Associations between Autonomic and Endocrine Reactivity to Stress in Adolescence: Related to the Development of Anxiety?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Assessments
2.3. Statistical Analyses
3. Results
3.1. Descriptives
3.2. Autonomic and Endocrine Reactivity
3.3. Social Anxiety and the Relationship between Autonomic and Endocrine Reactivity
3.4. Association: Changes with Age
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, A.M.; Quas, J.A.; Boyce, W.T. Associations between Physiological Reactivity and Children’s Behavior: Advantages of a Multisystem Approach. J. Dev. Behav. Pediatr. 2002, 23, 102–113. [Google Scholar] [CrossRef]
- Greaves-Lord, K.; Huizink, A.C.; Oldehinkel, A.J.; Ormel, J.; Verhulst, F.C.; Ferdinand, R.F. Baseline Cortisol Measures and Developmental Pathways of Anxiety in Early Adolescence. Acta Psychiatr. Scand. 2009, 120, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Talge, N.M.; Donzella, B.; Gunnar, M.R. Fearful Temperament and Stress Reactivity among Preschool-Aged Children. Infant Child Dev. 2008, 17, 427–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cainelli, E.; Vedovelli, L.; Bottigliengo, D.; Boschiero, D.; Suppiej, A. Social Skills and Psychopathology Are Associated with Autonomic Function in Children: A Cross-Sectional Observational Study. Neural Regen. Res. 2022, 17, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.L.; Bush, N.R.; Alkon, A.; Roubinov, D.S. Identifying Profiles of Multisystem Physiological Activity across Early Childhood: Examining Developmental Shifts and Associations with Stress and Internalizing Problems. Psychoneuroendocrinology 2021, 128, 105196. [Google Scholar] [CrossRef]
- Harrewijn, A.; Van der Molen, M.J.W.; Verkuil, B.; Sweijen, S.W.; Houwing-Duistermaat, J.J.; Westenberg, P.M. Heart Rate Variability as Candidate Endophenotype of Social Anxiety: A Two-Generation Family Study. J. Affect. Disord. 2018, 237, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Agorastos, A.; Heinig, A.; Stiedl, O.; Hager, T.; Sommer, A.; Müller, J.C.; Schruers, K.R.; Wiedemann, K.; Demiralay, C. Vagal Effects of Endocrine HPA Axis Challenges on Resting Autonomic Activity Assessed by Heart Rate Variability Measures in Healthy Humans. Psychoneuroendocrinology 2019, 102, 196–203. [Google Scholar] [CrossRef]
- Schuurmans, A.A.T.; Nijhof, K.S.; Cima, M.; Scholte, R.; Popma, A.; Otten, R. Alterations of Autonomic Nervous System and HPA Axis Basal Activity and Reactivity to Acute Stress: A Comparison of Traumatized Adolescents and Healthy Controls. Stress 2021, 24, 876–887. [Google Scholar] [CrossRef]
- Rotenberg, S.; McGrath, J.J. Inter-Relation between Autonomic and HPA Axis Activity in Children and Adolescents. Biol. Psychol. 2016, 117, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Pulopulos, M.M.; Vanderhasselt, M.A.; De Raedt, R. Association between Changes in Heart Rate Variability during the Anticipation of a Stressful Situation and the Stress-Induced Cortisol Response. Psychoneuroendocrinology 2018, 94, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoi, K.; Jiang, Y.Q.; Iwasaki, Y.; Watson, S.J. Regulatory Mechanisms of Corticotropin-Releasing Hormone and Vasopressin Gene Expression in the Hypothalamus. J. Neuroendocrinol. 2004, 16, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, B.A.S.; Valentino, R.J.; Xu, G.; Van Bockstaele, E.J. Hypothalamic Projections to Locus Coeruleus Neurons in Rat Brain. Eur. J. Neurosci. 2005, 22, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. Locus Coeruleus. Cell Tissue Res. 2018, 373, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The Central Autonomic Network: Functional Organization, Dysfunction, and Perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural Regulation of Endocrine and Autonomic Stress Responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tupak, S.V.; Dresler, T.; Guhn, A.; Ehlis, A.C.; Fallgatter, A.J.; Pauli, P.; Herrmann, M.J. Implicit Emotion Regulation in the Presence of Threat: Neural and Autonomic Correlates. Neuroimage 2014, 85, 372–379. [Google Scholar] [CrossRef]
