; Snyder-Mackler, L. The Effect of Insufficient Quadriceps Strength on Gait after Anterior Cruciate Ligament Reconstruction. Clin. Biomech. 2002, 17, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Mazeas, J.; Zeghoudi, Y.; Vandebrouck, A.; Duffiet, P.; Ratte, L. Intrinsic Graft Laxity Variation with Open Kinetic Chain Exercise after Anterior Cruciate Ligament Reconstruction: A Non-Randomized Controlled Study. Phys. Ther. Sport 2024, 66, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Peebles, A.T.; Williams, B.; Queen, R.M. Bilateral Squatting Mechanics Are Associated with Landing Mechanics in Anterior Cruciate Ligament Reconstruction Patients. Am. J. Sports Med. 2021, 49, 2638–2644. [Google Scholar] [CrossRef]
- Scarneo-Miller, S.E.; Sorge, J.E.; Beltz, E.M.; Martinez, J.C.; Root, H.J.; Burland, J.P. The Relationship between Single-Limb Squat and Jump-Cut Kinematics. Sports Biomech. 2022, 21, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Stenroth, L.; Bartholdy, C.; Schwarz Larsen, J.; Sørensen, M.S.; Smale, K.B.; Flaxman, T.E. Altered Movement Strategy during Functional Movement after an ACL Injury, despite ACL Reconstruction. Front. Sports Act. Living 2022, 4, 994139. [Google Scholar] [CrossRef]
- Øiestad, B.E.; Holm, I.; Aune, A.K.; Gunderson, R.; Myklebust, G.; Engebretsen, L. Knee Function and Prevalence of Knee Osteoarthritis after Anterior Cruciate Ligament Reconstruction: A Prospective Study with 10 to 15 Years of Follow-Up. Am. J. Sports Med. 2010, 38, 2201–2210. [Google Scholar] [CrossRef]
- Chaudhari, A.M.W.; Briant, P.L.; Bevill, S.L.; Koo, S.; Andriacchi, T.P. Knee Kinematics, Cartilage Morphology, and Osteoarthritis after ACL Injury. Med. Sci. Sports Exerc. 2008, 40, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B. Biomechanical Measures during Landing and Postural Stability Predict Second Anterior Cruciate Ligament Injury after Anterior Cruciate Ligament Reconstruction and Return to Sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.P.; Paik, R.S.; Ware, A.J.; Mohr, K.J.; Limpisvasti, O. Neuromuscular Evaluation with Single-Leg Squat Test at 6 Months After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2015, 3, 2325967115575900. [Google Scholar] [CrossRef]
- Culvenor, A.G.; Collins, N.J.; Vicenzino, B.; Cook, J.L.; Whitehead, T.S.; Morris, H.G. Predictors and Effects of Patellofemoral Pain Following Hamstring-Tendon ACL Reconstruction. J. Sci. Med. Sport 2016, 19, 518–523. [Google Scholar] [CrossRef]
- Silbernagel, K.G.; Nilsson-Helander, K.; Thomeé, R.; Eriksson, B.I.; Karlsson, J. A New Measurement of Heel-Rise Endurance with the Ability to Detect Functional Deficits in Patients with Achilles Tendon Rupture. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 258–264. [Google Scholar] [CrossRef]
- Brorsson, A.; Willy, R.W.; Tranberg, R.; Grävare Silbernagel, K. Heel-Rise Height Deficit 1 Year After Achilles Tendon Rupture Relates to Changes in Ankle Biomechanics 6 Years After Injury. Am. J. Sports Med. 2017, 45, 3060–3068. [Google Scholar] [CrossRef]
- Peng, W.C.; Chang, Y.P.; Chao, Y.H.; Fu, S.; Rolf, C.; Shih, T.T. Morphomechanical Alterations in the Medial Gastrocnemius Muscle in Patients with a Repaired Achilles Tendon: Associations with Outcome Measures. Clin. Biomech. 2017, 43, 50–57. [Google Scholar] [CrossRef]
- Friedmann-Bette, B.; Profit, F.; Gwechenberger, T.; Weiberg, N.; Parstorfer, M.; Weber, M.A. Strength Training Effects on Muscular Regeneration after ACL Reconstruction. Med. Sci. Sports Exerc. 2018, 50, 1152–1161. [Google Scholar] [CrossRef]
