Differences in Lumbar–Pelvic Rhythm Between Sedentary Office Workers with and Without Low Back Pain: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurement
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Differences in LPR Between Individuals with and Without LBP in SOWs
4.2. Differences in Factors Related to LPR in Individuals with and Without LBP
4.3. Clinical Significance
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AEAJRS | Absolute error of active joint repositioning sense |
BMI | Body Mass Index |
CI | Confidence interval |
ERC | Estimated regression coefficient |
ETF | Early trunk flexion |
FreBAQ | Fremantle Back Awareness Questionnaire |
HEMS | Hip-extension muscle strength |
HEROM | Hip-extension range of motion |
HFMS | Hip flexion muscle strength |
HFROM | Hip flexion range of motion |
LBP | Low back pain |
LF | Lumbar flexion angle |
LHD | Lumbar–hip angle difference |
LTF | Late trunk flexion |
ODI | Oswestry Disability Index |
VAS | Visual Analog Scale |
References
- Shrestha, N.; Kukkonen-Harjula, K.T.; Verbeek, J.H.; Ijaz, S.; Hermans, V.; Pedisic, Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst. Rev. 2018, 12, CD010912. [Google Scholar] [PubMed]
- Waddell, G.; Burton, A.K. Occupational health guidelines for the management of low back pain at work: Evidence review. Occup. Med. 2001, 51, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Mörl, F.; Bradl, I. Lumbar posture and muscular activity while sitting during office work. J. Electromyogr. Kinesiol. 2013, 23, 362–368. [Google Scholar] [CrossRef]
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-specific low back pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef]
- Shmagel, A.; Foley, R.; Ibrahim, H. Epidemiology of chronic low back pain in US adults: Data from the 2009–2010 National Health and Nutrition Examination Survey. Arthritis Care Res. 2016, 68, 1688–1694. [Google Scholar] [CrossRef]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis 2014, 73, 968–974. [Google Scholar] [CrossRef]
- Mroczek, B.; Łubkowska, W.; Jarno, W.; Jaraczewska, E.; Mierzecki, A. Occurrence and impact of back pain on the quality of life of healthcare workers. Ann. Agric. Environ. Med. 2020, 27, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Di Tecco, C.; Russo, S.; Petrucci, G.; Vadalà, G.; Denaro, V.; Iavicoli, S. Importance of an Integrated Assessment of Functional Disability and Work Ability in Workers Affected by Low Back Pain. Saf. Health Work. 2024, 15, 66–72. [Google Scholar] [CrossRef]
- Fujii, R.; Imai, R.; Shigetoh, H.; Tanaka, S.; Morioka, S. Changes in task-specific fear of movement and impaired trunk motor control by pain neuroscience education and exercise: A preliminary single-case study of a worker with low back pain. SAGE Open Med. Case Rep. 2022, 10, 2050313X221131162. [Google Scholar] [CrossRef]
- Boukabache, A.; Preece, S.J.; Brookes, N. Prolonged sitting and physical inactivity are associated with limited hip extension: A cross-sectional study. Musculoskelet. Sci. Pract. 2021, 51, 102282. [Google Scholar] [CrossRef]
- Shin, D.C. Correlation between non-specific chronic low back pain and physical factors of lumbar and hip joint in office workers. Med. Hypotheses 2020, 144, 110304. [Google Scholar] [CrossRef]
