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Abstract: In this paper, the problem of reliable control design with mixed H∞ /passive performance
is discussed for a class of Takagi–Sugeno TS fuzzy descriptor systems with time-varying delay,
sensor failure, and randomly occurred non-linearity. Based on the Lyapunov theory, firstly, a
less conservative admissible criterion is established by combining the delay decomposition and
reciprocally convex approaches. Then, the attention is focused on the design of a reliable static output
feedback (SOF) controller with mixed H∞ /passive performance requirements. The key merit of the
paper is to propose a simple method to design such a controller since the system output is subject to
probabilistic missing data and noise. Using the output vector as a state component, an augmented
model is introduced, and sufficient conditions are derived to achieve the desired performance of the
closed-loop system. In addition, the cone complementarity linearization (CCL) algorithm is provided
to calculate the controller gains. At last, three numerical examples, including computer-simulated
truck-trailer and ball and beam systems are given to show the efficacy of our proposed approach,
compared with existing ones in the literature.

Keywords: descriptor systems; TS fuzzy model; sensor failure; randomly occurred non-linearity;
CCL

1. Introduction

Descriptor systems are recognized as a powerful mathematical model able to de-
scribe the dynamic behavior as well as the interconnection properties of many practical
plants [1,2]; also referred to as singular systems, descriptor systems have known many
applications in the fields related to electrical circuits, large-scale interconnected systems,
electromechanical and constrained mechanical systems, economy, and biological systems.
Due to its impulse behavior, this class of systems has received many research works [3,4].
Particularly, the discrete descriptor systems have received a great deal of attention and
many research value in asymptotic stability, regularity and causality have been published
in the literature [5–11].

On another hand, it is well known that time delay is ubiquitous in various engineering
systems and it is the main cause of instability and performance degradation of dynamic
systems. Consequently, the study of descriptor systems with delays has attracted lots of
researchers’ attention [12–14]. Based on the LMI approach, the direct Lyapunov method
is generally used for investigating the admissibility condition for discrete-time descriptor
systems with time-varying delay. Many works have been done on this topic. By taking
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advantage of the delay partitioning technique, a delay-dependent admissibility criterion
was developed in [8]. Recently, the reciprocally convex combination method was investi-
gated in [10] to derive a less conservative admissibility criterion. In [11], a new summation
inequality, which is less conservative than the usual Jensen inequality, was introduced and
utilized to analyze the admissibility problem. Usually, employing the reciprocally convex
combination approach or the delay decomposition approach yields less conservative results.
This motivates us to combine both approaches to revisit the admissibility condition of
discrete-time descriptor delay systems.

On another research front, the analysis and design of non-linear systems is one
of the most challenging issues in systems and control theory. Recently, Takagi–Sugeno
TS fuzzy model was proved to be a powerful and promising method to approximate
non-linear plants in applications [15,16]. In this context, the sector non-linearity approach
was extensively used as a systematic method to derive an equivalent TS fuzzy model
of the original non-linear system [17]. A shortcoming of this approach is that the fuzzy
rules number increases exponentially with the number of non-linearities arising from
the original systems, leading to increased computational costs. Benefiting from these
models, many results are dedicated for non-linear descriptor systems with time delay. In
the quoted papers, the admissibility analysis for discrete and continuous fuzzy descriptor
systems were addressed [6,18]. For discrete-time fuzzy singular systems subject to actuator
saturation, passive and H∞ control schemes were addressed in [19,20], respectively. A
second motivation of this paper is to benefit from this model to describe the system under
consideration.

To keep the controlled systems less sensitive to external disturbances, a great deal of
attention has been dedicated to the H∞ control theory. Furthermore, the passivity, which
is defined in terms of energy dissipation and transformation, was investigated in control
engineering to deal with robust stability problems for different classes of systems, such as
networked control systems [21], fuzzy systems [22], signal processing systems [23], and
stochastic systems [24]. Very recently, the mixed H∞ /passive problem was introduced
as a new criterion of performance, and some studies on control were launched in [25,26].
However, to the best of our knowledge, no result on mixed H∞ /passive control for
nonlinear discrete-time descriptor systems with delay is available. On another hand, due to
the environmental circumstances, many practical systems are affected by additive nonlinear
exogenous disturbances, which may occur in the probabilistic way. For example, as an
important class of network-induced phenomena, the randomly occurring non-linearities
were largely overlooked [27,28].

Undoubtedly, it is not true to assume that the control systems are fully reliable. In
fact, the failures which generally originate from the aging of sensors and actuators, the
abrupt changes of working conditions, the erosion, the internal components, etc., may
cause performance degradation and even instability of the system. To maintain the critical
functionality and survivability of the system, it becomes of paramount importance to
design reliable control systems in order to tolerate sensor failures while still retaining
desired properties. Accordingly, a great work of literature has appeared on the reliable
control problem with various schemes ranging from active to passive control methods. The
authors in [29] provided an excellent literature review on fault-tolerant control. Recently the
problem of mixed H∞ and passivity-based reliable control for a class of stochastic TS fuzzy
systems with Markovian switching and probabilistic time varying delays was studied
in [30]. In [3], the sliding mode approach was explored for reliable control design of discrete-
time uncertain singular Markovian jump systems with sensor fault and randomly occurring
non-linearities. Unfortunately, up to now, the problem of mixed H∞ and passive reliable
control and filtering for discrete-time descriptor systems with the simultaneous presence
of randomly occurred non-linearities and sensor failures remains open and unsolved,
despite their engineering importance in networked control systems. This constitutes
further motivation to carry out the present study. In practical applications, it is not always
possible to have access to all state variables, and only partial information is available via
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measured outputs. The static output-feedback control problem plays a central role in
control theory and application. It can be easily implemented with low cost and using
augmented plants; the dynamic output-feedback control design can be formulated by
the structure of the SOF controller. The SOF controller design problems were extensively
discussed in recent years for TS fuzzy systems, using LMI-based convex conditions. In [31],
the robust SOF H∞ control problem for discrete-time TS fuzzy systems was studied. In [11],
a new admissibility criterion was developed, and a fuzzy static output feedback controller
was designed for a class of non-linear discrete-time systems with time-varying delay.
In [32,33], the problem of networked fuzzy static output feedback control for discrete-time
TS fuzzy systems was developed. However, except [32], the above-mentioned results are
mainly focused on the case where the measured output vector is not influenced by the noise.
To handle this real case, the main objective of this paper is to pave the way for dealing with
the problem of reliable fuzzy SOF controller design for TS fuzzy descriptor systems subject
to time-varying delay, stochastic non-linearities and sensor failures. Based on the above
considerations, the main contributions of this paper are summarized as follows:

• The system under consideration is subject to real factors, such as time-varying delay,
uncertainties, and random non-linear external disturbances. Moreover, by employ-
ing the delay decomposition and reciprocally convex approaches, a new admissible
criterion is established to improve the existing ones;

• Design a new reliable SOF controller for a descriptor system subject to stochastic
non-linearities and sensors failures;

• Provide a simple method of the controller design based on introducing appropriate
augmented closed-loop systems that decouple the output matrices and controller gain
matrices;

• Different from the works of [19,20], a new admissibility criterion with mixed H∞ /pas-
sive performance is derived for the closed-loop system, and with the help of the CCL
algorithm, the effective reliable controllers gains are obtained..

The rest of the paper is organized as follows. In Section 2, some preliminaries are
introduced. The admissibility analysis is conducted in Section 3. In Section 4, the design
procedure of the fuzzy reliable static output feedback is presented, and a computational
algorithm is given to characterize the design of the mixed H∞ /passive controller. Section 5
is dedicated to show the effectiveness of the theoretical results through three illustrative
examples. A conclusion is given in Section 6.

