Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Instruments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations and Suggestions for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitrikas, K.; Dalton, H.; Breish, D. Cerebral Palsy: An Overview. Am. Fam. Physician 2020, 101, 2130–2220. [Google Scholar]
- Rosenbaum, P.L.; Jacobsson, B.; Damiano, D. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2006, 49, 8–14. [Google Scholar] [CrossRef]
- Paul, S.; Nahar, A.; Bhagawati, M.; Kunwar, A.J. A Review on recent advances of cerebral palsy. Oxidative Med. Cell. Longev. 2022, 2022, 2622310. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, T. Diagnosis, treatment, and prevention of cerebral palsy. Clin. Obstet. Gynecol. 2008, 51, 816–828. [Google Scholar] [CrossRef]
- Groff, D.G.; Lundberg, N.R.; Zabriskie, R.B. Influence of adapted sport on quality of life: Perceptions of athletes with cerebral palsy. Disabil. Rehabil. 2009, 31, 318–326. [Google Scholar] [CrossRef]
- Ferreira, C.C.; Gamonales, J.M.; Santos, F.J.; Espada, M.C.; Muñoz-Jiménez, J. Boccia in Paralympic Games: The evolution from 1984 to 2016 and future perspectives. Cuad. Psicol. Del Deporte 2022, 22, 205–214. [Google Scholar] [CrossRef]
- World Boccia. About Boccia. Available online: https://www.worldboccia.com/about-boccia/ (accessed on 2 January 2025).
- Kataoka, M.; Okuda, K.; Iwata, A.; Imura, S.; Yahagi, K.; Matsuo, Y. Throwing distance and competitive performance of Boccia players. J. Phys. Ther. Sci. 2020, 32, 574–577. [Google Scholar] [CrossRef]
- Boccia England. Big Boccia Survey 2024 Results. 2024. Available online: https://www.bocciaengland.org.uk/news/big-boccia-survey-2024-results (accessed on 10 December 2024).
- Rimmer, J.H.; Riley, B.; Wang, E.; Rauworth, A.; Jurkowski, J. Physical activity participation among persons with disabilities: Barriers and facilitators. Am. J. Prev. Med. 2004, 26, 419–425. [Google Scholar] [CrossRef]
- Shin, H.I.; Jung, S.H. Body fat distribution and associated risk of cardiovascular disease in adults with cerebral palsy. Front. Neurol. 2021, 12, 733294. [Google Scholar] [CrossRef]
- Sherk, V.D.; Bemben, M.G.; Bemben, D.A. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Arch. Phys. Med. Rehabil. 2010, 91, 1077–1081. [Google Scholar] [CrossRef]
- Dionyssiotis, Y.; Petropoulou, K.; Rapidi, C.A.; Papagelopoulos, P.; Papaioannou, N.; Galanos, A.; Papadaki, P.; Lyritis, G.P. Body composition in paraplegic men. J. Clin. Densitom. 2008, 11, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Richard, N.; Pierson, J.; Waters, R.L.; Bauman, W.A. Factors influencing body composition in persons with spinal cord injury: A cross-sectional study. J. Appl. Physiol. 2003, 95, 2398–2407. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.M.; Alves, E.S.; Lemos, V.A.; Schwingel, P.A.; da Silva, A.; Vital, R.; Vieira, A.S.; Barreto, M.M.; Rocha, E.A.; Tufik, S.; et al. Assessment of body composition and sport performance of Brazilian Paralympic swim team athletes. J. Sports Rehabil. 2016, 25, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Dingley, A.A.; Pyne, D.B.; Burkett, B. Relationships between propulsion and anthropometry in Paralympic swimmers. Int. J. Sports Physiol. Perform. 2015, 10, 978–985. [Google Scholar] [CrossRef]
- Cherif, M.; Said, M.A.; Bannour, K.; Alhumaid, M.M.; Chaifa, M.B.; Khammassi, M.; Aouidet, A. Anthropometry, body composition, and athletic performance in specific field tests in Paralympic athletes with different disabilities. Heliyon 2022, 8, e09023. [Google Scholar] [CrossRef]
- Peterson, M.D.; Zhang, P.; Haapala, H.J.; Wang, S.C.; Hurvitz, E.A. Greater adipose tissue distribution and diminished spinal musculoskeletal density in adults with cerebral palsy. Arch. Phys. Med. Rehabil. 2015, 96, 1828–1833. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Su, Y.C.; Tsai, M.C.; Lin, C.Y.; Yang, J.; Wu, P.S.; Yang, H.C.; Lin, Y.C. Does botulinum toxin injection exacerbate sarcopenia and bone mass in individuals with cerebral palsy? Pediatr. Neurol. 2023, 149, 32–38. [Google Scholar] [CrossRef]
- Jeon, I.; Bang, M.S.; Lim, J.Y.; Shin, H.I.; Leigh, J.H.; Kim, K.; Kwon, B.S.; Jang, S.N.; Jung, S.H. Sarcopenia among adults with cerebral palsy in South Korea. Phys. Med. Rehabil. J. 2019, 11, 1296–1301. [Google Scholar] [CrossRef]
- King, W.; Levin, R.; Schmidt, R.; Oestreich, A.; Heubi, J.E. Prevalence of reduced bone mass in children and adults with spastic quadriplegia. Dev. Med. Child Neurol. 2003, 45, 12–16. [Google Scholar] [CrossRef]