- Miyachi, R.; Tanaka, M.; Morikoshi, N.; Yoshizawa, T.; Nishimura, T. Effects of dynamic lumbar motor control training on lumbar proprioception: A randomized controlled trial. J. Bodyw. Mov. Ther. 2022, 30, 132–139. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, P.B.; Grahamslaw, K.M.; Kendell, M.; Lapenskie, S.C.; Möller, N.E.; Richards, K.V. The effect of different standing and sitting postures on trunk muscle activity in a pain-free population. Spine 2002, 27, 1238–1244. [Google Scholar] [CrossRef]
- Callaghan, J.P.; Dunk, N.M. Examination of the flexion relaxation phenomenon in erector spinae muscles during short duration slumped sitting. Clin. Biomech. 2002, 17, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Yi, C.H.; Kwon, O.Y.; Cho, S.H.; Cynn, H.S.; Kim, Y.H.; Hwang, S.H.; Choi, B.R.; Hong, J.A.; Jung, D.H. Comparison of lumbopelvic rhythm and flexion-relaxation response between 2 different low back pain subtypes. Spine 2013, 38, 1260–1267. [Google Scholar] [CrossRef]
- Vazirian, M.; Van Dillen, L.; Bazrgari, B. Lumbopelvic rhythm during trunk motion in the sagittal plane: A review of the kinematic measurement methods and characterization approaches. Phys. Ther. Rehabil. 2016, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Sahrmann, S.; Azevedo, D.C.; Dillen, L.V. Diagnosis and treatment of movement system impairment syndromes. Braz. J. Phys. Ther. 2017, 21, 391–399. [Google Scholar] [CrossRef]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Pope, M.H.; Goh, K.L.; Magnusson, M.L. Spine ergonomics. Annu. Rev. Biomed. Eng. 2002, 4, 49–68. [Google Scholar] [CrossRef]
- Fatima, G.; Qamar, M.M.; Ul Hassan, J.; Basharat, A. Extended sitting can cause hamstring tightness. Saudi J. Sports Med. 2017, 17, 110. [Google Scholar]
- Wang, T.K.; Lee, R.Y. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum. Mov. Sci. 2004, 23, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, O.Y.; Yi, C.H.; Cynn, H.S.; Ha, S.M.; Park, K.N. Lumbopelvic motion during seated hip flexion in subjects with low-back pain accompanying limited hip flexion. Eur. Spine 2014, 23, 142–148. [Google Scholar] [CrossRef]
- Kim, W.D.; Shin, D.C. Correlations between hip extension range of motion, hip extension asymmetry, and compensatory lumbar movement in patients with nonspecific chronic low back pain. Med. Sci. Monit. 2020, 26, e925080. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Popovich, J.M.; Kulig, K. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women. J. Orthop. Sports. Phys. Ther. 2014, 44, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Nishigami, T.; Mibu, A.; Tanaka, K.; Yamashita, Y.; Shimizu, M.E.; Wand, B.M.; Catley, M.J.; Stanton, T.R.; Moseley, G.L. Validation of the Japanese version of the Fremantle Back Awareness Questionnaire in patients with low back pain. Pain. Pract. 2018, 18, 170–179. [Google Scholar] [CrossRef]
- Spyropoulos, P.; Papathanasiou, G.; Georgoudis, G.; Chronopoulos, E.; Koutis, H.; Koumoutsou, F. Prevalence of low back pain in Greek public office workers. Pain. Physician 2007, 10, 651–659. [Google Scholar] [CrossRef]
- da Silva, R.A.; Vieira, E.R.; Cabrera, M.; Altimari, L.R.; Aguiar, A.F.; Nowotny, A.H.; Carvalho, A.F.; Oliveira, M.R. Back muscle fatigue of younger and older adults with and without chronic low back pain using two protocols: A case-control study. J. Electromyogr. Kinesiol. 2015, 25, 928–936. [Google Scholar] [CrossRef]
- Hashimoto, H.; Komagata, M.; Nakai, O.; Morishita, M.; Tokuhashi, Y.; Sano, S.; Nohara, Y.; Okajima, Y. Discriminative validity and responsiveness of the Oswestry Disability Index among Japanese outpatients with lumbar conditions. Eur. Spine J. 2006, 15, 1645–1650. [Google Scholar] [CrossRef]