- Oldehinkel, A.J.; Ormel, J.; Bosch, N.M.; Bouma, E.M.C.; Van Roon, A.M.; Rosmalen, J.G.M.; Riese, H. Stressed out? Associations between Perceived and Physiological Stress Responses in Adolescents: The TRAILS Study. Psychophysiology 2011, 48, 441–452. [Google Scholar] [CrossRef] [Green Version]
- El-Sheikh, M.; Arsiwalla, D.D.; Hinnant, J.B.; Erath, S.A. Children’s Internalizing Symptoms: The Role of Interactions between Cortisol and Respiratory Sinus Arrhythmia. Physiol. Behav. 2011, 103, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Murdock, K.W.; LeRoy, A.S.; Fagundes, C.P. Trait Hostility and Cortisol Sensitivity Following a Stressor: The Moderating Role of Stress-Induced Heart Rate Variability. Psychoneuroendocrinology 2017, 75, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Goddings, A.L.; Mills, K.L.; Clasen, L.S.; Giedd, J.N.; Viner, R.M.; Blakemore, S.J. The Influence of Puberty on Subcortical Brain Development. Neuroimage 2014, 88, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Spear, L.P. The Adolescent Brain and Age-Related Behavioral Manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, D.; Knoll, L.J.; Blakemore, S.J. Adolescence as a Sensitive Period of Brain Development. Trends Cogn. Sci. 2015, 19, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Romeo, R.D.; McEwen, B.S. Stress and the Adolescent Brain. Proc. Ann. N. Y. Acad. Sci. 2006, 1094, 202–214. [Google Scholar] [CrossRef]
- Van den Bos, E.; de Rooij, M.; Miers, A.C.; Bokhorst, C.L.; Westenberg, P.M. Adolescents’ Increasing Stress Response to Social Evaluation: Pubertal Effects on Cortisol and Alpha-amylase during Public Speaking. Child Dev. 2014, 85, 220–236. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Eccles, J.; Garfinkel, S.N. Interaction between Cognition, Emotion, and the Autonomic Nervous System. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 117, pp. 59–77. ISBN 0072-9752. [Google Scholar]
- Sisk, L.M.; Gee, D.G. Stress and Adolescence: Vulnerability and Opportunity during a Sensitive Window of Development. Curr. Opin. Psychol. 2022, 44, 286–292. [Google Scholar] [CrossRef]
- Rosmalen, J.G.M.; Oldehinkel, A.J.; Ormel, J.; de Winter, A.F.; Buitelaar, J.K.; Verhulst, F.C. Determinants of Salivary Cortisol Levels in 10–12 Year Old Children; A Population-Based Study of Individual Differences. Psychoneuroendocrinology 2005, 30, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Kallen, V.L.; Tulen, J.H.M.; Utens, E.M.W.J.; Treffers, P.D.A.; De Jong, F.H.; Ferdinand, R.F. Associations between HPA Axis Functioning and Level of Anxiety in Children and Adolescents with an Anxiety Disorder. Depress. Anxiety 2008, 25, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.G.; Lopez-Duran, N.L.; Doan, S.N. Developmental Influences on Stress Response Systems: Implications for Psychopathology Vulnerability in Adolescence. Dev. Psychobiol. 2019, 63, 9–21. [Google Scholar] [CrossRef]
- Doan, S.N. Allostatic Load: Developmental and Conceptual Considerations in a Multi-System Physiological Indicator of Chronic Stress Exposure. Dev. Psychobiol. 2021, 63, 825–836. [Google Scholar] [CrossRef]