- Liu-Ambrose, T.; Taunton, J.E.; MacIntyre, D.; McConkey, P.; Khan, K.M. The Effects of Proprioceptive or Strength Training on the Neuromuscular Function of the ACL Reconstructed Knee: A Randomized Clinical Trial. Scand. J. Med. Sci. Sports 2003, 13, 115–123. [Google Scholar] [CrossRef]
- Welling, W.; Benjaminse, A.; Lemmink, K.; Dingenen, B.; Gokeler, A. Progressive Strength Training Restores Quadriceps and Hamstring Muscle Strength within 7 Months after ACL Reconstruction in Amateur Male Soccer Players. Phys. Ther. Sport 2019, 40, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Neeter, C.; Gustavsson, A.; Thomeé, P.; Augustsson, J.; Thomeé, R.; Karlsson, J. Development of a Strength Test Battery for Evaluating Leg Muscle Power after Anterior Cruciate Ligament Injury and Reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 571–580. [Google Scholar] [CrossRef]
- De Jong, S.N.; Van Caspel, D.R.; Van Haeff, M.J.; Saris, D.B.F. Functional Assessment and Muscle Strength Before and After Reconstruction of Chronic Anterior Cruciate Ligament Lesions. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 21.e1–21.e11. [Google Scholar] [CrossRef]
- Herrington, L.; Myer, G.; Horsley, I. Task Based Rehabilitation Protocol for Elite Athletes Following Anterior Cruciate Ligament Reconstruction: A Clinical Commentary. Phys. Ther. Sport 2013, 14, 188–198. [Google Scholar] [CrossRef]
- Freckleton, G.; Cook, J.; Pizzari, T. The Predictive Validity of a Single Leg Bridge Test for Hamstring Injuries in Australian Rules Football Players. Br. J. Sports Med. 2014, 48, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship Between Countermovement Jump Performance and Multijoint Isometric and Dynamic Tests of Strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Traweger, A.; Scott, A.; Kjaer, M.; Wezenbeek, E.; Scattone Silva, R.; Kennedy, J.G. Achilles Tendinopathy. Nat. Rev. Dis. Primers 2025, 11, 20. [Google Scholar] [CrossRef]
- Rodgers, M.M. Dynamic Biomechanics of the Normal Foot and Ankle During Walking and Running. Phys. Ther. 1988, 68, 1822–1830. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Wessman, C.; Alricsson, M.; Svantesson, U. Updated Reliability and Normative Values for the Standing Heel-Rise Test in Healthy Adults. Physiotherapy 2017, 103, 446–452. [Google Scholar] [CrossRef]
- Thorstensson, C.A.; Petersson, I.F.; Jacobsson, L.T.H.; Boegård, T.L.; Roos, E.M. Reduced Functional Performance in the Lower Extremity Predicted Radiographic Knee Osteoarthritis Five Years Later. Ann. Rheum. Dis. 2004, 63, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Higbie, S.; Kleihege, J.; Duncan, B.; Lowe, W.R.; Bailey, L. Utilizing Hip Abduction Strength to Body-Weight Ratios in Return to Sport Decision-Making After ACL Reconstruction. Int. J. Sports Phys. Ther. 2021, 16, 1295. [Google Scholar] [CrossRef]
- Thomas, A.C.; Villwock, M.; Wojtys, E.M.; Palmieri-Smith, R.M. Lower Extremity Muscle Strength After Anterior Cruciate Ligament Injury and Reconstruction. J. Athl. Train. 2013, 48, 610–620. [Google Scholar] [CrossRef]
- Philipp, N.; Cabarkapa, D.; Eserhaut, D.; Cabarkapa, D.; Fry, A. Countermovement jump force-time metrics and maximal horizontal deceleration performance in professional male basketball players. J. Appl. Sport Sci. 2022, 6, 11–27. [Google Scholar] [CrossRef]
