An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
INT | Integrative neuromuscular training |
PEC | Physical education classes |
References
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R. Understanding physical literacy in youth. Strength Cond. J. 2018, 40, 90–94. [Google Scholar] [CrossRef]
- Bermejo-Cantarero, A.; Álvarez-Bueno, C.; Martinez-Vizcaino, V.; García-Hermoso, A.; Torres-Costoso, A.I.; Sánchez-López, M. Association between physical activity, sedentary behavior, and fitness with health related quality of life in healthy children and adolescents: A protocol for a systematic review and meta-analysis. Medicine 2017, 96, e6407. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K.; Fitzgerald, J.S.; Lang, J.J.; Ortega, F.B. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.; Abdeta, C.; Abi Nader, P.; Adeniyi, A.; Aguilar-Farias, N.; Tenesaca, D.; Bhawra, J.; Brazo-Sayavera, J.; Cardon, G.; et al. Global Matrix 3.0 Physical Activity Report Card Grades for Children and Youth: Results and Analysis from 49 Countries. J. Phys. Act. Health 2018, 15, S251–S273. [Google Scholar] [CrossRef]
- Belton, S.; O’Brien, W.; Meegan, S.; Woods, C.; Issartel, J. Youth-physical activity towards health: Evidence and background to the development of the Y-PATH physical activity intervention for adolescents. BMC Public Health 2014, 14, 122. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Schwarzfischer, P.; Gruszfeld, D.; Socha, P.; Luque, V.; Closa-Monasterolo, R.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Schwarzfischer, P.; Gruszfeld, D.; Stolarczyk, A.; Ferre, N.; Escribano, J.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Physical Activity and Sedentary Behavior From 6 to 11 Years. Pediatrics 2019, 143, e20180994. [Google Scholar] [CrossRef]
- Moliner-Urdiales, D.; Ruiz, J.R.; Ortega, F.B.; Jiménez-Pavón, D.; Vicente-Rodriguez, G.; Rey-López, J.P.; Martínez-Gómez, D.; Casajús, J.A.; Mesana, M.I.; Marcos, A.; et al. Secular trends in health-related physical fitness in Spanish adolescents: The AVENA and HELENA Studies. J. Sci. Med. Sport 2010, 13, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R.; MacDonald, J.P. Pediatric Inactivity Triad: A Risky PIT. Curr. Sports Med. Rep. 2018, 17, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; King, N.A.; Armstrong, T.P. The contribution of physical activity and sedentary behaviours to the growth and development of children and adolescents: Implications for overweight and obesity. Sports Med. 2007, 37, 533–545. [Google Scholar] [CrossRef]
- Hills, A.P.; Andersen, L.B.; Byrne, N.M. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Edwards, N.M.; Clark, J.F.; Best, T.M.; Sallis, R.E. Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach. Br. J. Sports Med. 2015, 49, 1510–1516. [Google Scholar] [CrossRef]
- Alonso-Aubin, D.A.; Picón-Martínez, M.; Rebullido, T.R.; Faigenbaum, A.D.; Cortell-Tormo, J.M.; Chulvi-Medrano, I. Integrative Neuromuscular Training Enhances Physical Fitness in 6-to 14-Year-Old Rugby Players. J. Strength Cond. Res. 2021, 35, 2263–2271. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Farrell, A.; Fabiano, M.; Radler, T.; Naclerio, F.; Ratamess, N.A.; Kang, J.; Myer, G.D. Effects of integrative neuromuscular training on fitness performance in children. Pediatr. Exerc. Sci. 2011, 23, 573–584. [Google Scholar] [CrossRef]
