A Convex Data-Driven Approach for Nonlinear Control Synthesis
Abstract
1. Introduction
2. Background
2.1. Density Function Approach for Control Synthesis
2.2. Sum of Squares
2.3. Linear Koopman and Perron–Frobenius Operators
3. Stabilization with Stronger Notion of Stability
4. Data-Driven Numerical Algorithm for Control Synthesis
4.1. Density Function Approach Reformulation
4.2. Data-Driven Approximation of Linear Operators
4.3. Convex Control Synthesis: Combining SOS with Koopman
5. Numerical Case Studies
5.1. Van der Pol Oscillator
5.2. Non-Polynomial System Example: Inverted Pendulum
5.3. Lorenz System Dynamics
5.4. Rigid Body Control
6. Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rantzer, A. A dual to Lyapunov’s stability theorem. Syst. Control Lett. 2001, 42, 161–168. [Google Scholar] [CrossRef]
- Vaidya, U.; Mehta, P.G. Lyapunov measure for almost everywhere stability. IEEE Trans. Autom. Control 2008, 53, 307–323. [Google Scholar] [CrossRef]
- Rajaram, R.; Vaidya, U.; Fardad, M.; Ganapathysubramanian, B. Stability in the almost everywhere sense: A linear transfer operator approach. J. Math. Anal. Appl. 2010, 368, 144–156. [Google Scholar] [CrossRef]
- Das, A.K.; Huang, B.; Vaidya, U. Data-Driven Optimal Control Using Transfer Operators. In Proceedings of the IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 3223–3228. [Google Scholar]
- Raghunathan, A.; Vaidya, U. Optimal stabilization using Lyapunov measures. IEEE Trans. Autom. Control 2013, 59, 1316–1321. [Google Scholar] [CrossRef][Green Version]
- Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci. 2015, 25, 1307–1346. [Google Scholar] [CrossRef]
- Mezić, I. Analysis of Fluid Flows via Spectral Properties of the Koopman Operator. Annu. Rev. Fluid Mech. 2013, 45, 357–378. [Google Scholar] [CrossRef]
- Susuki, Y.; Mezic, I.; Raak, F.; Hikihara, T. Applied Koopman operator theory for power systems technology. Nonlinear Theory Its Appl. IEICE 2016, 7, 430–459. [Google Scholar] [CrossRef]
- Sharma, P.; Huang, B.; Ajjarapu, V.; Vaidya, U. Data-driven Identification and Prediction of Power System Dynamics Using Linear Operators. In Proceedings of the 2019 IEEE Power Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar]
- Mauroy, A.; Mezić, I. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 2016, 61, 3356–3369. [Google Scholar] [CrossRef]
- Korda, M.; Mezić, I. Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 2018, 93, 149–160. [Google Scholar] [CrossRef]
- Huang, B.; Ma, X.; Vaidya, U. Data-driven nonlinear stabilization using koopman operator. In The Koopman Operator in Systems and Control; Springer: Berlin/Heidelberg, Germany, 2020; pp. 313–334. [Google Scholar]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Data-driven discovery of Koopman eigenfunctions for control. arXiv 2017, arXiv:1707.01146. [Google Scholar]
- Kaiser, E.; Kutz, J.N.; Brunton, S.L. Data-Driven Approximations of Dynamical Systems Operators for Control; Springer: Heidelberg, Germany, 2020. [Google Scholar]
- Guo, M.; De Persis, C.; Tesi, P. Learning control for polynomial systems using sum of squares relaxations. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju, Korea, 14–18 December 2020; pp. 2436–2441. [Google Scholar]
- Dai, T.; Sznaier, M. A semi-algebraic optimization approach to data-driven control of continuous-time nonlinear systems. IEEE Control Syst. Lett. 2020, 5, 487–492. [Google Scholar] [CrossRef]
- Zhao, P.; Mohan, S.; Vasudevan, R. Control synthesis for nonlinear optimal control via convex relaxations. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 2654–2661. [Google Scholar]
- Topcu, U.; Packard, A.; Seiler, P.; Balas, G. Help on SOS [Ask the Experts]. IEEE Control Syst. Mag. 2010, 30, 18–23. [Google Scholar]
- Parrilo, P.A. Semidefinite programming relaxations for semialgebraic problems. Math. Program. 2003, 96, 293–320. [Google Scholar] [CrossRef]
- Parrilo, P.A.; Sturmfels, B. Minimizing Polynomial Functions. Algorithmic Quantit. Real Algeb. Geom. 2003, 60, 83–99. [Google Scholar]
- Parrilo, P.A. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2000. [Google Scholar]
- Laurent, M. Sums of Squares, Moment Matrices and Optimization Over Polynomials. In Emerging Applications of Algebraic Geometry; Putinar, M., Sullivant, S., Eds.; Springer: New York, NY, USA, 2009; pp. 157–270. [Google Scholar]
- Papachristodoulou, A.; Anderson, J.; Valmorbida, G.; Prajna, S.; Seiler, P.; Parrilo, P.A. SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB. arXiv 2013, arXiv:1310.4716. [Google Scholar]
- Seiler, P. SOSOPT: A Toolbox for Polynomial Optimization. arXiv 2013, arXiv:1308.1889. [Google Scholar]
- Prajna, S.; Parrilo, P.A.; Rantzer, A. Nonlinear control synthesis by convex optimization. IEEE Trans. Autom. Control 2004, 49, 310–314. [Google Scholar] [CrossRef]
- Huang, B.; Ma, X.; Vaidya, U. Feedback Stabilization Using Koopman Operator. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 6434–6439. [Google Scholar]
- Klus, S.; Nüske, F.; Peitz, S.; Niemann, J.H.; Clementi, C.; Schütte, C. Data-Driven Approximation of the Koopman Generator: Model Reduction, System Identification, and Control. Phys. D Nonlinear Phenom. 2020, 406, 132416. [Google Scholar] [CrossRef]
- Chartrand, R. Numerical Differentiation of Noisy, Nonsmooth Data. ISRN Appl. Math. 2011, 149–165. [Google Scholar] [CrossRef]
- Na, T. Computational Methods in Engineering Boundary Value Problems; Mathematics in Science and Engineering: A Series of Monographs and Textbooks; Academic Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Ma, X.; Huang, B.; Vaidya, U. Optimal Quadratic Regulation of Nonlinear System Using Koopman Operator. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 4911–4916. [Google Scholar] [CrossRef]
- Chen, Y.; Vaidya, U. Sample Complexity for Nonlinear Stochastic Dynamics. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 3526–3531. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Vaidya, U.; Chen, Y. A Convex Data-Driven Approach for Nonlinear Control Synthesis. Mathematics 2021, 9, 2445. https://doi.org/10.3390/math9192445
Choi H, Vaidya U, Chen Y. A Convex Data-Driven Approach for Nonlinear Control Synthesis. Mathematics. 2021; 9(19):2445. https://doi.org/10.3390/math9192445
Chicago/Turabian StyleChoi, Hyungjin, Umesh Vaidya, and Yongxin Chen. 2021. "A Convex Data-Driven Approach for Nonlinear Control Synthesis" Mathematics 9, no. 19: 2445. https://doi.org/10.3390/math9192445
APA StyleChoi, H., Vaidya, U., & Chen, Y. (2021). A Convex Data-Driven Approach for Nonlinear Control Synthesis. Mathematics, 9(19), 2445. https://doi.org/10.3390/math9192445