- Verheul, J.; Harper, D.; Robinson, M.A. Forces Experienced at Different Levels of the Musculoskeletal System during Horizontal Decelerations. J. Sports Sci. 2024, 42, 2242–2253. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Della Villa, F. Recommendations for Plyometric Training after ACL Reconstruction—A Clinical Commentary. Int. J. Sports Phys. Ther. 2021, 16, 879. [Google Scholar] [CrossRef] [PubMed]
- Buckthorpe, M.; Della Villa, F.; Della Villa, S.; Roi, G.S. On-Field Rehabilitation Part 2: A 5-Stage Program for the Soccer Player Focused on Linear Movements, Multidirectional Movements, Soccer-Specific Skills, Soccer-Specific Movements, and Modified Practice. J. Orthop. Sports Phys. Ther. 2019, 49, 570–575. [Google Scholar] [CrossRef]
- Forelli, F.; Marine, P.; Moiroux-Sahraoui, A.; Mazeas, J.; Thoelen, M.; Swinnen, B. Velocity-Based Training in Mid- and Late-Stage Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Narrative Review and Practical Guidelines. BMJ Open Sport Exerc. Med. 2025, 11, e002503. [Google Scholar] [CrossRef]
- Forelli, F.; Branis Nekhouf, M.; Vandebrouck, A.; Duffiet, P.; Ratte, L.; Hewett, T.E. Is Deceleration the Key Element in Vertical Jump Performance to Return to Sport after Anterior Cruciate Ligament Reconstruction? Int. J. Sports Phys. Ther. 2025, 20, 1321. [Google Scholar] [CrossRef] [PubMed]
- Forelli, F.; Riera, J.; Marine, P.; Gaspar, M.; Memain, G.; Miraglia, N. Implementing Velocity-Based Training to Optimize Return to Sprint After Anterior Cruciate Ligament Reconstruction in Soccer Players: A Clinical Commentary. Int. J. Sports Phys. Ther. 2024, 19, 355. [Google Scholar] [CrossRef] [PubMed]
- Labanca, L.; Budini, F.; Cardinali, L.; Concilio, G.; Rocchi, J.E.; Mariani, P.P. A Countermovement Jump for the Midterm Assessment of Force and Power Exertion After Anterior Cruciate Ligament Reconstruction. Am. J. Phys. Med. Rehabil. 2022, 101, 1007–1013. [Google Scholar] [CrossRef]
- Maestroni, L.; Turner, A.; Papadopoulos, K.; Cohen, D.; Sideris, V.; Graham-Smith, P. Comparison of Strength and Power Characteristics Before ACL Rupture and at the End of Rehabilitation Before Return to Sport in Professional Soccer Players. Sports Health Multidiscip. Approach 2023, 15, 814–823. [Google Scholar] [CrossRef]
- Maestroni, L.; Turner, A.; Papadopoulos, K.; Pedley, J.; Sideris, V.; Read, P. Single Leg Drop Jump Is Affected by Physical Capacities in Male Soccer Players Following ACL Reconstruction. Sci. Med. Footb. 2024, 8, 201–211. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Fortes, V.; Krustrup, P.; Muyor, J.M. Acceleration and Sprint Profiles of Professional Male Football Players in Relation to Playing Position. PLoS ONE 2020, 15, e0236959. [Google Scholar] [CrossRef] [PubMed]
- Mara, J.K.; Thompson, K.G.; Pumpa, K.L.; Morgan, S. The Acceleration and Deceleration Profiles of Elite Female Soccer Players during Competitive Matches. J. Sci. Med. Sport 2017, 20, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.J.; Morris, N.; Nimphius, S.; Aagaard, P.; Herzog, W. Attenuated Lower Limb Stretch-Shorten-Cycle Capacity in ACL Injured vs. Non-Injured Female Alpine Ski Racers: Not Just a Matter of Between-Limb Asymmetry. Front. Sports Act. Living 2022, 4, 853701. [Google Scholar] [CrossRef] [PubMed]
- McBurnie, A.J.; Harper, D.J.; Jones, P.A.; Dos’Santos, T. Deceleration Training in Team Sports: Another Potential “Vaccine” for Sports-Related Injury? Sports Med. 2022, 52, 1–12. [Google Scholar] [CrossRef]