- Nishimura, T.; Tanaka, M.; Morikoshi, N.; Yoshizawa, T.; Miyachi, R. Effect of interventions for improving lumbar motor control on low back pain in sedentary office workers: A randomized controlled trials. Phys. Ther. Res. 2021, 24, 240–248. [Google Scholar] [CrossRef]
- Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Reliability and validity of the visual analogue scale for disability in patients with chronic musculoskeletal pain. Int. J. Rehabil. Res. 2008, 31, 165–169. [Google Scholar] [CrossRef]
- Brindle, T.J.; Nitz, A.J.; Uhl, T.L.; Kifer, E.; Shapiro, R. Measures of accuracy for active shoulder movements at 3 different speeds with kinesthetic and visual feedback. J. Orthop. Sports Phys. Ther. 2004, 34, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ’EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Heuch, I.; Hagen, K.; Heuch, I.; Nygaard, Ø.; Zwart, J.A. The impact of body mass index on the prevalence of low back pain: The HUNT study. Spine 2010, 35, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Miyachi, R. Effects of Exercise Habits and Age on Life Space of Elderly People Living in Mountainous Areas. Rigaku Ryoho Kagaku 2020, 35, 453–458. (In Japanese) [Google Scholar] [CrossRef]
- Boonstra, A.M.; Preuper, H.R.S.; Balk, G.A.; Stewart, R.E. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain. 2014, 155, 2545–2550. [Google Scholar] [CrossRef]
- Mazur, M.D.; McEvoy, S.; Schmidt, M.H.; Bisson, E.F. High self-assessment of disability and the surgeon’s recommendation against surgical intervention may negatively impact satisfaction scores in patients with spinal disorders. J. Neurosurg. Spine 2015, 22, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudzadeh, A.; Abbaszadeh, S.; Baharlouei, H.; Karimi, A. Translation and Cross-cultural Adaptation of the Fremantle Back Awareness Questionnaire into Persian language and the assessment of reliability and validity in patients with chronic low back pain. J. Res. Med. Sci. 2020, 25, 74. [Google Scholar]
- Esola, M.A.; McClure, P.W.; Fitzgerald, G.K.; Siegler, S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine 1996, 21, 71–78. [Google Scholar] [CrossRef]
- Scholtes, S.A.; Gombatto, S.P.; Van Dillen, L.R. Differences in lumbopelvic motion between people with and people without low back pain during two lower limb movement tests. Clin. Biomech. 2009, 24, 7–12. [Google Scholar] [CrossRef]
- Matheve, T.; Hodges, P.; Danneels, L. The role of back muscle dysfunctions in chronic low back pain: State-of-the-art and clinical implications. J. Clin. Med. 2023, 12, 5510. [Google Scholar] [CrossRef]
- Freeman, M.D.; Woodham, M.A.; Woodham, A.W. The role of the lumbar multifidus in chronic low back pain: A review. PM R. 2010, 2, 142–146, quiz 1 p following 167. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, T.; Mizutani, M.; Ishida, H.; Kobara, K.; Osaka, H.; Watanabe, S. Individuals with chronic low back pain demonstrate delayed onset of the back muscle activity during prone hip extension. J. Electromyogr. Kinesiol. 2015, 25, 675–680. [Google Scholar] [CrossRef]
- Nakata, A.; Osuka, S.; Ishida, T.; Saito, Y.; Koshino, Y.; Samukawa, M.; Kasahara, S.; Tohyama, H. Relationship between onset of trunk muscle activities and pelvic kinematics in individuals with and without chronic low back pain. J. Back. Musculoskelet. Rehabil. 2024, 37, 1391–1400. [Google Scholar] [CrossRef]