- Meyer, U.; Roth, R.; Zahner, L.; Gerber, M.; Puder, J.J.; Hebestreit, H.; Kriemler, S. Contribution of physical education to overall physical activity. Scand. J. Med. Sci. Sports 2013, 23, 600–606. [Google Scholar] [CrossRef]
- Polet, J.; Hassandra, M.; Lintunen, T.; Laukkanen, A.; Hankonen, N.; Hirvensalo, M.; Tammelin, T.; Hagger, M.S. Using physical education to promote out-of school physical activity in lower secondary school students—A randomized controlled trial protocol. BMC Public Health 2019, 19, 157. [Google Scholar] [CrossRef]
- Khodaverdi, Z.; Bahram, A.; Stodden, D.; Kazemnejad, A. The relationship between actual motor competence and physical activity in children: Mediating roles of perceived motor competence and Health-Related physical fitness. J. Sports Sci. 2016, 34, 1523–1529. [Google Scholar] [CrossRef]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship Between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Corder, K.; Atkin, A.J.; Ekelund, U.; van Sluijs, E.M.F. What do adolescents want in order to become more active? BMC Public Health 2013, 13, 718. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.G.; Smith, J.J.; Morgan, P.J.; Peralta, L.R.; Hilland, T.A.; Eather, N.; Lonsdale, C.; Okely, A.D.; Plotnikoff, R.C.; Salmon, J.O.; et al. Implementing Resistance Training in Secondary Schools: A Cluster Randomized Controlled Trial. Med. Sci. Sports Exerc. 2017, 50, 32–72. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, R.; Shen, J.; Zhou, A. Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: A systematic review. PeerJ 2022, 10, e13726. [Google Scholar] [CrossRef]
- Duncan, M.J.; Eyre, E.L.J.; Oxford, S.W. The Effects of 10-week Integrated Neuromuscular Training on Fundamental Movement Skills and Physical Self-efficacy in 6–7-Year-Old Children. J. Strength Cond. Res. 2018, 32, 3348–3356. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Sazo-Rodriguez, S.; Concha-Cisternas, Y.; Valdés-Badilla, P.; Lira-Cea, C.; Silva-Moya, G.; Henríquez, R.; Farias, T.Y.; Cigarroa, I.; Castillo-Retamal, M.; et al. Four Weeks of Neuromuscular Training Improve Static and Dynamic Postural Control in Overweight and Obese Children: A Randomized Controlled Trial. J. Mot. Behav. 2020, 52, 761–769. [Google Scholar] [CrossRef]
- Silva-Moya, G.; Méndez-Rebolledo, G.; Valdes-Badilla, P.; Gómez-Álvarez, N.; Guzmán-Muñoz, E. Effects of neuromuscular training on psychomotor development and active joint position sense in school children. J. Mot. Behav. 2022, 54, 57–66. [Google Scholar] [CrossRef]
- Sinđić, M.; Mačak, D.; Todorović, N.; Purda, B.; Batez, M. Effect of Integrated Neuromuscular Exercise in Physical Education Class on Health-Related Fitness in Female Children. Healthcare 2021, 9, 312. [Google Scholar] [CrossRef]
- Tabacchi, G.; López-Sánchez, G.; Şahin, F.N.; Kızılyallı, M.; Genchi, R.; Basile, M.; Kirkar, M.; Silva, C.; Loureiro, N.; Teixeira, E.; et al. Field-Based Tests for the Assessment of Physical Fitness in Children and Adolescents Practicing Sport: A Systematic Review within the ESA Program. Sustainability 2019, 11, 7187. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Molina-Garcia, P.; Molina-Molina, A.; Smeets, A.; Migueles, J.H.; Ortega, F.B.; Vanrenterghem, J. Effects of integrative neuromuscular training on the gait biomechanics of children with overweight and obesity. Scand. J. Med. Sci. Sports 2022, 32, 1119–1130. [Google Scholar] [CrossRef]
