Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation
Abstract
:1. Introduction
2. Lie Point Symmetries
- 1.
- For and , with and arbitrary constants,
- 2.
- For and , with and arbitrary constants,
- 3.
- For and , with , and arbitrary constants,
- 4.
- For and , with and arbitrary constants,
3. Symmetry Reductions
4. Traveling Wave Solutions
5. Conservation Laws
- 1.
- For and arbitrary function, the multipliers are
- 2.
- For and , besides and , the multiplier is
- 3.
- For and an arbitrary function, the multiplier is
- 4.
- For and , the multiplier is
- 5.
- For and , the multiplier is
- 1.
- For , arbitrary function and , the conservation law is
- 2.
- For , arbitrary function and , the conservation law is
- 3.
- For , and , the conservation law is
- 4.
- For , an arbitrary function and , the conservation law is
- 5.
- For , and , the conservation law is
- 6.
- For , and , the conservation law is
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kafini, M.; Messaoudi, S.A. A blow up result for a viscoelastic system in RN. Electron. J. Differ. Equ. 2006, 113, 1–7. [Google Scholar]
- Kafini, M.; Messaoudi, S.A. A blow up result in a Cauchy viscoelastic problem. Appl. Math. Lett. 2008, 21, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy. Appl. Math. Lett. 2009, 22, 1394–1400. [Google Scholar] [CrossRef] [Green Version]
- Kalantarov, V.K.; Ladyzhenskaya, O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type. J. Soviet Math. 1978, 10, 53–70. [Google Scholar] [CrossRef]
- Haraux, A.; Zuazua, E. Decay estimates for some semilinear damped hyperbolic problems. Arch. Ration. Mech. Anal. 1988, 150, 191–206. [Google Scholar] [CrossRef]
- Ball, J. Remarks on blow up and nonexistence theorems for nonlinear evolutions equations. Quart. J. Math. Oxford 1977, 28, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, S.A. Blow up of solutions with positive initial energy in a nonlinear viscoelastic wave equations. J. Math. Anal. Appl. 2006, 320, 902–915. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, S.A.; Said-Houari, B. Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms. J. Math. Anal. Appl. 2010, 365, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Levine, H.A. Instability and nonexistence of global solutions to nonlinear wave equations of the form. Trans. Am. Math. Soc. 1974, 192, 1–21. [Google Scholar]
- Levine, H.A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. J. Math. Anal. 1974, 5, 138–146. [Google Scholar] [CrossRef]
- Messaoudi, S.A. Blow up and global existence in nonlinear viscoelastic wave equations. Math. Nachr. 2003, 260, 58–66. [Google Scholar] [CrossRef]
- Georgiev, V.; Todorova, G. Existence of a solution of the wave equation with nonlinear damping and source term. J. Differ. Equ. 1994, 109, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi, S.A. Blow up in a nonlinearly damped wave equation. Math. Nachr. 2001, 231, 1–7. [Google Scholar] [CrossRef]
- Márquez, A.P.; Bruzón, M.S. Symmetry analysis and conservation laws of a family of non-linear viscoelastic wave equations. In Proceedings of the XXVI Congreso de Ecuaciones Diferenciales y Aplicaciones, Asturias, Spain, 14–18 June 2021; Gallego, R., Mateos, M., Eds.; Universidad de Oviedo, Servicio de Publicaciones: Oviedo, Spain, 2021; pp. 284–288. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Bluman, G.W.; Cole, J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18, 1025–1042. [Google Scholar]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Champagne, B.; Hereman, W.; Winternitz, P. The computer calculation of Lie point symmetries of large systems of differential equations. Comput. Phys. Commun. 1991, 66, 319–340. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: Berlin, Germany, 1986. [Google Scholar]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic: New York, NY, USA, 1982. [Google Scholar]