- Won, J.H.; Jung, S.H. Bone mineral density in adults with cerebral palsy. Front. Neurol. 2021, 12, 733322. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, C.; Gabet, J.; Lee, J.; Ma, M.; Brander, K.; Wysocki, N. Osteoporosis in adults with cerebral palsy: Feasibility of DXA screening and risk factors for low bone density. Osteoporos. Int. 2016, 27, 1477–1484. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lee, S.J.; Yoon, Y.K.; Shin, Y.K.; Cho, S.R.; Rhee, Y. Adults with spastic cerebral palsy have lower bone mass than those with dyskinetic cerebral palsy. Bone 2015, 71, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Fowler, E.G.; Rao, S.; Nattiv, A.; Heberer, K.; Oppenheim, W.L. Bone density in premenopausal women and men under 50 years of age with cerebral palsy. Arch. Phys. Med. Rehabil. 2015, 96, 1304–1309. [Google Scholar] [CrossRef]
- Whitney, D.G.; Alford, A.I.; Devlin, M.J.; Caird, M.S.; Hurvitz, E.A.; Peterson, M.D. Adults with cerebral palsy have higher prevalence of fracture compared with adults without cerebral palsy independent of osteoporosis and cardiometabolic diseases. J. Bone Miner. Res. 2019, 34, 1240–1247. [Google Scholar] [CrossRef]
- Cavedon, V.; Sandri, M.; Peluso, I.; Zancanaro, C.; Milanese, C. Body composition and bone mineral density in athletes with a physical impairment. PeerJ 2021, 9, e11296. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef]
- Binkley, N.; Bilezikian, J.P.; Kendler, D.L.; Leib, E.S.; Lewiecki, E.M.; Petak, S.M.; International Society for Clinical, D. Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference. J. Clin. Densitom. 2006, 9, 4–14. [Google Scholar] [CrossRef]
- Hastie, T.; Witten, D.; James, G.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, 2nd ed.; Springer: New York, NY, USA, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Ferreira, C.C.; Espada, M.C.; Gamonales, J.M.; Muñoz-Jiménez, J. Current status of sport performance in Boccia: Systematic review of the literature. Retos 2023, 48, 1070–1077. [Google Scholar] [CrossRef]
- van de Vliet, P.; Broad, E.; Strupler, M. Nutrition, body composition and pharmacology. In Handbook of Sports Medicine and Science: The Paralympic Athlete; Vanlandewijck, Y.C., Thomposon, W.R., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 172–197. [Google Scholar]
- Hendarto, S. Gender differences in boccia underhand throw biomechanics. Revista Iberoamericana Psícologia Ejercicio Deporte 2023, 18, 228–234. [Google Scholar]
- Rezavandzayeri, F.; Suarez, H.; Khortabi, A.; Carral, J. The effects of Boccia training load on emotional intelligence and quality of life in individuals with cerebral palsy. Retos 2024, 54, 381–388. [Google Scholar] [CrossRef]
- Yahagi, K.; Masataka, K.; Ishiba, T.; Imura, S. Training effect of repeated rolling motions on boccia players with severe cerebral palsy: Comparison with the effect of conventional upper-limb training using a crossover test. J. Phys. Ther. Sci. 2024, 36, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Fagher, K.; Badenhorst, M.; Kunorozva, L.; Derman, W.; Lexell, J. “It gives me a wake up call”-It is time to implement athlete health monitoring within the Para sport context. Scand. J. Med. Sci. Sports 2022, 33, 776–786. [Google Scholar] [CrossRef] [PubMed]
- McPhee, P.G.; Claridge, E.A.; Noorduyn, S.G.; Gorter, J.W. Cardiovascular disease and related risk factors in adults with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2018, 61, 915–923. [Google Scholar] [CrossRef]
- Strauss, D.; Cable, W.; Shavelle, R. Causes of excess mortality in cerebral palsy. Dev. Med. Child Neurol. 1999, 41, 580–585. [Google Scholar] [CrossRef]
- Gorla, J.I.; Costa e Silva, A.; Borges, M.; Tanhoffer, R.A.; Godoy, P.S.; Calegari, D.R.; Santos Ade, O.; Ramos, C.D.; Nadruz Junior, W.; Cliquet Junior, A. Impact of wheelchair rugby on body composition of subjects with tetraplegia: A pilot study. Arch. Phys. Med. Rehabil. 2016, 97, 92–96. [Google Scholar] [CrossRef]
- Verschuren, O.; Peterson, M.D.; Balemans, A.C.; Hurvitz, E.A. Exercise and physical activity recommendations for people with cerebral palsy. Dev. Med. Child Neurol. 2016, 58, 798–808. [Google Scholar] [CrossRef]
- Lauglo, R.; Vik, T.; Lamvik, T.; Stensvold, D.; Finbraten, A.K.; Moholdt, T. High-intensity interval training to improve fitness in children with cerebral palsy. BMJ Open Sport Exerc. Med. 2016, 2, e000111. [Google Scholar] [CrossRef]
- Olympics. Paralympic Schedule&Results: Boccia. Available online: https://olympics.com/en/paris-2024/paralympic-games/schedule/boccia?day=29-august (accessed on 13 January 2025).