- Trigueros, R.; Mínguez, L.A.; González-Bernal, J.J.; Aguilar-Parra, J.M.; Soto-Cámara, R.; Álvarez, J.F.; Rocamora, P. Physical Education Classes as a Precursor to the Mediterranean Diet and the Practice of Physical Activity. Nutrients 2020, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R.; Peña, J.; Chulvi-Medrano, I. Resistance Exercise for the Prevention and Treatment of Pediatric Dynapenia. J. Sci. Sport Exerc. 2019, 1, 208–216. [Google Scholar] [CrossRef]
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Cox, A.; Fairclough, S.J.; Kosteli, M.-C.; Noonan, R.J. Efficacy of School-Based Interventions for Improving Muscular Fitness Outcomes in Adolescent Boys: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 543–560. [Google Scholar] [CrossRef]
- Villa-González, E.; Barranco-Ruiz, Y.; García-Hermoso, A.; Faigenbaum, A.D. Efficacy of school-based interventions for improving muscular fitness outcomes in children: A systematic review and meta-analysis. Eur. J. Sport Sci. 2023, 23, 444–459. [Google Scholar] [CrossRef]
- Sañudo, B.; Sánchez-Hernández, J.; Bernardo-Filho, M.; Abdi, E.; Taiar, R.; Núñez, J. Integrative Neuromuscular Training in Young Athletes, Injury Prevention, and Performance Optimization: A Systematic Review. Appl. Sci. 2019, 9, 3839. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Pan, R.-C.; Huang, M.-R.; Wang, D. Effects of Integrative Neuromuscular Training Combined with Regular Tennis Training Program on Sprint and Change of Direction of Children. Front. Physiol. 2022, 13, 831248. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, C.; Bi, Y.; Chen, L. Effect of Integrative Neuromuscular Training for Injury Prevention and Sports Performance of Female Badminton Players. BioMed Res. Int. 2021, 2021, 5555853. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; García-Alonso, Y.; Alonso-Martínez, A.M.; Izquierdo, M. Association of Cardiorespiratory Fitness Levels During Youth with Health Risk Later in Life: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 952–960. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Ford, K.R.; Best, T.M.; Bergeron, M.F.; Hewett, T.E. When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? Curr. Sports Med. Rep. 2011, 10, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Stracciolini, A.; MacDonald, J.P.; Rebullido, T.R. Mythology of youth resistance training. Br. J. Sports Med. 2022, 56, 997–998. [Google Scholar] [CrossRef] [PubMed]
- Foss, K.D.B.; Thomas, S.; Khoury, J.C.; Myer, G.D.; Hewett, T.E. A School-Based Neuromuscular Training Program and Sport-Related Injury Incidence: A Prospective Randomized Controlled Clinical Trial. J. Athl. Train. 2018, 53, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Chow, Z.-S.; Moreland, A.T.; Macpherson, H.; Teo, W.-P. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med. 2021, 51, 2483–2506. [Google Scholar] [CrossRef]
- Ford, P.; de Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Collins, H.; Booth, J.N.; Duncan, A.; Fawkner, S. The effect of resistance training interventions on fundamental movement skills in youth: A meta-analysis. Sports Med.—Open 2019, 5, 17. [Google Scholar] [CrossRef]
- Faigenbaum, A. Resistance exercise and youth: Survival of the strongest. Pediatr. Exerc. Sci. 2017, 29, 14–18. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sports Health 2017, 9, 436–443. [Google Scholar] [CrossRef]