- Milewski, M.D.; Ounpuu, S.; Nissen, C.W.; Garibay, E.J.; Giampetruzzi, N.; Suprenant, D. Asymmetric Knee Kinematics And Kinetics After ACL Reconstruction In Adolescent Athletes. Orthop. J. Sports Med. 2014, 2, 2325967114S00114. [Google Scholar] [CrossRef]
- Correa, R.V.; Verhagen, E.; Resende, R.A.; Ocarino, J.M. Performance in Field-Tests and Dynamic Knee Valgus in Soccer Players Psychologically Ready and Not Ready to Return to Sports after ACL Reconstruction. Knee 2023, 42, 297–303. [Google Scholar] [CrossRef]
- Vascellari, A.; Gokeler, A.; Grassi, A.; Canata, G.L.; Zaffagnini, S.; Jones, H. Functional Progression Milestones Following Anterior Cruciate Ligament Reconstruction Are More Appropriate than Time-Based Criteria: A Survey among the ESSKA. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3647–3654. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sports Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; McBurnie, A.; Donelon, T.; Herrington, L.; Jones, P.A. The Cutting Movement Assessment Score (CMAS) Qualitative Screening Tool: Application to Mitigate Anterior Cruciate Ligament Injury Risk during Cutting. Biomechanics 2021, 1, 83–101. [Google Scholar] [CrossRef]
- Disegni, E.; Memain, G.; Bouvet, J.; Gaspar, M.; Maille, R.; Tamalet, B. The “11 to Perf Score”, a Test for Professional Players Returning to Soccer After Anterior Cruciate Ligament Reconstruction. J. Clin. Med. 2024, 14, 11. [Google Scholar] [CrossRef]
- Park, S.; Yoon, S. Quantifying Coordination and Variability in the Lower Extremities after Anterior Cruciate Ligament Reconstruction. Sensors 2021, 21, 652. [Google Scholar] [CrossRef]
- Dos’Santos, T.; McBurnie, A.; Donelon, T.; Thomas, C.; Comfort, P.; Jones, P.A. A Qualitative Screening Tool to Identify Athletes with “high-Risk” Movement Mechanics during Cutting: The Cutting Movement Assessment Score (CMAS). Phys. Ther. Sport. 2019, 38, 152–161. [Google Scholar] [CrossRef]
- de Mille, P.; Nguyen, J.; Brown, A.; Do, H.; Selvaggio, E.; Chiaia, T. Quality of Movement for Athletes Six Months Post ACL Reconstruction. Orthop. J. Sports Med. 2016, 4, 2325967116S00202. [Google Scholar] [CrossRef]
- Asimakidis, N.D.; Bishop, C.; Beato, M.; Turner, A.N. Assessment of Linear Speed and Change of Direction Ability in Elite Male Soccer: A Systematic Review of Test Protocols Used in Scientific Literature. Strength Cond. J. 2025. [Google Scholar] [CrossRef]
- Ryan, C.; Uthoff, A.; McKenzie, C.; Cronin, J. Traditional and Modified 5-0-5 Change of Direction Test: Normative and Reliability Analysis. Strength Cond. J. 2022, 44, 22–37. [Google Scholar] [CrossRef]
- Chattanta, V.; Verma, N.; Mehra, P. Quantifying the Difference between Male and Female Agility in Football Players: A Cross-Sectional Study. Phys. Ther. Sport 2024, 70, 90–94. [Google Scholar] [CrossRef]
- Forelli, F.; Le Coroller, N.; Gaspar, M.; Memain, G.; Kakavas, G.; Miraglia, N. Ecological and Specific Evidence-Based Safe Return To Play After Anterior Cruciate Ligament Reconstruction In Soccer Players: A New International Paradigm. Int. J. Sports Phys. Ther. 2023, 18, 526. [Google Scholar] [CrossRef]
- Ladda, A.M.; Lebon, F.; Lotze, M. Using Motor Imagery Practice for Improving Motor Performance—A Review. Brain Cogn. 2021, 150, 105705. [Google Scholar] [CrossRef]