Notations. The notations in this paper are quite standard, except where other-
wise stated. The superscript ‘T′ stands for matrix transposition; X ∈ Rn denotes the
n-dimensional Euclidean space, while X ∈ Rn×m refers to the set of all n×m real matrices;
X > 0 (respectively, X ≥ 0) means that the matrix X is real symmetric positive definite
(respectively, positive semi-definite); l2[0, ∞) is the space of square summable vectors;
I and 0 represent the identity matrix and a zero matrix with appropriate dimensions,
respectively; diag{· · · } stands for a block-diagonal matrix; sym(X) stands for X + XT ;
‖.‖ denotes the Euclidean norm of a vector and its induced norm of a matrix; and E[.]
stands for the mathematical expectation. In symmetric block matrices, we use a star ∗
to represent a term that is induced by symmetry. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations. λmax() means
the largest eigenvalue of a matrix. To avoid clutter, in what follows, hi denotes hi(θ), Xθ

represents the convex combination ∑r
i=1 hiXi, and Xθθ will denote a convex combination of

the form ∑r
i=1 ∑r

j=1 hihjXij.

2. Preliminaries

In this paper, the following TS fuzzy descriptor system is considered to describe the
dynamic of a non-linear plant with time-varying delay:
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



Ex(k + 1) =
r

∑
i=1

hi(θ)
{

Ai(k)x(k) + Adi(k)x(k− d(k)) + B1iw(k) + Biu(k) + ζ(k)Hi f (x(k))
}

,

z(k) =
r

∑
i=1

hi(θ)
{

C1ix(k) + D1iw(k)
}

,

y(k) =
r

∑
i=1

hi(θ)
{

C2ix(k) + C2di(k)x(k− d(k)) + β(k)ϕ(x(k)) + D2iν(k))
}

,

x(k) = φ0(l), l ∈ [−dM 0]

(1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input, f (x(k)) and ϕ(x(k)) are
randomly occurred non-linear functions, y(k) ∈ Rp is the measured output, z(k) ∈ Rnz is
the controlled output, and w(k) ∈ Rw and ν(k) ∈ Rν are the the exogenous disturbance
signals, which are assumed to belong to l2[0, ∞). φ0(l) is a vector-valued function on
[−dM 0]. Delay d(k) is time-varying and satisfies the following:

dm ≤ d(k) ≤ dM (2)

where dm and dM are positive integers.
In this paper, we assume that matrix E ∈ Rn×n may be singular and assume that rank(E) =
q < n. Ai(k) and Adi(k) are matrices with time-varying uncertainties, that is, the following:

Ai(k) = Ai + ∆Ai(k), Adi(k) = Adi + ∆Adi(k) (3)

Matrices Ai, Adi, B1i, Bi, Hi, C1i, D1i, C2i, C2di and D2i are known with appropriate dimen-
sions. ∆Ai(k) and ∆Adi(k) are unknown matrices representing time-varying parameter
uncertainties.
In dealing with this study, the following assumptions are necessary for further develop-
ment:

1. ∆Ai(k) and ∆Adi(k) are assumed to satisfy the following admissible conditions:
[
∆Ai(k) ∆Adi(k)

]
= MiF(k)

[
Ni Ndi

]
, i = 1, 2, . . . , r (4)

where Mi, Ni and Ndi are known real constant matrices of appropriate dimensions,
and F(k) ∈ Rl is an unknown time-varying matrix function subject to FT(k)F(k) ≤
I ∀k.

2. The non-linear functions f (x(k)) and ϕ(x(k)) are assumed to be continuous and
satisfies the following conditions:

f (0) = 0, ϕ(0) = 0

[ f (x(k))−Ψ1x(k)]T [ f (x(k))−Ω1x(k)] ≤ 0

[ϕ(x(k))−Ψ2x(k)]T [ϕ(x(k))−Ω2x(k)] ≤ 0

(5)

where Ψ1, Ω1, Ψ2 and Ω2 are real matrices with compatible dimensions.

As is well known, for many practical processes, such as networked control systems, the
system output has a probabilistic aspect, due to the randomly missing data. In this study,
we assume that the stochastic variables ζ(k) ∈ R and β(k) ∈ R are Bernoulli stochastic
white sequences with the following distribution laws:

{
Prob{ζ(k) = 1} = E{ζ(k)} = ζ̄, 0 ≤ ζ̄ ≤ 1, Prob{ζ(k) = 0} = 1− ζ̄

Prob{β(k) = 1} = E{β(k)} = β̄, 0 ≤ β̄ ≤ 1, Prob{β(k) = 0} = 1− β̄
(6)
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Obviously, for the stochastic variables ζk and βk, we show the following:

E{(ζ(k)− ζ̄)2} = ζ̄(1− ζ̄), E{(β(k)− β̄)2} = β̄(1− β̄) (7)

Remark 1.

• In order to obtain a TS fuzzy model with a few rules, we can perform the sector non-linearity
approach [17] for a restrictive number of non-linear terms included in the system under
consideration. In addition, due to the environmental circumstances, such as random failures of
the system components, sudden environment changes and unexpected change in the subsystem
interconnections, etc., the processes are probably influenced by additive randomly occurred
non-linear disturbances. Consequently, the term ζk Hi f (x(k)) in (1) involves both model
uncertainties and random occurred non-linearities.

• It is worth mentioning that sensors may not always produce ideal signals, due mainly to
environmental constraints. The system’s output in (1) reflects tightly the reality; however, it
turns out that the controller design is more difficult.

• In this study, it is assumed that the non-linear functions belong to sectors. This description,
suggested in [34], is more general, and includes the usual Lipschitz conditions as a special
case.

Consider the following autonomous discrete-time descriptor system:
{

Ex(k + 1) = Ax(k) + Adx(k− d(k)) + B1w(k)

z(k) = Cx(k) + Dw(k)
(8)

Throughout the paper, the following definitions are adopted.

Definition 1 ([1,35]).

1. pair (E, A) is said to be regular if det(zE− A) is not identically zero;

2. pair (E, A) is said to be causal, if it is regular and deg
(

det(zE− A)
)
= rank(E);

3. Pair (E, A) is said to be admissible, if it is regular, causal and stable;

Definition 2 ([22]). For γ > 0 and 0 ≤ φ ≤ 1, descriptor system (8) is said to be mean-square
admissible with a mixed H∞ /passive performance γ, if under zero initial condition, the following
inequality holds:

E
{

∞

∑
k=0

(
γ−1φzT(k)z(k)− 2γ(1− φ)zT(k)w(k)

)}
< γE

{
∞

∑
k=0

wT(k)w(k)

}
(9)

for all 0 6= w(k) ∈ L2[0, ∞).

Remark 2. Definition 2 includes both H∞ and strict passivity performances as special cases by
choosing different values for φ.

• If φ = 1, inequality (9) reduces to an H∞ performance requirement.
• If φ = 0, inequality (9) corresponds to the passivity performance index.

We recall the following lemmas to be used in the proof of our main results.

Lemma 1 ([36]). Given matrices M, N and P = PT of appropriate dimensions, then

P + MF(k)N + NT FT(k)MT < 0
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for any F(k) satisfying FT(k)F(k) ≤ I, if and only if there exists a scalar ε > 0 such that the
following holds:

P + εMMT + ε−1NT N < 0 (10)

Lemma 2 ([37]). For any vectors ψ1, ψ2, matrices S, R and real scalars α1 ≥ 0, α2 ≥ 0, satisfying
the following:

[
R S
ST R

]
≥ 0, α1 + α2 = 1, ψi = 0 if αi = 0 (i = 1, 2)

we have the following:

− 1
α1

ψT
1 Rψ1 −

1
α2

ψT
2 Rψ2 ≤ −

[
ψ1
ψ2

]T[ R S
ST R

][
ψ1
ψ2

]

3. Admissibility Analysis

In this section, a new sufficient delay-dependent condition is established to deal with
causality and stability for the nominal system of (1) (i.e., u(k) = 0, w(k) = 0 and ζ(k) = 0).
By invoking the delay bi-partitioning and improved reciprocally convex combination
approaches, an LMI-based criterion is derived so that the descriptor system with delay is
admissible.
Consider the following nominal compact presentation of (1).