- Smith, J.J.; DeMarco, M.; Kennedy, S.G.; Kelson, M.; Barnett, L.M.; Faigenbaum, A.D.; Lubans, D.R. Prevalence and correlates of resistance training skill competence in adolescents. J. Sports Sci. 2018, 36, 1241–1249. [Google Scholar] [CrossRef]
- Rodríguez Ayllón, M.; Cadenas Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora González, J.R.; Hidalgo Migueles, J.; Molina García, P.; Henriksson, H.; Mena Molina, A.; Martínez Vizcaíno, V.; et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: A systematic review and meta-analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef] [PubMed]
- Katsanis, G.; Chatzopoulos, D.; Barkoukis, V.; Lola, A.; Chatzelli, C.; Paraschos, I. Effect of a school-based resistance training program using a suspension training system on strength parameters in adolescents. J. Phys. Educ. Sport 2021, 21, 2607–2621. [Google Scholar] [CrossRef]
- Ten Hoor, G.A.; Rutten, G.M.; Van Breukelen, G.J.P.; Kok, G.; Ruiter, R.A.C.; Meijer, K.; Kremers, S.P.J.; Feron, F.J.M.; Crutzen, R.; Schols, A.M.J.W.; et al. Strength exercises during physical education classes in secondary schools improve body composition: A cluster randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 92. [Google Scholar] [CrossRef]
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S. Integrating Resistance Training into High School Curriculum. Strength Cond. J. 2019, 41, 39–50. [Google Scholar] [CrossRef]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Ss, M.; Dharuman, M. Effects of integrative neuromuscular training combined with yoga and stretching exercises on abdominal strength endurance of primary school children. Indian J. Public Health Res. Dev. 2020, 11, 899–903. [Google Scholar]
- Kumar, R.; Zemková, E. The Effect of 12-Week Core Strengthening and Weight Training on Muscle Strength, Endurance and Flexibility in School-Aged Athletes. Appl. Sci. 2022, 12, 12550. [Google Scholar] [CrossRef]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in Lower-Body Strength Transfer Positively to Sprint Performance: A Systematic Review with Meta-Analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Uthoff, A.; Oliver, J.; Cronin, J.; Winwood, P.; Harrison, C.; Lee, J.E. Resisted Sprint Training in Youth: The Effectiveness of Backward vs. Forward Sled Towing on Speed, Jumping, and Leg Compliance Measures in High-School Athletes. J. Strength Cond. Res. 2021, 35, 2205–2212. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kang, J.; Ratamess, N.A.; Farrell, A.C.; Belfert, M.; Duffy, S.; Jenson, C.; Bush, J. Acute Cardiometabolic Responses to Multi-Modal Integrative Neuromuscular Training in Children. J. Funct. Morphol. Kinesiol. 2019, 4, 39. [Google Scholar] [CrossRef]
Session 1 | Session 2 | |||
---|---|---|---|---|
Weeks | Exercises | Volume (sets × reps and recovery) and intensity | Exercises | Volume (sets × reps and recovery) and intensity |
Week 1 | Hip mobility | 2 × 10; R:15 s; BW | Hamstring mobility | 2 × 5 + 5; R:15 s; BW |
Superman | 2 × 5 + 5; R15 s; BW | Gluteus mobility | 2 × 5 + 5; R15 s; BW | |
Trunk mobility | 2 × 5 + 5; R15 s; BW | Dead bug | 2 × 5 + 5; R15 s; BW | |
Bilateral jumps | 2 × 10; R:20 s; BW | One-leg balance | 2 × 10; R:20 s; BW | |
Squats | 2 × 10; R:30 s; BW | Single-leg squat 90° | 2 × 10; R:30 s; BW | |
