The Association of the Distance to the Hospital, Hospital Reputation, and Hospitalization Outcomes Among Patients with Stroke in China
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Distance to Hospital and Hospital Reputation
2.3. Covariates
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Demographic Information
3.2. Association of Hospital Distance, Hospital Reputation, and Hospitalization Expenses
3.3. Association of Hospital Distance, Hospital Reputation, and Length of Stay
3.4. Association of Hospital Distance, Hospital Reputation, and In-Hospital Mortality
3.5. Subgroup Analysis Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Stroke Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Feigin, V.L.; Owolabi, M.O.; World Stroke Organization–Lancet Neurology Commission Stroke Collaboration Group. Pragmatic solutions to reduce the global burden of stroke: A World Stroke Organization-Lancet Neurology Commission. Lancet Neurol. 2023, 22, 1160–1206. [Google Scholar] [CrossRef]
- Ma, Q.; Li, R.; Wang, L.; Yin, P.; Wang, Y.; Yan, C.; Ren, Y.; Qian, Z.; Vaughn, M.G.; McMillin, S.E.; et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2021, 6, e897–e906. [Google Scholar] [CrossRef]
- Brainin, M. Stroke epidemiology in China: Which are the next steps? Lancet Neurol. 2019, 18, 325–326. [Google Scholar] [CrossRef]
- Thompson, S.G.; Barber, P.A.; Gommans, J.H.; Cadilhac, D.A.; Davis, A.; Fink, J.N.; Harwood, M.; Levack, W.; McNaughton, H.K.; Feigin, V.L.; et al. Geographic Disparities in Stroke Outcomes and Service Access. Neurology 2022, 99, e414–e426. [Google Scholar] [CrossRef]
- Zwank, M.D. Fast Protocol for Treating Acute Ischemic Stroke by Emergency Physicians. Ann. Emerg. Med. 2019, 74, 313–314. [Google Scholar] [CrossRef]
- Uehara, Y.; Koyama, T.; Katsuya, Y.; Sato, J.; Sudo, K.; Kondo, S.; Yoshida, T.; Shoji, H.; Shimoi, T.; Yonemori, K.; et al. Travel Time and Distance and Participation in Precision Oncology Trials at the National Cancer Center Hospital. JAMA Netw. Open 2023, 6, e2333188. [Google Scholar] [CrossRef]
- Acharya, A.B.; Nyirenda, J.C.; Higgs, G.B.; Bloomfield, M.S.; Cruz-Flores, S.; Connor, L.T.; Lee, J.-M.; Leet, T.L. Distance from home to hospital and thrombolytic utilization for acute ischemic stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2011, 20, 295–301. [Google Scholar] [CrossRef]
- Paul, C.L.; Ryan, A.; Rose, S.; Attia, J.R.; Kerr, E.; Koller, C.; Levi, C.R. How can we improve stroke thrombolysis rates? A review of health system factors and approaches associated with thrombolysis administration rates in acute stroke care. Implement. Sci. 2015, 11, 51. [Google Scholar] [CrossRef]
- Kelly, C.; Hulme, C.; Farragher, T.; Clarke, G. Are differences in travel time or distance to healthcare for adults in global north countries associated with an impact on health outcomes? A systematic review. BMJ Open 2016, 6, e013059. [Google Scholar] [CrossRef] [PubMed]
- Zachrison, K.S.; Amati, V.; Schwamm, L.H.; Yan, Z.; Nielsen, V.; Christie, A.; Reeves, M.J.; Sauser, J.P.; Lomi, A.; Onnela, J.-P. Influence of Hospital Characteristics on Hospital Transfer Destinations for Patients with Stroke. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008269. [Google Scholar] [CrossRef] [PubMed]
- Gutacker, N.; Siciliani, L.; Moscelli, G.; Gravelle, H. Choice of hospital: Which type of quality matters? J. Health Econ. 2016, 50, 230–246. [Google Scholar] [CrossRef]