Ex(k + 1) = Aθ x(k) + Adθ x(k− d(k)) (11)

As in [38], we denote

δ =
dM + dm

2
+

1
2

min{(−1)dM+dm , 0}, τM = dM − δ, τm = δ− dm dr = dM − dm (12)

η(k) = x(k + 1)− x(k), Γ(k) = col
{

Ex(k), Eη(k)
}

,

ξ(k) = col

{
x(k), x(k− dm), x(k− d(k)), x(k− dM), x(k− δ),

k−1

∑
s=k−dm

Ex(s),
k−d(k)−1

∑
s=k−dM

Ex(s),

k−dm−1

∑
s=k−d(k)

Ex(s)

}
(13)

Γ1 = col

{
e6, E(e1 − e2)

}
, Γ21 = col

{
e7, E(e3 − e4)

}
, Γ22 = col

{
e8, E(e2 − e3)

}
,

Γ2 = col

{
Γ21, Γ22

}
, Γ3 = col

{
E(e5 − e4), E(e3 − e5), E(e2 − e3)

}
,

Γ4 = col

{
E(e2 − e5), E(e4 − e3), E(e3 − e5)

}

ei =
[
0n,(i−1)n In 0n,(8−i)n

]
, i = 1, 2, · · · , 8.

(14)

Theorem 1. Given positive integers dm and dM. If there exist matrices P > 0, Q1 > 0, Q2 > 0,
Q3 > 0, Q4 > 0, Z1 > 0, Z2 > 0, W1 > 0, W2 > 0, R1, R21, R22, S11, S12, S21, S22, S, X and Y
satisfying the following:
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



Φ1i = Φ0 + Φ(E,Ai,AEi,ASi)− ΓT
3 W1Γ3 < 0 (15)

Φ2i = Φ0 + Φ(E,Ai,AEi,ASi)− ΓT
4 W2Γ4 < 0 (16)

Z1 > 0, Z2 > 0, W1 > 0, W2 > 0 (17)

where

Φ0 = eT
1

(
Q1 + Q2 + Q3 + (dr + 1)Q4 − ET PE + dmET R1E

)
e1

− eT
2

(
Q1 + dmET R1E + drET R22E

)
e2 + eT

3 (−Q4 + drET(R21 − R22)E)e3

− eT
4

(
+ Q2 + drET R21E

)
e4 − eT

5 Q3e5 − ΓT
1 Z1Γ1 − ΓT

2 Z2Γ2

(18)

Φ(E,Ai,AEi,ASi) = AT
i PAi +AT

Ei

(
τ2

mW1 + τ2
MW2

)
AEi + ΥT

i

(
d2

mZ1 + d2
r Z2

)
Υi (19)

+ sym
(

eT
1 SRT

0 ASi

)
(20)

Z1 =

[
Z11

1 Z12
1

∗ Z22
1

]
Z2 =

[
Z11

2 Z12
2

∗ Z22
2

]
Z1 =

[
Z11

1 Z12
1 + R1

∗ Z22
1 + R1

]
Z21 =

[
Z11

2 Z12
2 + R21

∗ Z22
2 + R21

]

Z22 =

[
Z11

2 Z12
2 + R22

∗ Z22
2 + R22

]
W1 =




W2 0 0
∗ W1 X
∗ ∗ W1


 W2 =




W1 0 0
∗ W2 Y
∗ ∗ W2




Z2 =

[
Z21 S
∗ Z22

]
S =

[
S11 S12
S21 S22

]
,

Ai = Aie1 + Adie3, AEi = (Ai − E)e1 + Adie3, ASi = Aie1 + Adie3, Υi = col
{

Ee1,AEi
}

(21)

then, system (11) is admissible. R0 ∈ Rn×n−r is any matrix with full column rank satisfying
ET R0 = 0.

Proof. First, we prove the regularity and causality properties of the system.
Since rank(E) = q < n, there always exist two non-singular matrices M̂ and N̂ ∈ Rn×n

such that the following holds:

Ê = M̂EN̂ =

[
Iq 0
0 0

]
(22)

Then, R0 can be characterized as the following: R0 = M̂T
[

0
R̂0

]
, where R̂0 ∈ R(n−q)×(n−q)

is any non-singular matrix. We define also the following:

Âi = M̂Ai N̂ =

[
Â11i Â12i
Â21i Â22i

]
, Ŝ = N̂TS =

[
Ŝ11
Ŝ21

]
, Âdi = M̂Adi N̂ =

[
Âd11i Âd12i
Âd21i Âd22i

]
. (23)

From (15) and (16) the following inequality holds:

sym(SRT
0 Ai) + d2

m sym(ETZ12
1 (Ai − E)) + d2

r sym(ETZ12
2 (Ai − E))

+ dmET R1E− ET(Z22
1 + R1)E + d2

mETZ11
1 E + d2

r ETZ11
2 E− ET PE < 0

(24)

Since hi(θ) ≥ 0 and ∑r
i=1 hi(θ) = 1, it yields the following:

sym(SRT
0 Aθ) + d2

m sym(ETZ12
1 (Aθ − E)) + d2

r sym(ETZ12
2 (Aθ − E))

+ dmET R1E− ET(Z22
1 + R1)E + d2

mETZ11
1 E + d2

r ETZ11
2 E− ET PE < 0

(25)
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Pre- and post-multiplying (25) by M̂T and M̂, respectively, and then using expressions (22)
and (23) gives the following:

sym(Ŝ21R̂T
0 Â22θ) < 0 (26)

and Â22θ is, thus, non-singular.
For the stability analysis of system (11), we construct the following Lyapunov–Krasovskii
functional:

V(k) = V1(k) + V3(k) + V3(k) + V4(k)

V1(k) = xT(k)ET PEx(k)

V2(k) =
k−1

∑
s=k−dm

xT(s)Q1x(s) +
k−1

∑
s=k−dM

xT(s)Q2x(s)

+
k−1

∑
s=k−δ

xT(s)Q3x(s) +
−dm

∑
θ=−dM

k−1

∑
s=k+θ

xT(s)Q4x(s)

V3(k) = τm

−dm−1

∑
θ=−δ

k−1

∑
s=k+θ

ηT(s)ETW1Eη(s) + τM

−δ−1

∑
θ=−dM

k−1

∑
s=k+θ

ηT(s)ETW2Eη(s)

V4(k) = dm

−1

∑
θ=−dm

k−1

∑
s=k+θ

ΓT(s)Z1Γ(s) + dr

−dm−1

∑
θ=−dM

k−1

∑
s=k+θ

ΓT(s)Z2Γ(s)

(27)

Calculating the difference of V(k) along the system trajectories, one obtains the following:

∆V1(k) =
(

Aθ x(k) + Adθ x(k− d(k))
)T

P
(

Aθ x(k) + Adθ x(k− d(k))
)
− ET PE

= ξT(k)
(
AT

θ PAθ − eT
1 ET PEe1

)
ξ(k)

∆V2(k) ≤ ξT(k)
(

eT
1
(
Q1 + Q2 + Q3 + (dr + 1)Q4

)
e1 − eT

2 Q1e2 − eT
4 Q2e4 − eT

5 Q3e5

− eT
3 Q4e3

)
ξ(k)

∆V3(k) = ξT(k)AT
Eθ

(
τ2

mW1 + τ2
MW2

)
AEθξ(k)− τm

k−dm−1

∑
s=k−δ

ηT(s)ETW1Eη(s)

− τM

k−δ−1

∑
s=k−dM

ηT(s)ETW2Eη(s)

∆V4(k) = ΓT(k)
(

d2
mZ1 + d2

r Z2

)
Γ(k)− dm

k−1

∑
s=k−dm

ΓT(s)Z1Γ(s)− dr

k−d(k)−1

∑
s=k−dM

ΓT(s)Z2Γ(s)