- Fasuyi, F.O.; Fabunmi, A.A.; Adegoke, B.O.A. Hamstring muscle length and pelvic tilt range among individuals with and without low back pain. J. Bodyw. Mov. Ther. 2017, 21, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Jandre Reis, F.J.; Macedo, A.R. Influence of hamstring tightness in pelvic, lumbar and trunk range of motion in low back pain and asymptomatic volunteers during forward bending. Asian Spine J. 2015, 9, 535–540. [Google Scholar] [CrossRef]
- Choi, W.J.; Kim, W.D.; Park, D.C.; Shin, D.C. Comparison of compensatory lumbar movement in participants with and without non-specific chronic low back pain: A cross-sectional study. J. Back. Musculoskelet. Rehabil. 2022, 35, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Pool-Goudzwaard, A.L.; Vleeming, A.; Stoeckart, R.; Snijders, C.J.; Mens, J.M. Insufficient lumbopelvic stability: A clinical, anatomical and biomechanical approach to ’a-specific’ low back pain. Man. Ther. 1998, 3, 12–20. [Google Scholar] [CrossRef]
- van Wingerden, J.P.; Vleeming, A.; Buyruk, H.M.; Raissadat, K. Stabilization of the sacroiliac joint in vivo: Verification of muscular contribution to force closure of the pelvis. Eur. Spine J. 2004, 13, 199–205. [Google Scholar] [CrossRef]
- Retchford, T.H.; Crossley, K.M.; Grimaldi, A.; Kemp, J.L.; Cowan, S.M. Can local muscles augment stability in the hip? A narrative literature review. J. Musculoskelet. Neuronal. Interact. 2013, 13, 1–12. [Google Scholar]
- Naito, E. Sensing limb movements in the motor cortex: How humans sense limb movement. Neuroscientist 2004, 10, 73–82. [Google Scholar] [CrossRef]
- Hillier, S.; Immink, M.; Thewlis, D. Assessing proprioception: A systematic review of possibilities. Neurorehabil. Neural Repair. 2015, 29, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Riemann, B.L.; Lephart, S.M. The Sensorimotor System, Part II: The Role of Proprioception in Motor Control and Functional Joint Stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar] [PubMed]
- Zawadka, M.; Skublewska-Paszkowska, M.; Gawda, P.; Lukasik, E.; Smolka, J.; Jablonski, M. What factors can affect lumbopelvic flexion-extension motion in the sagittal plane?: A literature review. Hum. Mov. Sci. 2018, 58, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Korakakis, V.; O’Sullivan, K.; Kotsifaki, A.; Sotiralis, Y.; Giakas, G. Lumbo-pelvic proprioception in sitting is impaired in subgroups of low back pain-But the clinical utility of the differences is unclear. A systematic review and meta-analysis. PLoS ONE 2021, 16, e0250673. [Google Scholar] [CrossRef]
- Kasahara, S.; Miyamoto, K.; Takahashi, M.; Yamanaka, M.; Takeda, N. Lumbar-pelvic coordination in the sitting position. Gait Posture 2008, 28, 251–257. [Google Scholar] [CrossRef]
ITEMS | LBP Group (n = 30) | Non-LBP Group (n = 33) | p-Value |
---|---|---|---|
Age (years) | 45.6. (8.7) | 41.8 (10.4) | 0.12 |
Sex, n (%) | Male, 10 (33.3) | Male, 14 (42.4) | 0.60 |
Female, 20 (66.7) | Female, 20 (66.7) | ||
BMI (kg/m2) | 24.1 (3.3) | 21.5 (2.5) | <0.05 |
VAS for LBP (mm) | 26.1 (13.5) | 0 | <0.05 |
ODI (%) | 15.7 (8.7) | 0 | <0.05 |
FreBAQ (total score) | 5.9 (5.6) | 0 | <0.05 |
ITEM | LBP Group (n = 30) | Non-LBP Group (n = 33) | p-Value |
---|---|---|---|
LF at ETF (°) | 12.7 (4.7) | 10.9 (4.3) | 0.13 |
LF at LTF (°) | 27.2 (9.2) | 26.6 (8.7) | 0.80 |