- Avdic, D.; Moscelli, G.; Pilny, A.; Sriubaite, I. Subjective and objective quality and choice of hospital: Evidence from maternal care services in Germany. J. Health Econ. 2019, 68, 102229. [Google Scholar] [CrossRef]
- Zachrison, K.S.; Onnela, J.; Reeves, M.J.; Hernandez, A.; Camargo, C.A., Jr.; Zhao, X.; Matsouaka, R.A.; Goldstein, J.N.; Metlay, J.P.; Schwamm, L.H. Hospital Factors Associated with Interhospital Transfer Destination for Stroke in the Northeast United States. J. Am. Heart Assoc. 2020, 9, e011575. [Google Scholar] [CrossRef]
- Ader, J.; Wu, J.; Fonarow, G.C.; Smith, E.E.; Shah, S.; Xian, Y.; Bhatt, D.L.; Schwamm, L.H.; Reeves, M.J.; Matsouaka, R.A.; et al. Hospital distance, socioeconomic status, and timely treatment of ischemic stroke. Neurology 2019, 93, e747–e757. [Google Scholar] [CrossRef]
- Moscelli, G.; Gravelle, H.; Siciliani, L.; Santos, R. Heterogeneous effects of patient choice and hospital competition on mortality. Soc. Sci. Med. 2018, 216, 50–58. [Google Scholar] [CrossRef]
- Stacherl, B.; Sauzet, O. Gravity models for potential spatial healthcare access measurement: A systematic methodological review. Int. J. Health Geogr. 2023, 22, 34. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Y.; Zheng, Q.; Li, G. Measuring spatial accessibility to healthcare services with constraint of administrative boundary: A case study of Yanqing District, Beijing, China. Int. J. Equity Health 2018, 17, 7. [Google Scholar] [CrossRef]
- Nasr, V.G.; França, U.L.; Nathan, M.; DiNardo, J.A.; Faraoni, D.; McManus, M.L. Patients with Congenital Heart Disease Undergoing Noncardiac Procedures at Hospitals with and Without a Cardiac Surgical Program. J. Am. Heart Assoc. 2022, 11, e026267. [Google Scholar] [CrossRef]
- Takenaka, T.; Inamasu, E.; Yoshida, T.; Toyokawa, G.; Nosaki, K.; Hirai, F.; Yamaguchi, M.; Seto, T.; Takenoyama, M.; Ichinose, Y. Influence of the distance between home and the hospital on patients with surgically resected non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2016, 49, 842–846. [Google Scholar] [CrossRef]
- Jung, K.; Feldman, R.; Scanlon, D. Where would you go for your next hospitalization? J. Health Econ. 2011, 30, 832–841. [Google Scholar] [CrossRef]
- Xiong, X.; Gao, J.; Zhang, B.; Lu, J.; Luo, L. Introduction of Chinese hospital ranking method from the aspect of theoretical framework, practical choice and social effect. J. Hosp. Manag. Health Policy 2017, 1, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Bian, Z.; Chen, Y.; Jiang, E.; Chen, T.; Wang, C. Positive association between research competitiveness of Chinese academic hospitals and the scale of their biobanks: A national survey. Clin. Transl. Sci. 2022, 15, 2909–2917. [Google Scholar] [CrossRef]
- Zubiagirre, U.; Ibarrondo, O.; Larrañaga, I.; Soto-Gordoa, M.; Mar-Barrutia, L.; Mar, J. Comorbidity and household income as mediators of gender inequalities in dementia risk: A real-world data population study. BMC Geriatr. 2024, 24, 209. [Google Scholar] [CrossRef]
- Gruneir, A.; Griffith, L.E.; Fisher, K.; Panjwani, D.; Gandhi, S.; Sheng, L.; Patterson, C.; Gafni, A.; Ploeg, J.; Markle-Reid, M. Increasing comorbidity and health services utilization in older adults with prior stroke. Neurology 2016, 87, 2091–2098. [Google Scholar] [CrossRef]
- Li, B.; Evans, D.; Faris, P.; Dean, S.; Quan, H. Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD-10 administrative databases. BMC Health Serv. Res. 2008, 8, 12. [Google Scholar] [CrossRef]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Fang, H.; Eggleston, K.; Hanson, K.; Wu, M. Enhancing financial protection under China’s social health insurance to achieve universal health coverage. BMJ 2019, 365, l2378. [Google Scholar] [CrossRef]