- Porges, S.W. Orienting in a Defensive World: Mammalian Modifications of Our Evolutionary Heritage. A Polyvagal Theory. Psychophysiology 1995, 32, 301–318. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology; The North American Society of Pacing Electrophysiology. Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Brownley, K.A.; Hurwitz, B.E.; Schneiderman, N. Cardiovascular Psychophysiology. In Handbook of Psychophysiology; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 342–367. [Google Scholar]
- Looser, R.R.; Metzenthin, P.; Helfricht, S.; Kudielka, B.M.; Loerbroks, A.; Thayer, J.F.; Fischer, J.E. Cortisol Is Significantly Correlated with Cardiovascular Responses during High Levels of Stress in Critical Care Personnel. Psychosom. Med. 2010, 72, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.S.; Thayer, J.F.; Rudat, M.; Wirtz, P.H.; Zimmermann-Viehoff, F.; Thomas, A.; Perschel, F.H.; Arck, P.C.; Deter, H.C. Low Vagal Tone Is Associated with Impaired Post Stress Recovery of Cardiovascular, Endocrine, and Immune Markers. Eur. J. Appl. Physiol. 2010, 109, 201–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeets, T. Autonomic and Hypothalamic-Pituitary-Adrenal Stress Resilience: Impact of Cardiac Vagal Tone. Biol. Psychol. 2010, 84, 290–295. [Google Scholar] [CrossRef]
- Tyrka, A.R.; Wier, L.M.; Anderson, G.M.; Wilkinson, C.W.; Price, L.H.; Carpenter, L.L. Temperament and Response to the Trier Social Stress Test. Acta Psychiatr. Scand. 2007, 115, 395–402. [Google Scholar] [CrossRef] [Green Version]
- El-Sheikh, M.; Erath, S.A.; Buckhalt, J.A.; Granger, D.A.; Mize, J. Cortisol and Children’s Adjustment: The Moderating Role of Sympathetic Nervous System Activity. J. Abnorm. Child Psychol. 2008, 36, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.F.; Hall, M.; Sollers, J.J.; Fischer, J.E. Alcohol Use, Urinary Cortisol, and Heart Rate Variability in Apparently Healthy Men: Evidence for Impaired Inhibitory Control of the HPA Axis in Heavy Drinkers. Int. J. Psychophysiol. 2006, 59, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Van den Bos, E.; de Rooij, M.; Miers, A.C.; Bokhorst, C.L.; Westenberg, P.M.; Tops, M.; Westenberg, P.M. Social Anxiety and the Cortisol Response to Social Evaluation in Children and Adolescents. Psychoneuroendocrinology 2017, 78, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Friedman, B.H. An Autonomic Flexibility-Neurovisceral Integration Model of Anxiety and Cardiac Vagal Tone. Biol. Psychol. 2007, 74, 185–199. [Google Scholar] [CrossRef]
- Juster, R.P.; McEwen, B.S.; Lupien, S.J. Allostatic Load Biomarkers of Chronic Stress and Impact on Health and Cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef]
- Chen, F.R.; Raine, A.; Granger, D.A. The Within-Person Coordination of HPA and ANS Activity in Stress Response: Relation with Behavior Problems. Psychoneuroendocrinology 2020, 121, 104805. [Google Scholar] [CrossRef]
- Westenberg, P.M.; Bokhorst, C.L.; Miers, A.C.; Sumter, S.R.; Kallen, V.L.; van Pelt, J.; Blöte, A.W. A Prepared Speech in Front of a Pre-Recorded Audience: Subjective, Physiological, and Neuroendocrine Responses to the Leiden Public Speaking Task. Biol. Psychol. 2009, 82, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Miers, A.C.; Blöte, A.W.; de Rooij, M.; Bokhorst, C.L.; Westenberg, P.M. Trajectories of Social Anxiety during Adolescence and Relations with Cognition, Social Competence, and Temperament. J. Abnorm. Child Psychol. 2013, 41, 97–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Greca, A.M.; Lopez, N. Social Anxiety among Adolescents: Linkages with Peer Relations and Friendships. J. Abnorm. Child Psychol. 1998, 26, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G.; Stein, M.B.; Aarons, G.A. Cross Validation of the Social Anxiety Scale for Adolescents in a High School Sample. J. Anxiety Disord. 2002, 16, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Sternberg, E. Beyond Heart Rate Variability: Vagal Regulation of Allostatic Systems. Proc. Ann. N. Y. Acad. Sci. 2006, 1088, 361–372. [Google Scholar] [CrossRef]