− dr

k−dm−1

∑
s=k−d(k)

ΓT(s)Z2Γ(s)

(28)

For any symmetrical matrix R1, one can verify the following:

k−1

∑
s=k−dm

(
xT(s + 1)ET R1Ex(s + 1)− xT(s)ET R1Ex(s)

)

=
k−1

∑
s=k−dm

ηT(s)ET R1Eη(s) + 2xT(s)ET R1Eη(s) =
k−1

∑
s=k−dm

ΓT(s)
[

0 R1
RT

1 R1

]
Γ(s)

= xT(k)ET R1Ex(k)− xT(k− dm)ET R1Ex(k− dm)

(29)
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From Equation (29), the following null equation holds:

xT(k)ET R1Ex(k)− xT(k− dm)ET R1Ex(k− dm)−
k−1

∑
s=k−dm

ΓT(s)
[

0 R1
RT

1 R1

]
Γ(s) = 0 (30)

Then, by adding the previous zero-value equation and using the Jensen inequality, algebraic
manipulation yields the following:

−dm

k−1

∑
s=k−dm

ΓT(s)Z1Γ(s) = ξT(k)
(

dmeT
1 ET R1Ee1

− dmeT
2 ET R1Ee2

)
ξ(k)− dm

k−1

∑
s=k−dm

ΓT(s)Z1Γ(s)

≤ ξT(k)
(

dmeT
1 ET R1Ee1 − dmeT

2 ET R1Ee2

)
ξ(k)− ΓT

1 Z1Γ1

(31)

Following the same procedure as above, the following inequalities can be established:

− dr

k−d(k)−1

∑
s=k−dM

ΓT(s)Z2Γ(s) ≤ ξT(k)
(

dreT
3 ET R21Ee3 − dreT

4 ET R21Ee4

)
ξ(k)

− dr

dM − d(k)
ΓT

21Z21Γ21

− dr

k−dm−1

∑
s=k−d(k)

ΓT(s)Z2Γ(s) ≤ ξT(k)
(

dreT
2 ET R22Ee2 − dreT

3 ET R22Ee3

)
ξ(k)

− dr

d(k)− dm
ΓT

22Z22Γ22

(32)

According to Lemma 2, one obtains the following:

− dr

k−dm−1

∑
s=k−dM

ΓT(s)Z2Γ(s) ≤ ξT(k)
(

dreT
2 ET R22Ee2 + dreT

3 ET(R21 − R22)Ee3

− dreT
4 ET R21Ee4

)
ξ(k)− ΓT

2 Z2Γ2

(33)

On the other hand, when dm ≤ d(k) ≤ δ, we derive the following:

−τm

k−dm−1

∑
s=k−δ

ηT(s)ETW1Eη(s) = −τm

k−d(k)−1

∑
s=k−δ

ηT(s)ETW1Eη(s)

− τm

k−dm−1

∑
s=k−d(k)

ηT(s)ETW1Eη(s)

≤ − τm

δ− d(k)
ξT(k)(e3 − e5)

TETW1E(e3 − e5)ξ(k)

− τm

d(k)− dm
ξT(k)(e2 − e3)

TETW1E(e2 − e3)ξ(k)

(34)

and

−τM

k−δ−1

∑
s=k−dM

ηT(s)ETW2Eη(s) ≤ −ξT(k)(e5 − e4)
TETW2E(e5 − e4)ξ(k) (35)
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Then, the following condition holds using Lemma 2:

− τm

k−dm−1

∑
s=k−δ

ηT(s)ETW1Eη(s)− τM

k−δ−1

∑
s=k−dM

ηT(s)ETW2Eη(s) ≤ −ΓT
3 W1Γ3 (36)

Note that ET R0 = 0, for any matrix S with appropriate dimensions yields the following:

2x(k)SRT
0 Ex(k + 1) = 2ξT(k)eT

1 SRT
0 ASθ = 0 (37)

Combining (28)–(37), we have the following:

∆V(k) ≤ ξT(k)Φ1θξ(k) (38)

When δ ≤ d(k) ≤ dM, by proceeding as before, it is readily seen that the following condition
is verified:

− τm

k−dm−1

∑
s=k−δ

ηT(s)ETW1Eη(s)− τM

k−δ−1

∑
s=k−dM

ηT(s)ETW2Eη(s) ≤ −ΓT
4 W2Γ4 (39)

and then, we obtain the following:

∆V(k) ≤ ξT(k)Φ2θξ(k) (40)

Hence, under the conditions of Theorem 1, we can deduce from (38) and (40) the following:

V(k + 1) ≤ V(k)− α‖ξ(k)‖2, α = max
{

λmax

{
Φ1i

}
, λmax

{
Φ2i

}}
(41)

From (41), one can obtain the following:

V(k + 1) ≤ V(0)− α
k

∑
l=0
‖ξ(l)‖2 (42)

and therefore, we obtain the following:

k

∑
l=0
‖ξ(l)‖2 ≤ 1

α
V(0) < ∞ (43)

which implies lim
k−→∞

ξ(k) = 0. Thus, system (11) is stable. This concludes the proof.

Remark 3.

• We would like to stress that in order to obtain less conservative stability conditions for discrete-
time singular systems, the authors in [10] proposed a new Lyapunov functional with triple sum,
and the reciprocally convex combination approach is extended to bound the double summable
term. The authors in [11] developed a new summation inequality as a less conservative
extension of the Jensen inequality. However, the key merit of the obtained less conservative
criterion lies in the application of the delay partitioning method combined with the improved
reciprocally convex combination approach.

4. Reliable SOF Controller Design

In this section, we shall focus on the reliable output feedback control design problem
whose purpose is to design a reliable mixed H∞ /passive controller for system (1) via a
fuzzy static output controller. Assume that the sensors suffer from failures. The following
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model of failure is adopted in this paper to describe the measured signal sent from the
sensors as follows:

yF(k) = R(k)y(k) (44)

where R(k) is the sensor fault matrix defined as follows:
{

R(k) = diag
(
r1(k), r2(k), · · · , rp(k)

)

rs ≤ rs(k) ≤ r̄s, s = 1, 2 · · · , p
(45)

where rs(k) is the degradation level of the ’s’th sensor.
Let the following hold:





Q = diag
(
q1, q2, · · · , qp

)
, qs =

r̄s − rs
rs + r̄s

,

R0 = diag
(
r01, r02, · · · , r0p

)
, r0s =

rs + r̄s

2
, (s = 1, 2 · · · , p)

G(k) = diag
(

g1(k), g2(k), · · · , gp(k)
)
, gs(k) =

rs(k)− r0s

r0s

(46)

Matrix R(k) can be rewritten as the following:

R(k) = R0(I + G(k)) (47)

It can be verified that the following holds:

‖G(k)‖ ≤ ‖Q‖ (48)

The problem of mixed H∞ /passive reliable SOF control could be phrased as follows: given
the fuzzy system in (1), determine a reliable SOF control law as follows:

u(k) =
r

∑
i=1

hiKiR−1
0 yF(k) = Kθ R−1

0 yF(k) (49)

such that, for all admissible sensor failures and exogenous disturbances, the following
requirements are ensured:

• The resulting closed-loop system is robustly mean-square admissible,
• Under zero-initial condition, the mixed H∞ /passive performance is satisfied in the

sense of Definition 2.