- Cui, Y.; Lv, J.; Hu, X.; Zhu, D. Health insurance as a moderator in the relationship between financial toxicity and medical cost-coping behaviors: Evidence from patients with lung cancer in China. Cancer Med. 2024, 13, e6911. [Google Scholar] [CrossRef]
- Kunisawa, S.; Morishima, T.; Ukawa, N.; Ikai, H.; Otsubo, T.; Ishikawa, K.B.; Yokota, C.; Minematsu, K.; Fushimi, K.; Imanaka, Y. Association of geographical factors with administration of tissue plasminogen activator for acute ischemic stroke. J. Am. Heart Assoc. 2013, 2, e000336. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Fonarow, G.C.; Smith, E.E.; Reeves, M.J.; Grau-Sepulveda, M.V.; Pan, W.; Olson, D.M.; Hernandez, A.F.; Peterson, E.D.; Schwamm, L.H. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA 2013, 309, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Fonarow, G.C.; Zhao, X.; Smith, E.E.; Saver, J.L.; Reeves, M.J.; Bhatt, D.L.; Xian, Y.; Hernandez, A.F.; Peterson, E.D.; Schwamm, L.H. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA 2014, 311, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Corraini, P.; Szépligeti, S.K.; Henderson, V.W.; Ording, A.G.; Horváth-Puhó, E.; Sørensen, H.T. Comorbidity and the increased mortality after hospitalization for stroke: A population-based cohort study. J. Thromb. Haemost. 2018, 16, 242–252. [Google Scholar] [CrossRef]
- Specogna, A.V.; Turin, T.C.; Patten, S.B.; Hill, M.D. Hospital treatment costs and length of stay associated with hypertension and multimorbidity after hemorrhagic stroke. BMC Neurol. 2017, 17, 158. [Google Scholar] [CrossRef]
Overall (N = 69,107) | Distance to Hospital and Hospital Reputation Group | p Value | ||||||
---|---|---|---|---|---|---|---|---|
No Reputation with Short Distance (N = 15,444) | No Reputation with Medium Distance (N = 16,228) | No Reputation with Long Distance (N = 18,145) | Good Reputation with Short Distance (N = 7361) | Good Reputation with Medium Distance (N = 6577) | Good Reputation with Long Distance (N = 5352) | |||
Age | <0.001 | |||||||
<65 | 22,795 (33.0) | 4209 (27.3) | 4785 (29.5) | 6497 (35.8) | 2236 (30.4) | 2551 (38.8) | 2517 (47.0) | |
≥65 | 46,312 (67.0) | 11,235 (72.7) | 11,443 (70.5) | 11,648 (64.2) | 5125 (69.6) | 4026 (61.2) | 2835 (53.0) | |
Gender | <0.001 | |||||||
Male | 36,128 (52.3) | 7846 (50.8) | 8287 (51.1) | 9997 (55.1) | 3600 (48.9) | 3411 (51.9) | 2987 (55.8) | |
Female | 32,979 (47.7) | 7598 (49.2) | 7941 (48.9) | 8148 (44.9) | 3761 (51.1) | 3166 (48.1) | 2365 (44.2) | |
Insurance type | <0.001 | |||||||
UEBMI | 43,637 (63.1) | 10,751 (69.6) | 9719 (59.9) | 6862 (37.8) | 7003 (95.1) | 5749 (87.4) | 3553 (66.4) | |
URRMI | 25,470 (36.9) | 4693 (30.4) | 6509 (40.1) | 11,283 (62.2) | 358 (4.9) | 828 (12.6) | 1799 (33.6) | |
Hospital level | <0.001 | |||||||
Primary | 2027 (2.9) | 1200 (7.8) | 528 (3.3) | 299 (1.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Secondary | 12,805 (18.5) | 5551 (35.9) | 4938 (30.4) | 2316 (12.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Tertiary | 54,275 (78.5) | 8693 (56.3) | 10,762 (66.3) | 15,530 (85.6) | 7361 (100.0) | 6577 (100.0) | 5352 (100.0) | |
Residential area | <0.001 | |||||||
Downtown area | 6785 (43.9) | 6323 (39.0) | 2493 (13.7) | 5277 (80.2) | 7044 (95.7) | 5277 (80.2) | 1511 (28.2) | |
