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Abstract: This paper deals with stochastic comparisons of two parallel (series) systems with Type II
half logistic-resilience scale (TIIHL-RS) distribution components with different baseline distribution
functions. Under the conditions of interdependency and independency, the research shows that
the system performance is better (worse) with the stronger component heterogeneity in the parallel
(series) system under the usual stochastic order and the (reversed) hazard rate order.
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1. Introduction

Stochastic comparisons of system lifetimes is one of the topics in reliability theory and lifetime
testing experiments. As a useful tool for measuring the relation of random variables, stochastic order
has been widely used in the fields of reliability theory, actuarial science, applied probability statistics,
and survival analysis.

Researchers have been dedicated greatly to the results of stochastic comparisons of parallel
systems and series systems with exponential distribution components (see, for instance, the works
of Balakrishnan and Zhao [1], Zhao and Li [2], Dykstra et al. [3], Joo and Mi [4], and Zhao and
Balakrishnan [5], and the references therein for more details). However, the exponential distribution
has the special feature of a constant failure rate, and it is not universally researched. Based on
this, many scholars have generalized the exponential distribution to the Weibull distribution and
gamma distribution (see the works of Fang and Zhang [6], Balakrishnan and Zhao [7], Zhao and
Balakrishnan [8], Kochar and Torrado [9], Zhao et al. [10], Torrado and Kochar [11], Zhao et al. [12],
and Zhang and Zhao [13], among others). In addition, there are some literature works that study the
generalized exponential distribution, exponential Weibull distribution, and exponential generalized
gamma distribution. The relevant research results can be found in the works of Balakrishnan [14], Fang
and Zhang [15], Kundu et al. [16], Kundu and Chowdhury [17], and Haidari et al. [18], among others.
Further, by introducing one or more parameters to a base distribution, the new distribution family has
been favored by statisticians, for example adding a scale parameter λ to a base distribution F(x)(F̄(x)),
which gives the scale distribution family F(λx)(F̄(λx)). For the case of the scale distribution family,
Khaledi et al. [19] compared a series system with general scaled components. Li and Fang [20]
investigated the ordering properties of the extremes of dependent scaled random variables. Further,
Hazra et al. [21,22], adding a location parameter to a scale distribution, obtained a location-scaled
distribution family and compared extreme order statistics from this distribution family. In addition,
a new distribution family was obtained by adding a shape parameter α to the baseline distribution

Mathematics 2020, 8, 470; doi:10.3390/math8040470 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-1202-3918
http://www.mdpi.com/2227-7390/8/4/470?type=check_update&version=1
http://dx.doi.org/10.3390/math8040470
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 470 2 of 17

function. When the baseline distribution is a distribution function, the model is a proportional reversed
hazard rate (PRHR) model. When the baseline distribution function is a survival function, the model is
a PHR model. For the study of PRHR and PHR models, readers can refer to the works of Fang et al. [23]
and Li and Fang [24], among others. Based on the scale distribution family, the PRHR distribution
family, and the PHR distribution family, Fang et al. [23] constructed the scale-proportional (reversed)
hazard rate distribution family, in the case of interdependency, where the dependence is characterized
by the Archimedes copula, and they obtained the maximum order and minimum order results by
means of the usual stochastic order, as well as the results of the minimum (maximum) order statistic
in the sense of the (reversed) hazard rate order in the independent case. Similarly, Zhang et al. [25],
by adding a resilience parameter to the scale model, introduced the resilience-scale (RS) distribution
family, and they not only showed that the RS components’ heterogeneity was directly proportional to
the system performance in parallel and that the RS components’ heterogeneity was directly inversely
proportional to the system performance in the series system under the usual stochastic order, but also
investigated two series (parallel) systems consisting of independent components in the sense of the
(reversed) hazard rate ordering, the skewness, and the dispersiveness for the lifetimes of two parallel
systems with independent heterogeneous and homogeneous components.