Ki is compatible with the dimensional control gain.
Since the system output contains probabilistic missing data and noise, the design of the SOF
controller using the standard approach is made difficult, even impossible. To overcome
this problem, we propose the transformation that considers y(k) as a state component. The
closed-loop system has the following structure:

(Σc) :





Ēx̄(k + 1) = Āθθ(k)x̄(k) + Ādθ(k)x̄(k− d(k)) + B̄1θw̄(k)
+Π̄H̄θ f̄ + (Π(k)− Π̄)H̄θ f̄ ,

z(k) = C̄1θ x̄(k) + D̄1θw̄(k),

(50)
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where x̄(k) =
[
xT(k) yT(k)

]T , w̄(k) =
[
wT(k) νT(k)

]T , f̄ =
[

f T(x(k)) ϕT(x(k))
]T ,

Āθθ(k) = Āθθ + M̄θ F(k)N̄θ , Ādθ(k) = Ādθ + M̄θ F(k)N̄dθ ,

Ē =

[
E 0
0 0

]
, Āθθ =

[
Aθ BθKθ(k)
C2θ −I

]
, Ādθ =

[
Adθ 0
C2dθ 0

]
,

B̄1θ =

[
B1θ 0
0 D2θ

]
, C̄1θ =

[
C1θ 0

]
, D̄1θ =

[
D1θ 0

]
, H̄θ =

[
Hθ 0
0 I

]
,

M̄θ =
[
MT

θ 0
]T , N̄θ =

[
Nθ 0

]
, N̄dθ =

[
Ndθ 0

]
, Π(k) =

[
ζ(k) 0

0 β(k)

]
,

(51)

Easily, we can verify the following: Āθθ = Ā0
θ + B̄θK̄θ(I + G(k)). where

Ā0
θ =

[
Aθ 0
C2θ −I

]
, B̄θ =

[
Bθ

0

]
, K̄θ =

[
0 Kθ

]
, (52)

4.1. Mixed H∞ /Passive Analysis

Our goal here is to establish a tractable condition satisfying system (50) to be mean-
square admissible with a mixed weighted H∞ /passive performance index γ.

Theorem 2. Given positive integers dm, dM and a positive scalar 0 ≤ φ ≤ 1. The closed-loop
system (Σc) without uncertainties is admissible in the mean square for w(k) = 0 and satisfies the
mixed weighted H∞ /passive performance index (9) under zero initial condition for any non-zero
w ∈ l2[0, ∞), if there exist a positive scalar τ and matrices P̄ > 0, Q̄1 > 0, Q̄2 > 0, Q̄3 > 0,
Q̄4 > 0, W̄1 > 0, W̄2 > 0, V̄ > 0, S̄, X̄ and Ȳ satisfying the following:





Φ̄1ij

(
Āij, ĀEij, Ā0

Sij

)
< 0 (53)

Φ̄2ij

(
Āij, ĀEij, Ā0

Sij

)
< 0 (54)

where

Φ̄lij

(
Āij, ĀEij, Ā0

Sij

)
=




Φ̄11lij
√

φC̄T
i ĀT

ij τmĀT
Eij τMĀT

Eij B̄Si K̄T
j K̄0T

j
∗ −γI 0 0 0 0 0
∗ ∗ −P̄−1 0 0 0 0
∗ ∗ ∗ −W̄−1

1 0 0 0
∗ ∗ ∗ ∗ −W̄−1

2 0 0
∗ ∗ ∗ ∗ ∗ −V̄−1 0
∗ ∗ ∗ ∗ ∗ ∗ −V̄




, (55)

l = 1, 2 (56)

Φ̄11lij = Φ̄0 − ΓT
2+lWlΓ2+l + sym

(
eT

1 SRT
0 Ā0

Sij

)
+ Φ̄ci

Φ̄0 = eT
1

(
Q̄1 + Q̄2 + Q̄3 + (dr + 1)Q̄4 − ET PE− τΨ̂

)
e1

− eT
2 Q̄1e2 − eT

3 Q̄4e3 − eT
4 Q̄2e4 − τ sym

(
eT

1 Ω̂e6

)
− τeT

6 e6

Āij = Āije1 + Ādie3 +
(

Π̄ +
√

Π̄(1− Π̄)
)

H̄ie6 + B̄1ie7,

ĀEij = (Āij − Ē)e1 + Ādie3 +
(

Π̄ +
√

Π̄(1− Π̄)
)

H̄ie6 + B̄1ie7,

Ā0
Sij = Ā0

ije1 + Ādie3 + Π̄H̄ie6 + B̄1ie7, Ā0
ij = Ā0

i + B̄iK̄0
i

C̄i = C̄1ie1 + D̄1ie7 K̄i = K̄ie1, K̄0
i = K̄0

i e1, B̄Si = eT
1 SRT

0 B̄i

Ψ̂ =
ΨT

1 Ω1 + ΩT
1 Ψ1

2
, Ω̂ =

ΨT
1 + ΩT

1
2

(57)
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R̄0 is any matrix with full column rank satisfying ĒT R̄0 = 0 and K0
i are given matrices such that

Ai + B2iK0
i C2i is Hurwitz.

Proof. To improve the computational efficiency, we select the Lyapunov–Krasovskii func-
tional (27) without the V4(k) term.
Calculating the difference of V(k) along the system (50) and taking the mathematical
expectation, we have the following:

E
{

∆V1(k)
}

= E
{(

Āθθ(k)x̄(k) + Ādθ(k)x̄(k− d(k)) + B̄1θw̄(k) + Π̄H̄θ f̄ + (Π(k)− Π̄)H̄θ f̄
)T

P̄

(
Āθθ(k)x̄(k) + Ādθ(k)x̄(k− d(k)) + B̄1θw̄(k) + Π̄H̄θ f̄ + (Π(k)− Π̄)H̄θ f̄

)
− ĒT P̄Ē

}

= E
{

ψT(k)
(
ĀT

θθ P̄Āθθ − eT
1 ĒT P̄Ēe1

)
ψ(k)

}

E
{

∆V2(k)
}
≤ E

{
ψT(k)

(
eT

1
(
Q̄1 + Q̄2 + Q̄3 + (dr + 1)Q̄4

)
e1 − eT

2 Q̄1e2 − eT
4 Q̄2e4 − eT

5 Q̄3e5

− eT
3 Q̄4e3

)
ψ(k)

}

E
{

∆V3(k)
}
= E

{
ψT(k)ĀT

Eθθ

(
τ2

mW̄1 + τ2
MW̄2

)
ĀEθθψ(k)− τm

k−dm−1

∑
s=k−δ

ηT(s)ĒTW̄1Ēη(s)

− τM

k−δ−1

∑
s=k−dM

ηT(s)ĒTW̄2Ēη(s)

}

(58)

Note that ĒT R̄0 = 0, for any matrix S̄ with appropriate dimensions yields the following:

E
{

2x̄(k)S̄R̄T
0 Ex̄(k + 1)

}
= E

{
2ψT(k)eT

1 S̄R̄T
0 ĀSθθ

}
= 0 (59)

Furthermore, from assumption 2 the following inequality holds for any τ > 0 as follows:

[
x̄(k)

f̄

]T[−τΨ̂ −τΩ̂
∗ −τ I

][
x̄(k)

f̄

]
≥ 0 (60)

Combining (58)–(60), it follows for dm ≤ d(k) ≤ δ that we have the following:

E
{

∆V(k)

}
≤ E

{
ψT(k)

(
Φ̄0 − ΓT

3 W1Γ3 + Φ̄(Ē, Āθθ , ĀEθθ , ĀSθθ)

)
ψ(k)

}
(61)

When δ ≤ d(k) ≤ dM, we derive the following:

E
{

∆V(k)

}
≤ E

{
ψT(k)

(
Φ̄0 − ΓT

4 W2Γ4 + Φ̄(Ē, Āθθ , ĀEθθ , ĀSθθ)

)
ψ(k)

}
(62)

where

Φ̄(Ē, Āθθ , ĀEθθ , ĀSθθ) = ĀT
θθ P̄Āθθ + ĀT

Eθθ

(
τ2

mW̄1 + τ2
MW̄2

)
ĀEθθ + sym

(
eT

1 S̄R̄T
0 ĀSθθ

)

ψ(k) = col

{
x̄(k), x̄(k− dm), x̄(k− d(k)), x̄(k− dM), x̄(k− δ), f̄ (x(k)), w̄(k)