Inner suburbs | 4189 (27.1) | 5618 (34.6) | 5484 (30.2) | 878 (13.3) | 234 (3.2) | 878 (13.3) | 2392 (44.7) | |
Outer suburbs | 4470 (28.9) | 4287 (26.4) | 10,168 (56.0) | 422 (6.4) | 83 (1.1) | 422 (6.4) | 1449 (27.1) | |
Stroke type | <0.001 | |||||||
Ischemic stroke | 63,157 (91.4) | 14,290 (92.5) | 14,781 (91.1) | 16,114 (88.8) | 6990 (95.0) | 6132 (93.2) | 4850 (90.6) | |
Intracerebral hemorrhage | 5071 (7.3) | 1017 (6.6) | 1229 (7.6) | 1707 (9.4) | 320 (4.3) | 379 (5.8) | 419 (7.8) | |
Subarachnoid hemorrhage | 879 (1.3) | 137 (0.9) | 218 (1.3) | 324 (1.8) | 51 (0.7) | 66 (1.0) | 83 (1.6) | |
CCI score | <0.001 | |||||||
0 | 25,909 (37.5) | 5555 (36.0) | 5764 (35.5) | 7536 (41.5) | 2522 (34.3) | 2404 (36.6) | 2128 (39.8) | |
1 | 23,389 (33.8) | 5077 (32.9) | 5349 (33.0) | 6020 (33.2) | 2758 (37.5) | 2346 (35.7) | 1839 (34.4) | |
≥2 | 19,809 (28.7) | 4812 (31.2) | 5115 (31.5) | 4589 (25.3) | 2081 (28.3) | 1827 (27.8) | 1385 (25.9) |
Good Reputation with Long Distance vs. Good Reputation with Short Distance | Good Reputation with Long Distance vs. No Reputation with Long Distance | |||
---|---|---|---|---|
β (95%CI) | p Value | β (95%CI) | p Value | |
Age | ||||
<65 | 0.09 (0.02, 0.16) | 0.013 | 0.12 (0.06, 0.17) | <0.001 |
≥65 | 0.11 (0.05, 0.17) | <0.001 | 0.22 (0.17, 0.27) | <0.001 |
Gender | ||||
Male | 0.12 (0.06, 0.18) | <0.001 | 0.17 (0.12, 0.22) | <0.001 |
Female | 0.09 (0.02, 0.15) | 0.008 | 0.18 (0.13, 0.23) | <0.001 |
Insurance type | ||||
UEBMI | 0.1 (0.05, 0.14) | <0.001 | 0.06 (0.01, 0.1) | 0.014 |
URRMI | 0.2 (0.06, 0.34) | 0.006 | 0.33 (0.27, 0.39) | <0.001 |
Residential area | ||||
Downtown area | 0.08 (0.03, 0.13) | 0.001 | 0.05 (−0.01, 0.12) | 0.125 |
Inner suburbs | 0.32 (0.19, 0.44) | <0.001 | 0.13 (0.08, 0.19) | <0.001 |
Outer suburbs | −0.03 (−0.24, 0.18) | 0.775 | 0.3 (0.24, 0.37) | <0.001 |
Stroke type | ||||
Ischemic stroke | 0.1 (0.05, 0.15) | <0.001 | 0.17 (0.13, 0.21) | <0.001 |
Intracerebral hemorrhage | 0.15 (−0.03, 0.33) | 0.105 | 0.18 (0.07, 0.29) | 0.001 |
Subarachnoid hemorrhage | 0.12 (−0.22, 0.45) | 0.498 | 0.09 (−0.11, 0.3) | 0.371 |
CCI score | ||||
0 | 0.15 (0.07, 0.23) | <0.001 | 0.23 (0.17, 0.28) | <0.001 |
1 | 0.11 (0.04, 0.19) | 0.002 | 0.11 (0.04, 0.17) | 0.001 |
≥2 | 0.03 (−0.06, 0.11) | 0.534 | 0.17 (0.1, 0.24) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Zhu, Y.; Zhang, J.; Feng, H.; Xu Zheng, E.; Zhu, X.; Huang, Y. The Association of the Distance to the Hospital, Hospital Reputation, and Hospitalization Outcomes Among Patients with Stroke in China. Healthcare 2025, 13, 1276. https://doi.org/10.3390/healthcare13111276
Qin Z, Zhu Y, Zhang J, Feng H, Xu Zheng E, Zhu X, Huang Y. The Association of the Distance to the Hospital, Hospital Reputation, and Hospitalization Outcomes Among Patients with Stroke in China. Healthcare. 2025; 13(11):1276. https://doi.org/10.3390/healthcare13111276
Chicago/Turabian StyleQin, Zhenhua, Yi Zhu, Jiachi Zhang, Honghong Feng, Esthefany Xu Zheng, Xiaodi Zhu, and Yixiang Huang. 2025. "The Association of the Distance to the Hospital, Hospital Reputation, and Hospitalization Outcomes Among Patients with Stroke in China" Healthcare 13, no. 11: 1276. https://doi.org/10.3390/healthcare13111276
APA StyleQin, Z., Zhu, Y., Zhang, J., Feng, H., Xu Zheng, E., Zhu, X., & Huang, Y. (2025). The Association of the Distance to the Hospital, Hospital Reputation, and Hospitalization Outcomes Among Patients with Stroke in China. Healthcare, 13(11), 1276. https://doi.org/10.3390/healthcare13111276