Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle
Abstract
1. Introduction
2. Mathematical Formulation
3. Stability Analysis
4. Numerical Method
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
needle size | |
nanoparticle concentration | |
ambient nanoparticle concentration | |
skin friction coefficient | |
specific heat at constant pressure () | |
Brownian diffusion coefficient | |
thermophoretic diffusion coefficient | |
heat capacitance of the fluid () | |
dimensionless stream function | |
thermal conductivity of the fluid () | |
local Nusselt number | |
Brownian motion parameter | |
thermophoresis parameter | |
Prandtl number | |
surface of the needle | |
Schmidt number | |
local Sherwood number | |
surface mass flux () | |
surface heat flux () | |
local Reynolds number | |
fluid temperature () | |
surface temperature () | |
ambient temperature () | |
time () | |
velocity components in the x and r directions () | |
velocity of the needle and the mainstream () | |
velocity of the wall mass transfer () | |
cylindrical coordinates () | |
Greek symbols | |
nanoparticle volume fractions for Al2O3 (alumina) | |
nanoparticle volume fractions for Cu (copper) | |
eigenvalue | |
similarity variable | |
moving parameter | |
dimensionless temperature | |
dimensionless nanoparticle concentration | |
dynamic viscosity of the fluid () | |
kinematic viscosity of the fluid () | |
density of the fluid () | |
skin friction or wall shear stress () | |
dimensionless time | |
ratio of effective heat capacity | |
Subscripts | |
fluid | |
nanofluid | |
hybrid nanofluid | |
solid component for Al2O3 (alumina) | |
solid component for Cu (copper) | |
Superscript | |
′ | differentiation with respect to |
References
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exhibition FED 231MD, San Francisco, CA, USA, 12–17 November 1995; pp. 99–105. [Google Scholar]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Turcu, R.; Darabont, A.; Nan, A.; Aldea, N.; Macovei, D.; Bica, D.; Vekas, L.; Pana, O.; Soran, M.L.; Koos, A.A.; et al. New polypyrrole-multiwall carbon nanotubes hybrid materials. J. Optoelectron. Adv. Mater. 2006, 8, 643–647. [Google Scholar]
- Jana, S.; Salehi-Khojin, A.; Zhong, W.H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Alirezaie, A.; Rejvani, M. An applicable study on the thermal conductivity of SWCNT-MgO hybrid nanofluid and price-performance analysis for energy management. Appl. Therm. Eng. 2017, 111, 1202–1210. [Google Scholar] [CrossRef]
- Devi, S.P.A.; Devi, S.S.U. Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul. 2016, 17, 249–257. [Google Scholar] [CrossRef]
- Devi, S.S.U.; Devi, S.P.A. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can. J. Phys. 2016, 94, 490–496. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S. Heat transfer enhancement with Ag-CuO/water hybrid nanofluid. Results Phys. 2017, 7, 2317–2324. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 2019, 136, 288–297. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Phys. Scr. 2019, 94, 105219. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 3110–3127. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4875–4894. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow. Alex. Eng. J. 2020, 59, 91–99. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chin. J. Phys. 2020, (in press). [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge. Appl. Math. Mech. Engl. Ed. 2020, 41, 507–520. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. Hybrid nano fluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet. Int. J. Numer. Methods Heat Fluid Flow 2020, (in press). [CrossRef]
- Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Lee, L.L. Boundary layer over a thin needle. Phys. Fluids 1967, 10, 820–822. [Google Scholar] [CrossRef]
- Narain, J.P.; Uberoi, M.S. Forced heat transfer over thin needles. J. Heat Transf. 1972, 94, 240–242. [Google Scholar] [CrossRef]
- Narain, J.P.; Uberoi, M.S. Laminar free convection from vertical thin needles. Phys. Fluids 1972, 15, 928–929. [Google Scholar] [CrossRef]
- Narain, J.P.; Uberoi, M.S. Combined forced and free-convection over thin needles. Int. J. Heat Mass Transf. 1973, 16, 1505–1512. [Google Scholar] [CrossRef]
- Cebeci, T.; Na, T.Y. Laminar free-convection heat transfer from a needle. Phys. Fluids 1969, 12, 463–465. [Google Scholar] [CrossRef]
- Chen, J.L.S.; Smith, T.N. Forced convection heat transfer from nonisothermal thin needles. J. Heat Transf. 1978, 100, 358–362. [Google Scholar] [CrossRef]
- Wang, C.Y. Mixed convection on a vertical needle with heated tip. Phys. Fluids A Fluid Dyn. 1990, 2, 622–625. [Google Scholar] [CrossRef]
- Kafoussias, N.G. Mixed free convection and mass transfer flow along a vertical needle. Int. J. Energy Res. 1992, 16, 43–49. [Google Scholar] [CrossRef]