} (63)
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Note that sym
(

eT
1 S̄R̄T

0 ĀSij

)
= sym

(
eT

1 S̄R̄T
0 Ā0

Si + B̄SiK̄j

)
. For an appropriate dimensional

matrix V̄ > 0, the following inequality holds:

(
B̄T

Si − V̄(K̄j − K̄0
j )
)T

V̄−1
(
B̄T

Si − V̄(K̄j − K̄0
j )
)
≥ 0 (64)

Equivalently, we obtain the following:

sym
(
B̄SiK̄j

)
≤
(
B̄SiV̄−1B̄T

Si

)
+
(
(K̄j − K̄0

j )
TV̄(K̄j − K̄0

j )
)
+ sym

(
B̄SiK̄0

j

)
(65)

Then

sym
(

eT
1 SRT

0 ĀSij

)
≤ sym

(
eT

1 SRT
0 Ā0

Sij

)
+
(
B̄SiV̄−1B̄T

Si

)
+
(
(K̄j − K̄0

j )
TV̄(K̄j − K̄0

j )
)

(66)

Furthermore, by the Schur complement, we can deduce from (53)–(54) that the following
holds:

Φ̄0 − ΓT
2+lWlΓ2+l + Φ̄(E, Āθθ , ĀEθθ , ĀSθθ) < 0, l = 1, 2. (67)

Thus, system (50) with w̄(k) = 0 is admissible in the mean square.
To further investigate the mixed H∞ /passive performance of the system in (11), we
introduce the following performance index :

Jzw = E
{ ∞

∑
k=0

(
γ−1φzT(k)z(k)− 2γ(1− φ)zT(k)w̄(k)− γw̄T(k)(k)w̄(k)

)}
(68)

under zero initial condition, we have the following:

Jzw =E
{ ∞

∑
k=0

(
∆V(k) + γ−1φzT(k)z(k)− 2γ(1− φ)zT(k)w̄(k)− γw̄T(k)(k)w̄(k)

)}

−E
{

V(∞)
}

≤E
{ ∞

∑
k=0

(
∆V(k) + γ−1φzT(k)z(k)− 2γ(1− φ)zT(k)w̄(k)− γw̄T(k)(k)w̄(k)

)}
(69)

Let the following hold: Φ̄cθ = −2γ(1− φ) sym
{
CT

θ e7

}
− γeT

7 e7. From (53) to (54), the
following can be deduced:

E
{(

∆V(k) + γ−1φzT(k)z(k)− 2γ(1− φ)zT(k)w̄(k)− γw̄T(k)w̄(k)
)}

=

E
{

ψT(k)

(
Φ̄0 − ΓT

l+2WlΓl+2 + Φ̄(E, Āθθ , ĀEθθ , ĀSθθ) + Φ̄cθ + γ−1φCT
θ Cθ

)
ψ(k)

}
< 0, l = 1, 2

(70)

Thus, system (50) is with a mixed weighted H∞ /passive performance index γ in the sense
of Definition 2. This completes the proof.

Remark 4. To reduce the conservativeness of the proposed conditions, matrix K0
i is introduced

such that Ai + B2iK0
i C2i is Hurwitz.

4.2. Reliable Controller Synthesis

Theorem 3. Given positive integers dm, dM and a positive scalar 0 ≤ φ ≤ 1. The closed-loop
system (Σc) is admissible in the mean square for w(k) = 0 and satisfies the mixed weighted
H∞ /passive performance index (9) under zero initial condition for any non-zero w ∈ l2[0, ∞), if
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there exist positive scalars τ, εi, κi and matrices P̄ > 0, P̂ > 0, Q̄1 > 0, Q̄2 > 0, Q̄3 > 0, Q̄4 > 0,
W̄1 > 0, Ŵ1 > 0, W̄2 > 0, Ŵ2 > 0, V̄ > 0, V̂ > 0, Z̄ > 0, S̄, X̄ and Ȳ satisfying the following:





Φ̂1ii < 0, i = 1, · · · , r (71)

Φ̂2ii < 0, i = 1, · · · , r (72)
2

r− 1
Φ̂1ii + Φ̂1ij + Φ̂1ji < 0, i 6= j = 1, · · · , r (73)

2
r− 1

Φ̂2ii + Φ̂2ij + Φ̂2ji < 0, i 6= j = 1, · · · , r (74)

P̄P̂ = I, W̄1Ŵ1 = I, W̄2Ŵ2 = I, V̄V̂ = I (75)

where

Φ̂lij =




Φ̂11lij εiN̄T
i M̄i B̄iZ̄ QTK̄T

j
∗ −εi I 0 0 0
∗ ∗ −εi I 0 0
∗ ∗ ∗ −Z̄ 0
∗ ∗ ∗ ∗ −Z̄




Φ̂11lij =




Φ̄11lij
√

φC̄T
i ĀT

ij τmĀT
Eij τMĀT

Eij B̄Si K̄T
j − K̄0T

j
∗ −γI 0 0 0 0 0
∗ ∗ −P̂ 0 0 0 0
∗ ∗ ∗ −Ŵ1 0 0 0
∗ ∗ ∗ ∗ −Ŵ2 0 0
∗ ∗ ∗ ∗ ∗ −V̄ 0
∗ ∗ ∗ ∗ ∗ ∗ −V̂




M̄i =
[
M̄T

i 0 0 τm M̄T
i τM M̄T

i M̄T
i 0 0

]T ,

N̄i =
[
N̄i 0 0 0 0 0 0 0

]

B̄i =
[
0 0 0 B̄T

i τm B̄T
i τM B̄T

i 0 I
]T ,

K̄i =
[
K̄i 0 0 0 0 0 0 0

]

N̄i = N̄ie1 + N̄die3, M̄i = eT
1 S̄R̄T

0 M̄i

(76)

Proof. By substituting Āij(k) and Ādi(k) in (53) and (54), the following conditions holds:

Φ̄lij(k) = Φ̄lij + sym
(

M̄iF(k)N̄i

)
+ sym

(
B̄iK̄j(k)

)
< 0 (77)

Using Lemma 1, Equation (77) is equivalent to the following:




Φ̄lij εiN̄T
i M̄i

∗ −εi I 0
∗ ∗ −εi I


+ sym

(
B̄T

i K̄jR(k)
)
< 0 (78)

where R(k) = diag
(

R̄(k), I, I, I, I, I, I, I
)

and R̄(k) = diag
(

I, R(k)
)

. For any appropriate

matrix Z̄ > 0 yields the following:

(
Z̄B̄i − K̄jR(k)

)T
Z̄−1

(
Z̄B̄i − K̄jR(k)

)
≥ 0 (79)

Using the fact that G(k) ≤ Q, we obtain the following:

sym
(

B̄T
i K̄jR(k)

)
≤ B̄T

i Z̄Z̄−1Z̄B̄i + QTK̄T
j Z̄−1K̄jQ (80)

then Φ̂lij < 0 holds using Schur complement.
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Based on the parametrized linear matrix inequality (PLMI) proposed in [39], relaxed
conditions are obtained in (71)–(74). This completes the proof.

Remark 5. Due to equality constraints (75), conditions (71)–(74) are not in strict LMI form which
cannot be solved directly using the standard LMI procedures. For applying the LMI technique, we
can formulate this non-convex feasibility problem into a sequential optimization problem subject to
LMIs constraints.