Biceps curl | 2 × 12 + 12; R:30 s; 3 Kg | Burpees | 2 × 10; R:30 s, BW | |
Lateral planks | 2 × 12 + 12; R:30 s; BW | Circuit | ||
20 m forward run, 20 m backpedal run, and 30 s front planks | ||||
2 sets, R:30 s | ||||
Week 2 | Hip mobility | 2 × 12; R:15 s; BW | Hamstring mobility | 2 × 8 + 8; R:15 s; BW |
Superman | 2 × 8 + 8; R15 s; BW | Gluteus mobility | 2 × 8 + 8; R15 s; BW | |
Trunk mobility | 2 × 8 + 8; R15 s; BW | Dead bug | 2 × 8 + 8; R15 s; BW | |
Bilateral jumps | 2 × 12; R:20 s; BW | One-leg balance | 2 × 12; R:20 s; BW | |
Squats | 2 × 15; R:30 s; BW | Single-leg squat 90° | 2 × 12; R:30 s; BW | |
Biceps curl | 2 × 15 + 15; R:30 s; 3 Kg | Burpees | 2 × 12; R:30 s, BW | |
Lateral planks | 2 × 15 + 15; R:30 s; BW | Circuit | ||
20 m forward run, 20 m backpedal run, and 30 s front planks | ||||
3 sets R:30 s | ||||
Week 3 | Hip mobility | 3 × 12; R:15 s; BW | Hamstring mobility | 3 × 8 + 8; R:15 s; BW |
Superman | 3 × 8 + 8; R15 s; BW | Gluteus mobility | 3 × 8 + 8; R15 s; BW | |
Trunk mobility | 3 × 8 + 8; R15 s; BW | Dead bug | 3 × 8 + 8; R15 s; BW | |
Bilateral jumps | 3 × 12; R:20 s; BW | One-leg balance | 3 × 12; R:20 s; BW | |
Squats | 3 × 15; R:30 s; BW | Single-leg squat 90° | 3 × 12; R:30 s; BW | |
Biceps curl | 3 × 15 + 15; R:30 s; 3 Kg | Burpees | 3 × 12; R:30 s; BW | |
Lateral planks | 3 × 15 + 15; R:30 s; BW | Circuit | ||
30 m forward run, 30 m backpedal run and 30 s front planks | ||||
2 sets, R:30 s | ||||
Week 4 | Hip mobility | 3 × 12; R:15 s; BW | Hamstring mobility | 3 × 8 + 8; R:15 s; BW |
Superman | 3 × 8 + 8; R15 s; BW | Gluteus mobility | 3 × 8 + 8; R15 s; BW | |
Trunk mobility | 3 × 8 + 8; R15 s; BW | Dead bug | 3 × 8 + 8; R15 s; BW | |
Bilateral jumps | 3 × 12; R:20 s; BW | One-leg balance | 3 × 12; R:20 s; BW | |
Squats | 3 × 15; R:30 s; BW | Single-leg squat 90° | 3 × 12; R:30 s; BW | |
Biceps curl | 3 × 15 + 15; R:30 s; 5 Kg | Burpees | 3 × 12; R:30 s; BW | |
Lateral planks | 3 × 15 + 15; R:30 s; BW | Circuit | ||
30 m forward run, 30 m backpedal run, and 30 s front planks | ||||
3 sets, R:30 s |
Groups | Metric | Baseline Mean (SD) | CI 95% | Final Assessment Mean (SD) | CI 95% | t | p | d | Interpretation |
---|---|---|---|---|---|---|---|---|---|
G1exp | Lower-body power (m) | 1.36 (0.30) | 1.25–1.48 | 1.56 (0.27) | 1.46–1.67 | −7.04 | <0.001 ** | −1.30 | Large |
Upper-body power (m) | 3.80 (0.86) | 3.47–4.13 | 4.09 (0.91) | 3.75–4.44 | −5.94 | <0.001 ** | −1.10 | Large | |
Abdominal endurance strength (reps) | 18.59 (4.18) | 17.0–20.2 | 21.24 (4.34) | 19.6–22.9 | −9.72 | <0.001 ** | −1.80 | Large | |
Sprint (s) | 11.30 (1.01) | 10.6–11.7 | 10.82 (0.85) | 10.5–11.1 | 5.22 | <0.001 ** | 0.96 | Large | |
G2exp | Lower-body power (m) | 1.58 (0.40) | 1.43–1.72 | 1.67 (0.39) | 1.53–1.81 | −5.19 | <0.001 ** | −0.91 | Large |
Upper-body power (m) | 4.73 (1.27) | 4.27–5.19 | 4.92 (1.37) | 4.43–5.42 | −3.52 | <0.001 ** | −0.62 | Moderate | |
Abdominal endurance strength (reps) | 19.50 (6.86) | 17.0–22.0 | 22.84 (5.60) | 20.8–24.9 | −4.75 | <0.001 ** | −0.84 | Large | |
Sprint (s) | 11.28 (1.22) | 10.8–11.7 | 10.65 (1.15) | 10.2–11.1 | 5.90 | <0.001 ** | 1.04 | Large | |
G1con | Lower-body power (m) | 1.43 (0.27) | 1.33–1.53 | 1.44 (0.24) | 1.34–1.53 | −0.76 | 0.448 | −0.14 | Small |
Upper-body power (m) | 4.23 (0.83) | 3.91–4.54 | 4.13 (0.77) | 3.83–4.42 | 1.55 | 0.131 | 0.28 | Small | |