Alkaatreh et al. [26] proposed the T − X distribution family, which uses the function ω(x) to
associate the support of the random variable T with the range of the random variable X and X ∼ F(x).
Let T be a continuous random variable with the density function h(x) defined at [a, b]. Then, the
distribution of T − X is defined as follows

G(x) =
∫ ω(F(x))

a
h(t)dt, x ∈ R. (1)

Based on T − X distribution family, many scholars have done corresponding research, when the
random variable T in Equation (1) follows the Weibull distribution, and ω(·) is defined as

ω(F(x)) =
F̄(γx)

1− F̄(γx)
, (2)

which is called the Weibull-generated (Weibull-G) distribution family (see Cooray [27]). Chowdhury
et al. [28] studied the property of the minimum of two heterogeneous samples each following
the Weibull-G distribution. Similarly, when the random variable T in Equation (1) follows the
Kumaraswamy distribution, ω(F(x)) = F(x), then the T − X distribution family is called the
Kumaraswamy-generated (Kumaraswamy-G) distribution family, and Kayakl [29] compared the
lifetimes of two series (parallel) systems consisting Kumaraswamy-G components, under the
assumption that one shape parameter is the same and the other shape parameter is heterogeneous;
by obtaining sufficient conditions for the establishment of the usual stochastic order, the likelihood
ratio order, and the dispersion order, when all shape parameters are heterogeneous, he showed
by a counterexample that the hazard rate order was not established. Kundu and Chowdhury [30]
further studied the maximums of two independent and heterogeneous samples each following the
Kumaraswamy-G distribution under random shock. Recently, based on the T−X distribution, Hassan
et al. [31] gave the Type II half logistic generated (TIIHL-G) distribution family, the distribution
function of which is:

H(x, α, λ) = 1−
∫ − log G(x;λ)

0

2αe−αt

(1 + e−αt)2 dt =
2Gα(x; λ)

1 + Gα(x; λ)
, x > 0, λ > 0, (3)

where the random variable T in Equation (1) follows the half logistic distribution, ω(G(x)) =

− log G(x; λ), G(x; λ) is a baseline distribution, which is dependent on a parameter vector λ, and α

is a resilience or shape parameter. Hereafter, a random variable X having the distribution function
in Equation (3) is denoted by X ∼ TIIHL-G, and given the statistical properties of this distribution
and some specific models, including the TIIHL-uniform distribution, the TIIHL BurrXII distribution,
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the TIIHL-Weibull distribution, and the TIIHL-quasi Lindley distribution. When G(x; λ) follows the
Weibull distribution, Hassan et al. [32] studied the TIIHL-Weibull (W) distribution with applications
including mathematical properties, moments, quantile functions, order statistics, Renyi entropy,
maximum likelihood estimation, and two data analyses, which showed that the distribution performed
better than the beta Weibull distribution, the Mcdonald–Weibull distribution, and exponentiated
Weibull distribution. Therefore, in reliability theory, this model is more widely used than E-W
distribution and Weibull distribution. This paper aims to study the stochastic comparisons of two
parallel or series systems consisting of n heterogeneous TIIHL-G components. Due to the complexity
of the distribution, we study the special case of G(x; λ) = G(λx), which is a scale distribution family,
and we construct the TIIHL-RS distribution family. The cumulative distribution function of TIIHL-RS
is given by:

H(x, α, λ) =
2Gα(λx)

1 + Gα(λx)
, x > 0, α > 0, λ > 0, (4)

where α is a resilience parameter and λ is a scale parameter. Zhang et al. [26] considered the stochastic
comparison of the resilience-scaled model (Fα(λx)) with the same baseline distribution F(x). Let:

F(x) =
[

2Gα(x)
1 + Gα(x)

]1/α

, x > 0, α > 0. (5)

Then, F(x) is still a distribution function. Note that,

Fα(λx) =
2Gα(λx)

1 + Gα(λx)
.