Based on the cone complementarity linearization (CCL) technique [40], we propose
the following minimization problem involving LMI conditions instead of the original
non-convex condition (75).

min Tr(P̄P̂ + W̄1Ŵ1 + W̄2Ŵ2 + V̄V̂), subject to (81)





(71)− (74)
[

P̄ I
I P̂

]
≥ 0

[
W̄1 I

I Ŵ1

]
≥ 0

[
W̄2 I

I Ŵ2

]
≥ 0

[
V̄ I
I V̂

]
≥ 0

(82)

If the solution of the above minimization problem is 3n̄ + m, (n̄ = n + p), that is,

min Tr(P̄P̂ + W̄1Ŵ1 + W̄2Ŵ2 + V̄V̂) = 3n̄ + m (83)

then, the conditions in Theorem 2 are solvable. In order to find a feasible solution of the
above minimization problem, we suggest the following Algorithm 1:

Algorithm 1: Find a feasible solution of the above minimisation problem

step 1 Find a feasible set P̄(0), P̂(0), W̄(0)
1 , Ŵ(0)

1 , W̄(0)
2 , Ŵ(0)

2 , V̄(0), V̂(0)

satisfying (71)–(74). Set k = 0.
step 2 Solve the following optimization problem:

minTr(P̂(k) P̄ + P̄(k) P̂ + Ẑ(k)
1 W̄1 + W̄(k)

1 Ŵ1 + Ŵ(k)
2 W̄2 + W̄(k)

2 Ŵ2 + V̂(k)V̄ + V̄(k)V̂)

subject to (82).

step 3 if |Tr(P̄P̂ + W̄1Ŵ1 + W̄2Ŵ2 + V̄V̂ − (3n̄ + m)| < ε,
for a sufficiently small scalar ε > 0, the solution Ki, i = 1, 2, · · · , r,
is the controller gains.
STOP.

else

Set k = k + 1, set (P̄(k), P̂(k), W̄(k)
1 , Ŵ(k)

1 , W̄(k)
2 , Ŵ(k)

2 , V̄(k), V̂(k))
= (P̄, P̂, W̄1, Ŵ1, W̄2, Ŵ2, V̄, V̂), and go to Step 2.

step 4 If k > N, where N is the maximum number of iterations allowed, EXIT.
Our method fails to find feasible gains.

Remark 6. The flowchart displayed in Figure 1 provides a clear description of the proposed design
procedure. Moreover, this procedure can be also applied for a standard system with E = I.
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Ex(k + 1) = g(x(k), x(k − d(k)), u(k))





Ex(k + 1) =
r∑

i=1

hi

{
Ai(k)x(k) +Adi(k)x(k − d(k)) +B2i(k)u(k)

+B1i(k)w(k) + ζ(k)Hif(x())
}

y(k) =
r∑

i=1

hi

{
C2ix(k) + C2di(k)x(k − d(k))

+ β(k)ϕ(x(k)) +D21iν(k)
}

System Rules

w(k)

u(k) =
r∑

i=1

hiKiR0
−1yF (k) R(k)

y(k)

yF (k)CCL
Algo-
rithm

Ki

u(k)

Figure 1. Flowchart of the control procedure.

Remark 7. As mentioned in Remark 1, the non-linear functions are assumed that belong to sectors.
For more general cases, if the non-linear perturbations satisfy the so-called one-sided Lipschitz
constraint, the proposed approach cannot be applied. This interesting issue should be considered in
future studies [27].

5. Numerical Examples

In this section, three numerical examples are provided to validate the effectiveness
and advantage of the developed results.

Example 1. In this example, we demonstrate the advantage of the proposed admissibility method
over some existing ones. Consider the following discrete-time singular system with delay.

E =

[
1 0
0 0

]
, A =

[
0.8 0

0.05 0.9

]
, A =

[−0.1 0
−0.2 −0.1

]

For various values of dm, Table 1 shows the admissible maximum values of dM that guarantees the
discrete singular time-delay system to be admissible by applying the result suggested in this study
and the methods proposed in [5–11]. From the table, we observe that the admissibility criterion in
Theorem 1 is less conservative than those proposed in [5–11].

Table 1. Calculated maximum dM for various dm.

Methods dm = 3 dm = 6 dm = 9 dm = 12

[5] 8 10 13 15

[6] 15 16 17 19

[7] 16 19 22 25

[8] 19 21 24 27

[9] 28 30 33 36

[10] 37 39 42 44

[11] 45 45 48 51

Theorem 1 52 49 50 53
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Example 2. Referring to [41], we consider the following modified truck-trailer mapping system
with stochastic disturbances:




x1(k + 1) = c
(
1− vt

Lt0

)
x1(k) + (1− c)

(
1− vt

Lt0

)
x1(k− d(k)) +

vt
lt0

u(k) + 0.1w(k)

x2(k + 1) = c
vt
Lt0

x1(k) + (1− c)
vt
Lt0

x1(k− d(k)) + x2(k)

x3(k + 1) = x3(k) +
vt
t0

sin
(

x2(k) + c
vt
2L

x1(k) + (1− c)
vt
2L

x1(k− d(k))
)
+ 0.1 f1(xk)

x4(k) = x2(k)− c
vt
Lt0

x1(k)− (1− c)
vt
Lt0

x1(k− d(k)) + 0.2 f2(xk)

z(k) = 0.01x3(k) + 0.01w(k)

y(k) =




c vt
2L x1(k) + (1− c) vt

2L x1(k− d(k)) + ϕ(xk)
x2(k)

x3(k) + ν(k)




(84)

where x1(k) is the angle difference between truck and trailer, x2(k) is the angle of trailer, x3(k) is
the vertical position of the rear end of the trailer, x4(k) is a new variable for the descriptor system,
u(k) is the steering angle, and w(k) is the external disturbance. The model parameters are given as
t = 2s, t0 = 0.5, l = 2.8, L = 5.5, v = −1 and c = 0.9. Set β = 10t0

π . Non-linear system (84)
can be exactly approximated by a TS fuzzy descriptor model as defined in (1). The system matrices
are as follows:

E =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


, A1 =




c(1− vt
Lt0

) 0 0 0
c vt

Lt0
1 0 0

c v2t2

2Lt0

vt
t0

1 0

−c vt
Lt0

1 0 −1




,

Ad1 =




(1− c)(1− vt
Lt0

) 0 0 0
(1− c) vt

Lt0
0 0 0

(1− c) v2t2

2Lt0
0 0 0

−(1− c) vt
Lt0

0 0 0


, A2 =




c(1− vt
Lt0

) 0 0 0
c vt

Lt0
1 0 0

cβ v2t2

2Lt0
β

vt
t0

1 0

−c vt
Lt0

1 0 −1




,

Ad2 =




(1− c)(1− vt
Lt0

) 0 0 0
(1− c) vt

Lt0
0 0 0

(1− c)β v2t2

2Lt0
0 0 0

−(1− c) vt
Lt0

0 0 0


, B2i =




vt
lt0
0
0


, B1i =




0.1
0
0




C1i =
[
0.1 0 0 0

]
, Di = 0.1, C2i =




cvt
2L

0 0 0

0 1 0 0
0 0 1 0


, (85)

C2d =




(1− c)vt
2L

0 0 0

0 0 0 0
0 0 0 0


, D2i =

[
0 0 1

]T , Hi =




0 0
0 0

0.1 0
0 0.2


 (86)

and the membership functions are defined as follows:





h1(η(k)) =
(

1− 1

1 + e−3(η(k)− π
2 )

)(
1

1 + e−3(η(k)+ π
2 )

)
, h2(η(k)) = 1− h1(η(k))

η(k) =x2(k) + c
vt̄
2L

x1(k) + (1− c)
vt̄
2L

x1(k− d(k))

(87)
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The uncertain matrices are the following:

M =
[
0.1 0 0 0

]T , Ni =

[
0.1cvt

2L
0 0 0

]
, Ndi =

[
0.1(1− c)vt

2L
0 0 0

]

Our main aim is to design a reliable fuzzy SOF controller such that the closed-loop system
is stochastically admissible with a mixed H∞ /passive performance attenuation level.
The nonlinear functions f (xk) and ϕ(xk) are, respectively, chosen as the following:

f (xk) =

[−0.48x1(k) + 0.2x2(k) + tanh(0.24x1(k))
0.48x2(k)− tanh(0, 16x2(k))