- Ahmad, S.; Arifin, N.M.; Nazar, R.; Pop, I. Mixed convection boundary layer flow along vertical thin needles: Assisting and opposing flows. Int. Commun. Heat Mass Transf. 2008, 35, 157–162. [Google Scholar] [CrossRef]
- Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow over a continuously moving thin needle in a parallel free stream. Chin. Phys. Lett. 2007, 24, 2895–2897. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Pop, I. On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux. Chin. J. Phys. 2019, 60, 651–658. [Google Scholar] [CrossRef]
- Grosan, T.; Pop, I. Forced convection boundary layer flow past nonisothermal thin needles in nanofluids. J. Heat Transf. 2011, 133, 054503. [Google Scholar] [CrossRef]
- Soid, S.K.; Ishak, A.; Pop, I. Boundary layer flow past a continuously moving thin needle in a nanofluid. Appl. Therm. Eng. 2017, 114, 58–64. [Google Scholar] [CrossRef]
- Salleh, S.N.A.; Bachok, N.; Arifin, N.M.; Ali, F.M.; Pop, I. Magnetohydrodynamics flow past a moving vertical thin needle in a nanofluid with stability analysis. Energies 2018, 11, 3297. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Nield, D.A. Natural convective boundary-layer flow of a nano fluid past a vertical plate: A revised model. Int. J. Therm. Sci. 2014, 77, 126–129. [Google Scholar] [CrossRef]
- Merkin, J.H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 1986, 20, 171–179. [Google Scholar] [CrossRef]
- Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [Google Scholar] [CrossRef]
- Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 2009, 77, 267–285. [Google Scholar] [CrossRef]
- Shampine, L.F.; Gladwell, I.; Thompson, S. Solving ODEs with MATLAB; Cambridge University Press: Cambridge, UK, 2003; ISBN 9780521824040. [Google Scholar]
- Awaludin, I.S.; Ishak, A.; Pop, I. On the stability of MHD boundary layer flow over a stretching/shrinking wedge. Sci. Rep. 2018, 8, 13622. [Google Scholar] [CrossRef]
- Soid, S.K.; Ishak, A.; Pop, I. MHD stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid with a slip boundary. Sains Malays. 2018, 47, 2907–2916. [Google Scholar] [CrossRef]
- Kamal, F.; Zaimi, K.; Ishak, A.; Pop, I. Stability analysis of MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid with chemical reactions effect. Sains Malays. 2019, 48, 243–250. [Google Scholar] [CrossRef]
- Jusoh, R.; Nazar, R.; Pop, I. Magnetohydrodynamic boundary layer flow and heat transfer of nanofluids past a bidirectional exponential permeable stretching/shrinking sheet with viscous dissipation effect. J. Heat Transf. 2019, 141, 012406. [Google Scholar] [CrossRef]
- Khashi’ie, N.S.; Arifin, N.M.; Nazar, R.; Hafidzuddin, E.H.; Wahi, N.; Pop, I. A stability analysis for magnetohydrodynamics stagnation point flow with zero nanoparticles flux condition and anisotropic slip. Energies 2019, 12, 1268. [Google Scholar] [CrossRef]
Thermophysical Properties | Nanofluid | Hybrid Nanofluid |
---|---|---|
Density | ||
Heat capacity | ||
Dynamic viscosity | ||
Thermal conductivity | where |
Thermophysical Properties | Al2O3 | Cu | Water |
---|---|---|---|
3970 | 8933 | 997.1 | |
765 | 385 | 4179 | |
40 | 400 | 0.613 | |
Prandtl number, | 6.2 |
Chen and Smith [26] | Ishak et al. [30] | Grosan and Pop [32] | Soid et al. [33] | Present Results | |
---|---|---|---|---|---|
0.1 | 1.28881 | 1.2888 | 1.289074 | 1.288778 | 1.288778 |
0.01 | 8.49244 | 8.4924 | 8.492173 | 8.491454 | 8.491454 |
0.001 | 62.16372 | 62.1637 | 62.161171 | 62.158227 |
Chen and Smith [26] | Grosan and Pop [32] | Present Results | |
---|---|---|---|
0.1 | 2.434 | 2.441675 | 2.439692 |
0.01 | 16.306544 | 16.283107 | |
0.001 | 120.55034 | 120.264815 |
Grosan and Pop [32] | Present Results | Grosan and Pop [32] | Present Results | ||
---|---|---|---|---|---|
0.1 | 0.05 | 1.347208 | 1.347125 | 3.682009 | 3.681817 |
0.1 | 1.382008 | 1.381635 | 3.586544 | 3.586427 | |
0.2 | 1.404136 | 1.404050 | 3.389762 | 3.389682 | |
0.01 | 0.05 | 8.771680 | 8.771503 | 22.284916 | 22.284751 |
0.1 | 8.935933 | 8.935143 | 21.816182 | 21.816075 | |
0.2 | 9.041011 | 9.040694 | 20.877668 | 20.877591 | |
0.001 | 0.05 | 63.884384 | 63.718195 | 153.570113 | 153.569704 |
0.1 | 64.653616 | 64.621235 | 150.977665 | 150.977406 | |
0.2 | 65.235057 | 65.200519 | 145.860889 | 145.860701 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waini, I.; Ishak, A.; Pop, I. Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle. Mathematics 2020, 8, 612. https://doi.org/10.3390/math8040612
Waini I, Ishak A, Pop I. Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle. Mathematics. 2020; 8(4):612. https://doi.org/10.3390/math8040612
Chicago/Turabian StyleWaini, Iskandar, Anuar Ishak, and Ioan Pop. 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle" Mathematics 8, no. 4: 612. https://doi.org/10.3390/math8040612
APA StyleWaini, I., Ishak, A., & Pop, I. (2020). Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle. Mathematics, 8(4), 612. https://doi.org/10.3390/math8040612