- Slatter, G.; Goosey-Tolfrey, V. Assessing body composition of athletes. In Sports Nutrition for Paralympic Athletes, 2nd ed.; Broad, E., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 245–264. [Google Scholar]
- Weijer, V.C.R.; Jonvik, K.L.; van Dam, L.; Risvang, L.; Plasqui, G.; Sandbakk, Ø.; Raastad, T.; van Loon, L.J.C.; van Dijk, J.-W. Energy Requirements of Paralympic Athletes: Insights from the Doubly Labeled Water Approach. Med. Sci. Sports Exerc. 2024, 56, 963–971. [Google Scholar] [CrossRef]
- Boccia Canada. Long-Term Athlete Development Model. Available online: https://bocciacanada.ca/wp-content/uploads/2021/08/Long-Term-Athlete-Development-Model-en.pdf (accessed on 21 December 2024).
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Nunes, E.A.; Colenso-Semple, L.; McKellar, S.R.; Yau, T.; Ali, M.U.; Fitzpatrick-Lewis, D.; Sherifali, D.; Gaudichon, C.; Tome, D.; Atherton, P.J.; et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J. Cachexia Sarcopenia Muscle 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Chen, K.L.; Hsu, C.; Chen, H.C.; Chen, J.Y.; Yu, S.Y.; Shiu, Y.J. Creatine supplementation for muscle growth: A scoping review of randomized clinical trials from 2012 to 2021. Nutrients 2022, 14, 1255. [Google Scholar] [CrossRef] [PubMed]
- Koivisto-Mork, A.E.; Steffen, K.; Finnes, T.E.; Pretorius, M.; Berge, H.M. High prevalence of low bone mineral density but normal trabecular bone score in Norwegian elite Para athletes. Front. Sports Act. Living 2023, 5, 1246828. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, K.; Wang, D.H.; Mori, K.; Takahashi, K.; Miyatake, N.; Wang, B.L.; Takigawa, T.; Takaki, J.; Ogino, K. Effect of sports activity on bone mineral density in wheelchair athletes. J. Bone Miner. Metab. 2008, 26, 101–106. [Google Scholar] [CrossRef]
- Weijer, V.C.R.; van Dijk, J.W.; van Dam, L.; Risvang, L.; Bons, J.; Raastad, T.; van Loon, L.J.C.; Jonvik, K.L. Do Paralympic athletes suffer from brittle bones? Prevalence and risk factors of low bone mineral density in Paralympic athletes. Bone Rep. 2024, 21, 101767. [Google Scholar] [CrossRef]
- Crosland, J.; Boyd, C. Cerebral Palsy and Acquired Brain Injuries. In Sports Nutrition for Paralympic Athletes; Broad, E., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2004; pp. 91–105. [Google Scholar]
- Claudio, P.; Shaw, G. Use of supplements in athletes with an impairment. In Sports Nutrition for Paralympic Athletes, 2nd ed.; Broad, E., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 265–286. [Google Scholar]
Variable | n (%) |
---|---|
Gender | |
F | 2 (40) |
M | 3 (60) |
Type of CP | |
Spastic quadriplegia | 5 (100) |
Associated diseases | |
No | 4 (80) |
Arrhythmia | 1 (20) |
Mean | SD | Player 1 | Player 2 | Player 3 | Player 4 | Player 5 | |||
---|---|---|---|---|---|---|---|---|---|
Sex | - | - | Male | Male | Male | Female | Female | ||
Age | 29 | 13.06 | 42 | 15 | 41 | 16 | 31 | ||