]
(88)

ϕ(xk) = 0.4x1(k) + 0.1 sin(x1(k)) (89)

which can be bounded by the following:

Φ1 =

[
0.48 0.24 0 0

0 0.32 0 0

]
, Ψ1 =

[−0.24 0.24 0 0
0 0.48 0 0

]
, (90)

Φ2 =
[
0.5 0 0 0

]
, Ψ2 =

[
0.3 0 0 0

]
(91)

The disturbance inputs are given as w(k) = 2e−2k and ν(k) =
sin(10k)

k2 + 1
. The Bernoulli-

distributed white noise sequences ζ(k) and β(k) are assumed to satisfy condition (7) with
ζ̄ = β̄ = 0.8. The sensor fault matrix R(k) is assumed to satisfy diag{0.7, 0.6, 0.5} ≤ R(k) ≤
diag{1, 1.2, 1.1}. Set dm = 2, dM = 7, γ = 1, and φ = 0.45. By resorting to Yalmip software
in MATLAB with the Sedumi solver, the CCL algorithm gives a feasible solution with fuzzy
controller gains given as follows:

K1 =
[
−3.7268 −0.17514 0.0012334

]
K2 =

[
−3.7278 −0.17739 0.0012321

]
(92)

To study the effect of sensor failures, we consider a scenario defined by the following fault
matrix for 2 ≤ k ≤ 100 as follows:

R(k) = diag{ξ1(k), ξ2(k), ξ3(k)} (93)

where

ξ1(k) = 0.75 + 0.05sin(10k) ξ2(k) = 1− 0.2e−0.03kcos(20k) ξ3(k) = 0.65− 0.15e−0.1k (94)

For the initial condition x(0) =
[
1 1 0.5 −0.499

]T , the numerical simulations are
performed for the following two operational modes:

1. Normal mode, where reliable controller (92) is applied for a normal case without any
failure;

2. Failure mode, where the proposed reliable controller (92) is implemented when the
previous scenario affects the systems.

For both cases, the output and input responses of the closed-loop system are depicted in
Figures 2–5. As expected, the truck–trailer system is stabilized, despite the sensor failures
and the stochastic external disturbances. Additionally, the simulation result provides
potent verification for the effectiveness of the proposed control scheme in accommodating
the effect of sensor faults on the system, and shows its robustness in spite of the external
disturbances and uncertainties.
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Figure 2. The response of system output variable y1.
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Figure 3. The response of system output variable y2.
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Figure 4. The response of system output variable y3.
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Figure 5. The response of system control input u.

Example 3. As it is mentioned that the proposed control design is also suitable for standard systems.
Based on the ball and beam system, we make a comparison with the design method suggested in [42].
The ball and beam system is described by the following dynamic equations:




ẋ1(t) = x2(t)

ẋ2(t) = b
(

x1(t)x2
4(t)− g sin(x3(t))

)

ẋ3(t) = x4(t)

ẋ1(t) = u(t) + w(t)

(95)

Set b = 0.7413, g = 9.81 and h = 0.1s as the sampling time. According to Euler’s discretization
method, we can obtain the following discrete-time dynamic system:




x1(k + 1) = x1(k) + hx2(k)

x2(k + 1) = x2(k) + hb
(

x1(k)x2
4(k)− g sin(x3(k))

)

x3(k + 1) = x3(k) + hx4(k)

x4(k + 1) = x2(k) + hu(k) + hw(k)

(96)

Assume that x3(k) ∈
[−π

2
π

2
]

and η(k) = x1(k)x4(k) ∈
[
−5 5

]
. Using the sector non-

linearity approach, the TS fuzzy system can be established as follows:

x(k + 1) =
2

∑
i=1

hi(η(k))
(

Aix(k) + Adix(k− dk) + B2iu(k) + B1iw(k) + H f (x(k))
)

(97)

where Ai = cĀi, Adi = (1− c)Āi,

Ā1 =




1 h 0 0

0 1 − 2
π

hbg hbd

0 0 1 h
0 0 0 1


, Ā2 =




1 h 0 0

0 1 − 2
π

hbg −hbd

0 0 1 h
0 0 0 1


,

B2i = B1i =




0
0
0
h


, H =




0
−hbg

0
0



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The corresponding fuzzy membership functions are given as the following: h1(η(k)) =
η(k) + 5

10

and h2(η(k)) =
5− η(k)

10
, while the non-linear function, f (x(k)) = sin(x3(k))−

2
π

x3(k), is
bounded by the following:

Φ1 =
[
0 0 0 0

]
,Ψ1=

[
0 0 1− 2

π
0
]

(98)

Sensor faults are presented in Figure 6, and the uncertain parameters are assumed to be the following:

M =
[
0 0 −hbg 0

]T , Ni =

[
0 0 1− 2

π
0
]

, i = 1, 2

Set c = 0.9, dm = 1, dM = 5, γ = 0.8, φ = 0, K0
1 =

[
1 2 −10 −4

]
, and K0

2 =[
1 1 −4 −4

]
. Assume that the sensor fault matrix R(k) satisfies diag{0.7, 0.6, 0.5, 0.4} ≤

R(k) ≤ diag{1, 1.2, 1.1, 0.8}. Using the CCL algorithm, the controller gains can be computed as
the following:

K1 =
[
0.69932 1.2392 −16.079 −8.0539

]
(99)

K2 =
[
0.67935 1.7565 −18.647 −12.525

]
(100)

At this point, simulation studies are implemented with the initial condition
x(0) =

[
1 −0.2 0.9 −0.1

]T , and external disturbance selected as follows:

w(k) =

{
2 1 ≤ k ≤ 3
0 else.

(101)

The results of the simulation are depicted in Figure 7. It is clear from this figure that the suggested
control law in (49) keeps the dynamic stability of the closed-loop system, even in the presence of the
sensor faults, model uncertainties and external disturbances.
To further demonstrate the merit of the proposed control strategy, we perform, under the same
conditions, a comparison with the method proposed in [42]. Figure 8 shows the state trajectories of
the system, using the following control law

u(k) =
r

∑
i=1

hi

(
R(k)Kaix(k− dk) + Kbi f (x(k))

)
(102)

with the following gains

Ka1 =
[
−0.0167 −0.0005 −0.0350 −0.0152

]
, Kb1 = 0.7476

Ka2 =
[
0.0763 0.0335 −0.0074 0.0298

]
, Kb2 = 0.2672

(103)

From this figure, it is clear that the control law developed in [42] may be incapable of dealing with
a complex case, where the sensor faults and random non-linearity occur. Hence, the synthesized
control law shows its superiority, compared to that proposed in [42].



Mathematics 2021, 9, 2203 23 of 25

0 1 2 3 4 5 6 7 8 9 10

k

0.7

0.72

0.74

0.76

0.78

0.8

Figure 6. Sensor faults model.
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Figure 7. State trajectories in case 1.
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Figure 8. State trajectories in case 2.

6. Conclusions

In this paper, a new control scheme is developed for solving the main challenges
faced while controlling discrete-time singular systems, such as the time-varying delay,
randomly occurred non-linearities and sensor failures. Based on the TS fuzzy models
and the Lyapunov–Krasovskii functional, the admissibility analysis is firstly studied by
combining the delay decomposition and the reciprocally convex combination approaches.
Then, a reliable static output feedback controller is designed such that the stability of the
closed-loop system is ensured with accommodation of the negative effect caused by the
sensors faults and noise. The feasibility of the addressed control problem is proved by
establishing sufficient conditions such that the prescribed mixed H∞ /passive performance
level is achieved. The design of the controller gain is characterized by solving the CCL
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algorithm. Finally, the effectiveness of theoretical developments is verified by three ex-
amples. It should also be mentioned that many interesting types of research should be
carried out in the future for Markovian jump singular systems described by interval type-2
fuzzy models with actuator/sensors faults, time-varying delay, and unknown transition
probabilities.
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