- Hallaj Mazidluie, M.; Ahadi, J.; Oraei Eslami, F.; Ghanavati, T.; Moradi, A. Comparison of the Effects of Cognitive Dual-Task and Single-Task Balance Exercises on Static Balance among People with Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Trial. Asian Biomed. 2024, 12, 349–356. [Google Scholar]
Macrocycle | |||||||
---|---|---|---|---|---|---|---|
1 Mesocycle (Early After ACLR) | 2 Mesocycle (Mid Phase After ACLR) | 3 Mesocycle (Late Phase After ACLR) | 4 Mesocycle (on Field Phase After ACLR) | ||||
Weeks 1–3 | Weeks 3–6 | Weeks 6–9 | Weeks 9–12 | Weeks 12–15 | Weeks 15–18 | Weeks 19–21 | Weeks > 22 |
Focus on ROM and quadriceps reactivation | Focus on gait and work capacity | Focus on hypertrophy and strength | Focus on strength and power | Focus on running and SSC | Focus on COD | Focus con unplan COD | Focus on agility |
Movement | Goals | Movement Prerogative |
---|---|---|
Single-leg press 90° with hip flexed at 45° | 1.25 BW for 8 rep | Enough muscle–connective tissue isotonic strength to absorb and release vGRF |
Single-leg bridge endurance test | >20 rep or less than 5 rep difference b/t leg with good quality | Enough hip endurance and lumbopelvic capacity to control pelvic stability and hip propulsion |
Single-leg calf raise endurance test | >20 rep or less than 5 rep difference b/t leg with good quality and heel raise height | Enough calf endurance to control propulsion during late stance |
6 RM calf raise | 0.5 BW 6 rep with good quality | Enough calf isotonic strength to absorb and release vGRF |
6 RM seated calf raise | 1.5 BW 6 rep with good quality | Enough calf isotonic strength to absorb and release vGRF and control anterior tibial translation |
Isometric knee extension 60° | >70% LSI, >2.00 Nm/kg | Enough muscle–connective tissue isometric strength to control the amortization phase of ground contact time |
Isometric knee extension 90° | RTD > 70% LSI | Enough muscle–connective tissue isometric explosive strength to control the amomortization phase of ground contact time |
Isokinetic 60° knee extension | 1.45 Nm/kg or >70% LSI | Enough muscle–connective tissue isokinetic strength to control knee flexion movement |
Isometric knee flexion 60° | >70 LSI | Enough muscle–connective tissue isometric strength in order to control tibial translation |
Single-leg squat raise | >85% LSI, >10 rep | Enough quadriceps endurance to control deceleration of the COM during stance phase |
Isometric single-leg squat | Peak force > 1.5 BW | Enough isometric strength to control the amortization and prepare leg stiffness during the phase of ground contact time |
Normal ankle motion | >25° passive dorsiflexion >65° FLA dorsal extension | Enough ankle ROM and first toe for terminal stance—propulsion |
Hip abductor to BW ratio | >33% | Enough abductor muscle strength to control pelvic movement in frontal plane |
Phase | Prerequisites | Core Tests/Metrics | Go/No-Go Clinical Gate |
---|---|---|---|
(a) Foundational—Joint Health And Neuromuscular Reactivation | Pain/swelling controlled; full passive extension; adequate flexion (~130°); early AMI management to limit reflex inhibition [15,17,18,21,22,23]. | sEMG hamstrings–vastus co-contraction (if reflex suspected); quadriceps peak/RMS sEMG (VL/VM/RF); from week 6 add CAR (superimposed burst) and isometric strength at 60°/90°; continue sEMG [15,18,19,20,22]. | Superior patellar glide; no SLR lag; heel raise with quadriceps contraction; symmetrical quadriceps peak sEMG; CAR normalized [15,16,18,20] (Figure 1 and Figure 3). |