At first glance, it seems to that the TIIHL-RS model is just a simple case of the RS model by
Zhang et al. (2018). However, the following examples show otherwise. Example 1 shows that the
component with TIIHL-RS model performs better than the component with RS model and Example 2
shows a property of distribution may be not closed in the transformation Equation (5). Thus, the
TIIHL-RS model is a different form of Zhang et al. (2018).

Example 1. Owing to the arbitrariness of the baseline distribution G(x), if G(x) = F(x), let X ∼ Fα(λx)
and Y ∼ 2Fα(λx)

1+Fα(λx) , then
X ≤lr[hr,rh,st] Y.

Example 2. If baseline distributions F(x) 6= G(x), let γ(x) and γ1(x) be the hazard rate of F(x) and G(x),
and X1 ∼ F(x), Y1 ∼ G(x). Suppose G(x) = x, 0 ≤ x < 1, which is Uniform distribution. Then, according

to Equation (5), we have F(x) =
[

2xα

1+xα

]1/α
, 0 ≤ x < 1. When α = 0.4, as shown in Figure 1, we find Y1 is

increasing failure rate (IFR), but X1’s hazard rate curve is bathtub shaped.

In particular, when α = 1, G(λx) = 1−e−λx

1+3e−λx , this distribution tends to Half-logistic distribution.
Dolati et al. [33] studied stochastic comparisons including usual stochastic ordering, hazard
rate ordering, and the dispersive ordering between the smallest and largest order statistics with
Half-logistic components. To the best of our knowledge, few scholars have conducted research on
stochastic comparisons problems of TIIHL-RS model. As mentioned in Zhang et al. [26], in this
paper, we investigate stochastic comparisons of lifetimes between parallel/series systems consisting
of interdependent or independent heterogeneous TIIHL-RS components with different baseline
distributions in the sense of the usual stochastic order and the (reversed) hazard rate order, where the
dependence is characterized by Archimedes copula. The TIIHL-RS model includes special cases such
as the TIIHL index distribution, the TIIHL-Rayleigh distribution, the TIIHL-Weibull distribution, the
TIIHL index Lomax distribution, and the Half-logistic distribution. Further, our results give extensions
about Dolati et al. [33] work including usual stochastic ordering, hazard rate ordering.
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Figure 1. The hazard rate of X and Y.

The rest of the paper proceeds as following. In Table 1, we list a short list of the most important
acronyms and notations. In Section 2, we briefly review some pertinent definitions, notations, and
useful lemmas that are used throughout the paper. Section 3 presents the main result. In Section 3.1,
we gave sufficient conditions to compare two parallel/series systems consisting of interdependent
heterogeneous TIIHL-RS components in the sense of the usual stochastic order, and, in Section 3.2,
we obtain the sufficient conditions of the (reversed) hazard rate order to compare two parallel (series)
systems consisting of independent heterogeneous TIIHL-RS components. Finally, we conclude this
paper in Section 4.

Table 1. Acronyms and notions.

cdf Cumulative distribution function Gi(x) The baseline distribution, i = 1, 2
pdf Probability density function Ḡi(x) The baseline survival distribution,

i = 1, 2
PHR Proportional hazard rate model γi(x) The hazard rate of baseline distribution,

i = 1, 2
PRHR Proportional reversed hazard rate

model
γ̃i(x) The reversed hazard rate of baseline

distribution, i = 1, 2
SPHR Scale-proportional hazard rate model h(x) h(x) = ϕ

ϕ′ ◦ φ(x) > 0 is decreasing in x,
for x ≥ 0 and ϕ is log-convex

SPRHR Scale-proportional reversed hazard rate
model

η1(x, y) η1(x, y) = xy

1+xy is increasing in x ∈
[0, 1] and decreasing in y ∈ (0,+∞)