LHD in ETF (°) | −7.8 (8.6) | −10.9 (9.0) | 0.16 |
LHD in LTF (°) | −14.3 (18.8) | −15.4 (17.7) | 0.80 |
HFROM (°) | 108.1 (7.4) | 110.0 (7.3) | 0.34 |
HEROM (°) | 16.6 (4.1) | 19.1 (3.8) | <0.05 |
HFMS (Nm/kg) | 1.0 (0.3) | 1.8 (1.9) | <0.05 |
HEMS (Nm/kg) | 0.7 (0.3) | 1.2 (0.4) | <0.05 |
AEAJRS (°) | 6.3 (4.9) | 7.6 (5.2) | 0.32 |
ITEMS | ERC | 95% CI Lower | 95% CI Upper | p-Value |
---|---|---|---|---|
LF at ETF (°) | −2.9 | −5.3 | −0.4 | <0.05 |
LF at LTF (°) | −0.2 | −0.4 | 0.1 | 0.14 |
LHD in ETF (°) | −5.5 | −10.3 | −0.6 | <0.05 |
LHD in LTF (°) | −7.0 | −16.6 | 2.6 | 0.15 |
HFROM (°) | 1.1 | −2.2 | 4.4 | 0.5 |
HEROM (°) | 2.4 | 0.3 | 4.6 | <0.05 |
HFMS (Nm/kg) | 0.4 | 0.2 | 0.7 | <0.05 |
HEMS (Nm/kg) | 0.4 | 0.3 | 0.8 | <0.05 |
AEAJRS (°) | 0.3 | −0.2 | 0.7 | 0.21 |
ODI (%) | FreBAQ (point) | HFMS (Nm/kg) | HEMS (Nm/kg) | HEROM (°) | HFROM (°) | LF at ETF (°) | LF at LTF (°) | LHD in ETF | LHD in LTF | AEAJRS | |
---|---|---|---|---|---|---|---|---|---|---|---|
VAS (mm) | 0.62 * | 0.47 * | −0.08 | −0.01 | 0.02 | 0.20 | 0.14 | 0.07 | 0.04 | −0.01 | 0.30 |
ODI (%) | 0.67 * | −0.11 | −0.06 | −0.07 | 0.16 | −0.08 | −0.15 | −0.08 | −0.20 | 0.27 | |
FreBAQ (point) | −0.07 | −0.07 | −0.02 | −0.19 | 0.15 | 0.05 | 0.19 | 0.03 | 0.15 | ||
HFMS (Nm/kg) | 0.70 * | 0.30 | 0.31 | 0.37 | 0.35 | 0.42 * | 0.41 * | −0.05 | |||
HEMS (Nm/kg) | 0.43 * | 0.22 | 0.09 | 0.12 | 0.18 | 0.21 | 0.06 | ||||
HEROM (°) | 0.02 | −0.10 | −0.01 | −0.05 | 0.05 | −0.19 | |||||
HFROM (°) | −0.21 | −0.23 | −0.31 | −0.29 | −0.07 | ||||||
LF at ETF (°) | 0.95 * | 0.94 * | 0.94 * | 0.25 | |||||||
LF at LTF (°) | 0.87 * | 0.98 * | 0.20 | ||||||||
LHD in ETF | 0.89 * | 0.22 | |||||||||
LHD in LTF | 0.15 |
HEMS (Nm/kg) | HEROM (°) | HFROM (°) | LF at ETF (°) | LF at LTF (°) | LHD in ETF | LHD in LTF | AEAJRS | |
---|---|---|---|---|---|---|---|---|
HFMS (Nm/kg) | 0.04 | −0.11 | 0.14 | 0.06 | 0.01 | 0.06 | 0.02 | 0.05 |
HEMS (Nm/kg) | −0.19 | −0.03 | −0.07 | −0.07 | 0.03 | −0.01 | −0.01 | |
HEROM (°) | 0.24 | −0.07 | −0.15 | −0.11 | −0.9 | −0.32 | ||
HFROM (°) | −0.25 | −0.41 * | −0.30 | −0.41 * | −0.13 | |||
LF at ETF (°) | 0.96 * | 0.95 * | 0.94 * | 0.05 | ||||
LF at LTF (°) | 0.92 * | 0.98 * | 0.10 | |||||
LHD in ETF | 0.96 * | −0.03 | ||||||
LHD in LTF | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimura, T.; Tanaka, M.; Morikoshi, N.; Yoshizawa, T.; Miyachi, R. Differences in Lumbar–Pelvic Rhythm Between Sedentary Office Workers with and Without Low Back Pain: A Cross-Sectional Study. Healthcare 2025, 13, 1135. https://doi.org/10.3390/healthcare13101135
Nishimura T, Tanaka M, Morikoshi N, Yoshizawa T, Miyachi R. Differences in Lumbar–Pelvic Rhythm Between Sedentary Office Workers with and Without Low Back Pain: A Cross-Sectional Study. Healthcare. 2025; 13(10):1135. https://doi.org/10.3390/healthcare13101135
Chicago/Turabian StyleNishimura, Takaaki, Masayasu Tanaka, Natsuko Morikoshi, Tamaki Yoshizawa, and Ryo Miyachi. 2025. "Differences in Lumbar–Pelvic Rhythm Between Sedentary Office Workers with and Without Low Back Pain: A Cross-Sectional Study" Healthcare 13, no. 10: 1135. https://doi.org/10.3390/healthcare13101135
APA StyleNishimura, T., Tanaka, M., Morikoshi, N., Yoshizawa, T., & Miyachi, R. (2025). Differences in Lumbar–Pelvic Rhythm Between Sedentary Office Workers with and Without Low Back Pain: A Cross-Sectional Study. Healthcare, 13(10), 1135. https://doi.org/10.3390/healthcare13101135