Height (cm) | 157.4 | 10.06 | 152.0 | 165.0 | 170.0 | 145.0 | 155.0 | ||
Weight (kg) | 58.4 | 19.53 | 75.0 | 42.0 | 74.0 | 33.0 | 68.0 | ||
Years of practice | 13.80 | 8.11 | 15 | 10 | 25 | 3 | 16 | ||
Years of competition | 11.20 | 9.58 | 10 | 3 | 25 | 2 | 16 | ||
Specific training sessions: duration per session (min) | 183.00 | 65.73 | 300 | 150 | 150 | 150 | 165 * | ||
Specific training sessions: frequency per week | 4.40 | 1.14 | 5 | 4 | 6 | 3 | 4 | ||
S&C training sessions: duration per session (min) | 43.00 | 14.40 | 20 | 45 * | 45 | 45 | 60 | ||
S&C training sessions: frequency per week | 3.25 | 1.50 | 5 | 2 | 4 | 2 | 2.5 * | ||
Nutritional monitoring | - | - | Yes | Yes | Yes | Yes | No | ||
BMI (kg/m2) | 23.50 | 7.65 | 32.5 | 15.4 | 25.6 | 15.7 | 28.3 | ||
Whole body | Fat mass (kg) | 22.31 | 11.17 | 27.169 | 9.598 | 29.874 | 11.127 | 33.798 | |
FMI (kg/m2) | 9.00 | 4.44 | 11.76 | 3.52 | 10.34 | 5.29 | 14.07 | ||
% Fat | 37.82 | 10.63 | 38.60 | 22.50 | 42.90 | 34.00 | 51.10 | ||
Lean Mass (kg) | 32.53 | 7.98 | 41.398 | 31.897 | 37.844 | 20.484 | 31.016 | ||
ALM (kg) | 12.80 | 3.87 | 16.63 | 12.80 | 16.21 | 7.27 | 11.08 | ||
ALMI (kg/m2) | 5.12 | 1.39 | 7.20 | 4.70 | 5.61 | 3.46 | 4.61 | ||
BMD (g/cm2) | 0.941 | 0.065 | 0.966 | 0.907 | 1.036 | 0.865 | 0.929 | ||
BMD Z−score | −2.1 | 0.3 | −2.4 | −2.0 | −1.6 | −2.4 | −2.3 | ||
BMC (g) | 1463.27 | 345.27 | 1811.21 | 1225.16 | 1858.47 | 1123.09 | 1298.43 | ||
Radius | 1/3 | BMC (g) | 1.57 | 0.31 | 2.05 | 1.32 | 1.7 | 1.43 | 1.35 |
BMD (g/cm2) | 0.66 | 0.07 | 0.763 | 0.636 | 0.713 | 0.601 | 0.599 | ||
BMD Z−score | −1.30 | 0.35 | −0.8 | −1.1 | −1.7 | −1.5 | −1.4 | ||
Lumbar Spine | BMC (g) | 44.31 | 12.69 | 40.54 | 50.1 | 63.03 | 30.03 | 37.83 | |
BMD (g/cm2) | 0.85 | 0.16 | 0.779 | 0.906 | 1.089 | 0.672 | 0.818 | ||
BMD Z−score | −1.70 | 1.50 | −2.7 | −0.4 | 0.1 | −3.4 | −2.1 |
Variables | R | p Value | r2 |
---|---|---|---|
Weight × Age | 0.96 | 0.009 | 0.93 |
Weight × Fat mass | 0.93 | 0.028 | 0.84 |
Age × BMC | 0.93 | 0.024 | 0.86 |
BMD × BMC | 0.92 | 0.027 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, B.; Gorla, J.I.; Sá, K.S.G.d.; Corredeira, R.; Bastos, T. Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA. Healthcare 2025, 13, 1658. https://doi.org/10.3390/healthcare13141658
Vasconcelos B, Gorla JI, Sá KSGd, Corredeira R, Bastos T. Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA. Healthcare. 2025; 13(14):1658. https://doi.org/10.3390/healthcare13141658
Chicago/Turabian StyleVasconcelos, Bárbara, José Irineu Gorla, Karina Santos Guedes de Sá, Rui Corredeira, and Tânia Bastos. 2025. "Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA" Healthcare 13, no. 14: 1658. https://doi.org/10.3390/healthcare13141658
APA StyleVasconcelos, B., Gorla, J. I., Sá, K. S. G. d., Corredeira, R., & Bastos, T. (2025). Exploratory Assessment of Health-Related Parameters in World-Class Boccia Players Using DXA. Healthcare, 13(14), 1658. https://doi.org/10.3390/healthcare13141658