TIIHL-RS Type II half logistic resilience scale
model

RS Resilience-scale model ξ1(x, y) ξ1(x, y) =
y

1+xy is decreasing in x ∈
[0, 1] and increasing iny ∈ (0,+∞)

TIIHL-G Type II half logistic generated model
TIIHL-W Type II half logistic Weibull model ξ2(x, y) ξ2(x, y) = log x

1+xy is increasing in x ∈ [0, 1]
and y ∈ (0,+∞)

2. Preliminaries

Throughout the manuscript, increasing and decreasing mean non-decreasing and non-increasing,
respectively. Let R = (−∞, ∞), R+ = (0, ∞). Denote the n-dimensional nonnegative vectors
x = {x1, . . . , xn}, y = {y1, . . . , yn}, α = {α1, . . . , αn}, β = {β1, . . . , βn}, λ = {λ1, . . . , λn}, and

µ = {µ1, . . . , µn}. The notion ‘a
sgn
= b’ means that a and b have the same sign, and x ≥ y means

xi ≥ yi, for i = 1, . . . , n. It is also assumed that all concerned random variables are nonnegative and
absolutely continuous.
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Let us first recall some notions of stochastic order, majorization order, Schur-convex
(Schur-concave), and Archimedean copula.

Definition 1. For two nonnegative random variables X and Y with density functions f and g and distribution
functions F(x) and G(x), respectively, and let F̄(x) = 1− F(x) and Ḡ(x) = 1− G(x) be the corresponding
survival functions, denote the hazard rate and the reversed hazard rate function of X(Y) by γX(x) =

f (x)/F̄(x)(γY(x) = g(x)/Ḡ(x)) and γ̃X(x) = f (x)/F(x)(γ̃Y(x) = g(x)/G(x)), x ≥ 0, respectively.
Then, X is smaller than Y in the:

(i) usual stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x ∈ [0, ∞);
(ii) hazard rate order (denoted by X ≤hr Y) if Ḡ(x)/F̄(x) is increasing in x ∈ [0, ∞) or, equivalently, if

γX(x) ≥ γY(x); and
(iii) reversed hazard rate order (denoted by X ≤rh Y) if G(x)/F(x) is increasing in x ∈ [0, ∞) or,

equivalently, γ̃X(x) ≤ γ̃Y(x).

For more details basic properties and application of these orders, please refer to the work of Shake
and Shanthikumar [34].

It is well known that the majorization is widely used to establish various stochastic inequalities.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two nonnegative vectors, write x1:n < x2:n < · · · < xn:n

and y1:n < y2:n < · · · < yn:n as the increasing arrangement of the element of vectors x and y.

Definition 2. The x is said to be larger than y in the:

(i) majorized order (denoted by x
m
� y), if ∑

j
i=1 xi:n ≤ ∑

j
i=1 yi:n j = 1, . . . , n − 1, and ∑n

i=1 xi:n =

∑n
i=1 yi:n;

(ii) weakly supermajorized order (denoted byx
w
� y), if ∑

j
i=1 xi:n ≤ ∑

j
i=1 yi:n j = 1, . . . , n; and

(iii) weakly submajorized order (denoted by x �w y), if ∑n
j=i xj:n ≥ ∑n

j=i yj:n i = 1, . . . , n.

It is well known that the following implications always hold:

x �w y⇐ x
m
� y⇒ x

w
� y.

Definition 3. Let φ be a real valued function defined on a set A ⊆ Rn. Then, φ is said to be Schur-convex
(Schur-concave) on A, if

x
m
� y implies φ(x) ≥ (≤)φ(y), for all x, y ∈ A.

For more details on the notion and basic properties of majorization related orders, one may refer
to Marshall et al. [35]

Now, let us recall the concept of Archimedean copula.