- Pinna, G.D.; Maestri, R.; Torunski, A.; Danilowicz-Szymanowicz, L.; Szwoch, M.; La Rovere, M.T. Heart Rate Variability Measures: A Fresh Look at Reliability. Clin. Sci. 2007, 113, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Goedhart, A.D.; Van Der Sluis, S.; Houtveen, J.H.; Willemsen, G.; De Geus, E.J.C. Comparison of Time and Frequency Domain Measures of RSA in Ambulatory Recordings. Psychophysiology 2007, 44, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two Formulas for Computation of the Area under the Curve Represent Measures of Total Hormone Concentration versus Time-Dependent Change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef]
- Essau, C.A.; Conradt, J.; Petermann, F. Frequency and Comorbidity of Social Phobia and Social Fears in Adolescents. Behav. Res. Ther. 1999, 37, 831–843. [Google Scholar] [CrossRef]
- Westenberg, P.M.; Drewes, M.J.; Goedhart, A.W.; Siebelink, B.M.; Treffers, P.D.A. A Developmental Analysis of Self-Reported Fears in Late Childhood through Mid-Adolescence: Social-Evaluative Fears on the Rise? J. Child Psychol. Psychiatry Allied Discip. 2004, 45, 481–495. [Google Scholar] [CrossRef] [PubMed]
Total Sample r | Low Social Anxiety r | High Social Anxiety r | |
---|---|---|---|
Baseline standing | −0.28 ** | n.s. | −0.36 ** |
Preparation | −0.31 ** | n.s. | −0.47 ** |
Speech | −0.33 ** | −0.28 * | −0.39 ** |
Recovery | n.s. | n.s. | n.s. |
Sample | Full Model Statistics | Included Independent Variable | β |
---|---|---|---|
Total sample | F (6, 183) = 9.4 ** Explained variance = 24% | Age | 2.27 * |
SAS-A score | −1.91 † | ||
rMSSD preparation | −1.71 † | ||
rMSSD speech | −2.77 * | ||
SCL preparation | −2.58 * | ||
SCL recovery | 2.58 * | ||
Low social anxiety | F (1, 94) = 14.5 ** Explained variance = 14% | rMSSD speech | −3.80 ** |
High social anxiety | F (6, 88) = 7.3 ** Explained variance = 35% | Age | 2.01 * |
rMSSD preparation | −3.05 ** | ||
rMSSD speech | −1.93 † | ||
rMSSD recovery | 2.12 * | ||
SCL baseline seated | 1.67 † | ||
SCL preparation | −1.74 † |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stam, J.V.; Kallen, V.L.; Westenberg, P.M. Associations between Autonomic and Endocrine Reactivity to Stress in Adolescence: Related to the Development of Anxiety? Healthcare 2023, 11, 869. https://doi.org/10.3390/healthcare11060869
Stam JV, Kallen VL, Westenberg PM. Associations between Autonomic and Endocrine Reactivity to Stress in Adolescence: Related to the Development of Anxiety? Healthcare. 2023; 11(6):869. https://doi.org/10.3390/healthcare11060869
Chicago/Turabian StyleStam, Jacqueline V., Victor L. Kallen, and P. Michiel Westenberg. 2023. "Associations between Autonomic and Endocrine Reactivity to Stress in Adolescence: Related to the Development of Anxiety?" Healthcare 11, no. 6: 869. https://doi.org/10.3390/healthcare11060869
APA StyleStam, J. V., Kallen, V. L., & Westenberg, P. M. (2023). Associations between Autonomic and Endocrine Reactivity to Stress in Adolescence: Related to the Development of Anxiety? Healthcare, 11(6), 869. https://doi.org/10.3390/healthcare11060869