Abdominal endurance strength (reps) | 15.79 (3.77) | 14.4–17.2 | 17.17 (3.52) | 15.8–18.5 | −5.21 | <0.001 ** | −0.96 | Large | |
Sprint (s) | 12.17 (1.14) | 11.7–12.6 | 12.08 (1.08) | 11.7–12.5 | 1.83 | 0.077 | 0.34 | Small | |
G2con | Lower-body power (m) | 1.64 (0.38) | 1.50–1.78 | 1.69 (0.39) | 1.54–1.83 | −1.72 | 0.095 | −0.31 | Small |
Upper-body power (m) | 5.42 (1.16) | 4.99–5.84 | 5.56 (1.33) | 5.08–6.05 | −1.65 | 0.107 | −0.29 | Small | |
Abdominal endurance strength (reps) | 20.19 (7.75) | 17.3–23.0 | 20.74 (6.99) | 18.2–23.3 | −0.67 | 0.505 | −0.12 | Small | |
Sprint (s) | 11.04 (1.28) | 10.6–11.5 | 10.86 (1.24) | 10.40–11.30 | 1.82 | 0.078 | 0.32 | Small |
Metric | Comparisons | Baseline | Final Assessment | ||||
---|---|---|---|---|---|---|---|
Mean Differences | t | p | Mean Differences | t | p | ||
Lower-body power | G1exp vs. G2exp | −0.21 | −2.42 | 0.07 | −0.10 | −1.20 | 0.63 |
G1exp vs. G1con | −0.06 | −0.74 | 0.88 | 0.12 | 1.40 | 0.50 | |
G1exp vs. G2con | −0.27 | −3.11 | 0.01 * | −0.12 | −1.39 | 0.50 | |
G2exp vs. G1con | 0.14 | 1.66 | 0.34 | 0.22 | 2.64 | 0.04 * | |
G2exp vs. G2con | −0.06 | −0.73 | 0.88 | −0.01 | −0.21 | 0.99 | |
G1con vs. G2con | −0.21 | −2.36 | 0.09 | −0.24 | −2.82 | 0.02 * | |
Upper-body power | G1exp vs. G2exp | −0.92 | −3.72 | 0.005 ** | −0.82 | −2.83 | 0.02 * |
G1exp vs. G1con | −0.42 | −1.53 | 0.42 | −0.03 | −0.10 | 1.00 | |
G1exp vs. G2con | −1.61 | −5.91 | <0.001 ** | −1.47 | −4.98 | <0.001 ** | |
G2exp vs. G1con | 0.50 | 1.85 | 0.25 | 0.79 | 2.71 | 0.03 * | |
G2exp vs. G2con | −0.68 | −2.58 | 0.05 | −0.64 | −2.23 | 0.12 | |
G1con vs. G2con | −1.19 | −4.35 | <0.001 ** | −1.43 | −4.87 | <0.001 ** | |
Abdominal endurance strength | G1exp vs. G2exp | −0.91 | −0.59 | 0.93 | −1.60 | −1.17 | 0.64 |
G1exp vs. G1con | 2.79 | 1.78 | 0.28 | 4.07 | 2.91 | 0.02 * | |
G1exp vs. G2con | −1.60 | −1.04 | 0.72 | 0.49 | 0.36 | 0.98 | |
G2exp vs. G1con | 3.71 | 2.43 | 0.07 | 5.67 | 4.15 | <0.001 ** | |
G2exp vs. G2con | −0.69 | −0.46 | 0.96 | 2.10 | 1.56 | 0.40 | |
G1con vs. G2con | −4.40 | −2.85 | 0.02 * | −3.57 | −2.59 | 0.05 * | |
Sprint | G1exp vs. G2exp | 0.02 | 0.07 | 1.00 | 0.17 | 0.60 | 0.93 |
G1exp vs. G1con | −0.86 | −2.81 | 0.02 * | −1.26 | −4.36 | <0.001 ** | |
G1exp vs. G2con | 0.26 | 0.87 | 0.82 | −0.03 | −0.13 | 0.99 | |
G2exp vs. G1con | −0.89 | −2.95 | 0.02 * | −1.43 | −5.07 | <0.001 ** | |
G2exp vs. G2con | 0.24 | 0.81 | 0.84 | −0.20 | −0.75 | 0.87 | |
G1con vs. G2con | 1.13 | −3.73 | 0.002 ** | 1.22 | 4.30 | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Aubin, D.A.; Moya del Saz, I.; Martínez-Guardado, I.; Chulvi-Medrano, I. An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare 2025, 13, 1372. https://doi.org/10.3390/healthcare13121372
Alonso-Aubin DA, Moya del Saz I, Martínez-Guardado I, Chulvi-Medrano I. An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare. 2025; 13(12):1372. https://doi.org/10.3390/healthcare13121372
Chicago/Turabian StyleAlonso-Aubin, Diego A., Ignacio Moya del Saz, Ismael Martínez-Guardado, and Iván Chulvi-Medrano. 2025. "An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance" Healthcare 13, no. 12: 1372. https://doi.org/10.3390/healthcare13121372
APA StyleAlonso-Aubin, D. A., Moya del Saz, I., Martínez-Guardado, I., & Chulvi-Medrano, I. (2025). An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare, 13(12), 1372. https://doi.org/10.3390/healthcare13121372