(b) Neuromuscular Control And Work Capacity | Robust CKC motor control and sufficient work capacity; correct aberrant load distribution/kinematics before high-intensity strength [57,58,59,60,61,62]. | Single-leg squat quality; Y-Balance; step-down capacity; heel raise height (full plantarflexion readiness for calf endurance loading) [17,28,63,64,65,66,67]. | Advance strength when CKC control/work capacity (and heel raise) criteria are met and load progression is safe (Figure 4) [17,28,63,64,65,66,67]. |
(c) Strength Development | Endurance and maximal strength established; maintain joint health/neuromuscular work; initiate/continue reactive and foot-strength training [28,68,69,70,71,72]. | Strength assessment per Table 2 (standardized isometric/isokinetic measures at 60°/90°). | Begin running only after Table 2 strength targets are achieved. (Table 2) |
(d) Power And Linear Running | Progressive running for connective tissue conditioning and high vGRF tolerance; introduce COD only after strength goals; integrate gym + field; consider VBT for power at lower joint stress [24,27,82,83,84,85,86,87,88]. | DLCMJ, SLCMJ, DLDJ, SLDJ; metrics: jump height, LSI, RSI, GCT; add kinetic/kinematic strategies (second impulse, force at zero velocity) [29,89,90,91]. | Move to planned COD when phase targets are met (Figure 5) with symmetry in SLCMJ downward-phase impulse/velocity/force and adequate eccentric/isokinetic strength [94,95,96]. (Figure 5) |
(e) Change of Direction (Planned) | Effective braking/force absorption with minimal GCT at high effort; eccentric quadriceps forces during cutting up to ~6 × BW [95,97,98,99]. | Planned COD tests (505, pro-agility) + CMAS; repeated-sprint ability; kinetic-informed interpretation to detect knee under-loading from fear/reduced capacity [100,101,102,103,104]. | Proceed to unplanned COD/agility after exposure to all variants across velocities and KPI attainment (Figure 6) [100,101]. (Figure 6) |
(f) Agility And Chaos (Unplanned) | Readiness for combined perceptual–cognitive demands and tissue loading of competitive sport [16,37,42,43,84]. | Reactive COD and sport-specific drills (e.g., “11 to Perf Score”); corroborate on-field external load profiles with GPS (acceleration, sprint, deceleration) [101,108]. | Advance toward return to training when predefined targets are achieved and movement quality shows effective knee load absorption (no compensatory under-loading) [87]. (Figure 7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campardo, G.; Ricupito, R.; Vercesi, C.; Mourad, F.; Kakavas, G.; Forelli, F. Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review. Healthcare 2025, 13, 2480. https://doi.org/10.3390/healthcare13192480
Campardo G, Ricupito R, Vercesi C, Mourad F, Kakavas G, Forelli F. Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review. Healthcare. 2025; 13(19):2480. https://doi.org/10.3390/healthcare13192480
Chicago/Turabian StyleCampardo, Giandomenico, Roberto Ricupito, Carlotta Vercesi, Firas Mourad, Georgios Kakavas, and Florian Forelli. 2025. "Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review" Healthcare 13, no. 19: 2480. https://doi.org/10.3390/healthcare13192480
APA StyleCampardo, G., Ricupito, R., Vercesi, C., Mourad, F., Kakavas, G., & Forelli, F. (2025). Think Outside the Block: Rehabilitation Continuum After ACL Reconstruction with Adaptive Macro-Blocks—A Narrative Review. Healthcare, 13(19), 2480. https://doi.org/10.3390/healthcare13192480