Definition 4 ([36]). A function ψ : [0, ∞] → (0, 1] is n-monotone, i.e. (−1)kψ(k)(x) ≥ 0, for
k = 1, 2 . . . , n − 2, and (−1)n−2ψ(n−2)(x) is decreasing and convex, where ψ(k)(x) is kth derivative of
ψ(·), satisfied ψ(0) = 1 and ψ(∞) = 0. Then,

Cψ(u1, . . . , un) = ψ(φ(u1) + · · ·+ φ(un)), ui ∈ (0, 1), i ∈ 1, 2, . . . , n,

is called an Archimedean copula with the generator ψ, where φ = ψ−1 is the pseudo-inverse of ψ.
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For convenience, from now on, we denote

I+n = {(x1, . . . , xn) : 0 < x1 ≤ x2 ≤ · · · ≤ xn},
D+

n = {(x1, . . . , xn) : x1 ≥ x2 ≥ · · · ≥ xn > 0},

Sn =

{
(a, b) =

(
a1, . . . , an

b1, . . . , bn

)
: ai, bj > 0,

(
ai − aj

) (
bi − bj

)
≥ 0, i, j = 1, 2, . . . , n

}
,

Un =

{
(a, b) =

(
a1, . . . , an

b1, . . . , bn

)
: ai, bj > 0,

(
ai − aj

) (
bi − bj

)
≤ 0, i, j = 1, 2, . . . , n

}
.

The following three lemmas are utilized to prove the main results.

Lemma 1 ([35]). Let φ : Dn → R (In → R) is a symmetric and continuously differentiable function. Then, φ

is Schur-convex (Schur-concave) on Dn (In), if and only if

φk(x) is decreasing (increasing) in k = 1, . . . , n, x ∈ Dn(In),

where φk(x) = ∂φ(x)/∂xk.

Lemma 2 ([16]). A real valued function φ on Rn, satisfies

x
w
≺ y⇒ φ(x) ≤ (≥)φ(y),

if and only if φ is decreasing and Schur-convex (Schur-concave) on Rn. Similarly, φ satisfies

x ≺w y⇒ φ(x) ≤ (≥)φ(y),

if and only if φ is increasing and Schur-convex (Schur-concave) on Rn.

Lemma 3. Let the function η2 : (0, 1]× (0, ∞)→ (0, ∞) be defined as η2(x, y) = xy

1−x2y . Then,

(i) η2(x, y) is increasing in x and is decreasing in y; and
(ii) η2(x, y) is convex in x, for all y ≥ 1.

Proof. (i) Differentiating η2(x, y) with respect to x and y, we get

∂η2(x, y)
∂x

sgn
= yxy−1(1− x2y) + 2x3y−1 = yxy−1(1 + x2y) > 0,

∂η2(x, y)
∂y

sgn
= xy(1− x2y) log x + 2x3y log x = xy log x < 0,

for all every 0 < x ≤ 1, y > 0.
(ii) When y ≥ 1, we have

∂η2(x, y)
∂x

=
yxy−1(1 + x2y)

(1− x2y)2 = yxy−1 · f (x, y),

where f (x, y) = 1+x2y

(1−x2y)2 , it is easy to get yxy−1 > 0 is increasing in x, for all y ≥ 1. Let υ = x2y; then,

f (υ) =
1 + υ

(1− υ)2 , υ > 0.

Differentiating f (υ) with respect to υ,
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f ′(υ) = (1− υ)2 + 2(1− υ2) = 3− 2υ− υ2 ≥ 0,

since υ is increasing in x, hence ∂η2(x,y)
∂x > 0 hold for all 0 < x ≤ 1 and y ≥ 1.