- Rosa, M.; Camacho, J.C.; Bruzón, M.S.; Gandarias, M.L. Classical and potential symmetries for a generalized Fisher equation. J. Comput. Appl. Math. 2017, 318, 181–188. [Google Scholar] [CrossRef]
- Khalique, C.M.; Adem, K.R. Exact solutions of the (2+1)-dimensional Zakharov–Kuznetsov modified equal width equation using Lie group analysis. Math. Comput. Model. 2011, 54, 184–189. [Google Scholar] [CrossRef]
- Tracinà, R.; Bruzón, M.S.; Gandarias, M.L.; Torrisi, M. Nonlinear self-adjointness, conservation laws, exact solutions of a system of dispersive evolution equations. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 3036–3043. [Google Scholar] [CrossRef]
- Cheng, K.; Feng, W.; Gottlieb, S.; Wang, C. A Fourier pseudospectral method for the “good” Boussinesq equation with second order temporal accuracy. Numer. Methods Partial. Differ. Equ. 2015, 31, 202–224. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, H.; Huang, J.; Wang, C.; Yue, X. A second order operator splitting numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 2017, 119, 179–193. [Google Scholar] [CrossRef]
- Anco, S. Symmetry properties of conservation laws. Int. J. Mod. Phys. B 2016, 30, 1640003–1640015. [Google Scholar] [CrossRef] [Green Version]
- Anco, S. Generalization of Noether’s theorem in modern form to non-variational partial differential equations, in Recent progress and Modern Challenges in Applied Mathematics. In Modeling and Computational Science, Fields Institute Communications; Springer: New York, NY, USA, 2016; pp. 1–51. [Google Scholar]
- Recio, E.; Garrido, T.M.; de la Rosa, R.; Bruzón, M.S. Hamiltonian structure, symmetries and conservation laws for a generalized (2+1)-dimensional double dispersion equation. Symmetry 2019, 11, 1031. [Google Scholar] [CrossRef] [Green Version]
- Bruzón, M.S.; Recio, E.; Garrido, T.M.; de la Rosa, R. Lie symmetries, conservation laws and exact solutions of a generalized quasilinear KdV equation with degenerate dispersion. Discret. Continous Dyn. Syst. Ser. S 2020, 13, 2691–2701. [Google Scholar] [CrossRef] [Green Version]
- Khalique, C.M.; Simbanefayi, I. Conserved quantities, optimal system and explicit solutions of a (1+1)-dimensional generalised coupled mKdV-type system. J. Adv. Res. 2021, 29, 159–166. [Google Scholar] [CrossRef]
- Kudryashov, N. On “new travelling wave solutions” of the KdV and the KdV-Burgers equations. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1891–1900. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Garrido, T.M.; Recio, E.; de la Rosa, R. Lie symmetries and travelling wave solutions of the nonlinear waves in the inhomogeneous Fisher-Kolmogorov equation. Math. Meth. Appl. Sci. 2019, 2, 1–9. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Gandarias, M.L. Travelling wave solutions for a generalized double dispersion equation. Nonlinear Anal. 2009, 71, e2109–e2117. [Google Scholar] [CrossRef]
- Oliveri, F. Lie Symmetries of Differential Equations: Classical Results and Recent Contributions. Symmetry 2010, 2, 658–706. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez, A.P.; Bruzón, M.S. Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation. Mathematics 2021, 9, 2131. https://doi.org/10.3390/math9172131
Márquez AP, Bruzón MS. Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation. Mathematics. 2021; 9(17):2131. https://doi.org/10.3390/math9172131
Chicago/Turabian StyleMárquez, Almudena P., and María S. Bruzón. 2021. "Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation" Mathematics 9, no. 17: 2131. https://doi.org/10.3390/math9172131
APA StyleMárquez, A. P., & Bruzón, M. S. (2021). Lie Point Symmetries, Traveling Wave Solutions and Conservation Laws of a Non-linear Viscoelastic Wave Equation. Mathematics, 9(17), 2131. https://doi.org/10.3390/math9172131