3. Stochastic Comparison Results

In this section, we establish comparison results between two parallel (series) systems with
TIIHL-RS distribution components with the different baseline distribution functions, respectively, in
sense of the usual stochastic ordering and the (reversed) hazard rate ordering. Assume Z1 and
Z2 are two nonnegative random variables with Zk ∼ Gk(x) for k = 1, 2. Further, for baseline
distribution G1(x), let X = (X1, X2, . . . , Xn) be a set of dependent TIIHL-RS distributed random
vector with Xi ∼ TIIHL-RS(G1(x), αi, λi), i = 1, 2, . . . , n, and an Archimedean copula having
generator ψ1. We denote X ∼ TIIHL-RS(G1(x), α, λ, ψ1). Similarly, for another baseline distribution
G2(x), let Y = (Y1, Y2, . . . , Yn) be a set of dependent TIIHL-RS distributed random vector with
Yi ∼ TIIHL-RS(G2(x), βi, µi), i = 1, 2, . . . , n, and an Archimedean copula having generator ψ2. We
denote Y ∼ TIIHL-RS(G2(x), β, µ, ψ2). Suppose that F̄Xn:n(x) and F̄Yn:n(x) be the reliability distributions
of Xn:n and Yn:n, respectively, and FX1:n(x) and FY1:n(x) be the distribution functions of X1:n and Y1:n,
respectively. Then,

F̄Xn:n(x) = Φ1(α, λ, ψ1, G1(x)) = 1− ψ1

(
n

∑
i=1

φ1(
2G1

αi (λix)
1 + G1

αi (λix)
)

)
,

F̄Yn:n(x) = Φ2(β, µ, ψ2, G2(x)) = 1− ψ2

(
n

∑
i=1

φ2(
2G2

βi (µix)
1 + G2

βi (µix)
)

)
,

and

FX1:n(x) = Ψ1(α, λ, ψ1, G1(x)) = 1− ψ1

(
n

∑
i=1

φ1(
1− G1

αi (λix)
1 + G1

αi (λix)
)

)
,

FY1:n(x) = Ψ2(β, µ, ψ2, G2(x)) = 1− ψ2

(
n

∑
i=1

φ2(
1− G2

βi (µix)
1 + G2

βi (µix)
)

)
.

3.1. Heterogeneous Interdependent Case

In this subsection, we compare parallel and series systems each consisting of heterogeneous
interdependent TIIHL-RS components, which have the different baseline distributions, respectively,
with respect to usual stochastic order. Firstly, in the following theorem, we suppose the systems
consisting of components with same resilience parameters as well as different scale parameters.

Theorem 1. Let Xi and Yi be two sets of dependent random variables with Xi ∼ TIIHL-RS(G1(x), αi, λi, ψ1)

and Yi ∼ TIIHL-RS(G2(x), αi, µi, ψ2), respectively. Suppose (α, λ) ∈ Un, (λ, µ) ∈ Sn, φ1 ◦ ψ2 is
super-additive and ψ1 or ψ2 is log-convex. Then,

(1) Z1 ≥st Z2, γ̃(x) is decreasing in x ∈ R+, λ
w
� µ⇒ Xn:n ≥st Yn:n; and

(2) Z1 ≤st Z2, λ ≥ µ⇒ X1:n ≤st Y1:n.

Proof. (1) According to Lemma 1 of Fang et al. [23], φ1 ◦ ψ2 is super-additive, then

Φ1(α, µ, ψ1, G2(x)) ≥ Φ2(α, µ, ψ2, G2(x)).

Since ψ1 and φ1 are decreasing, η1(G1(µix), α) is increasing in G1(µix) and Z1 ≥st Z2; then,
we have
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Φ1(α, µ, ψ1, G1(x)) ≥ Φ1(α, µ, ψ1, G2(x)).

Thus, we need only to prove

Φ1(α, λ, ψ1, G1(x)) ≥ Φ1(α, µ, ψ1, G1(x)).

In view of Lemma 1 and Lemma 2, we just need to prove that Φ1(α, λ, ψ1, G1(x)) is decreasing
and Schur-convex in λi, for all α ∈ D+

n . Now,

∂Φ1(α, λ, ψ1, G1(x))
∂λk

= −ψ′1

(
n

∑
i=1

φ1(
2G1

αi (λix)
1 + G1

αi (λix)
)

)
ψ1 ◦ φ1

ψ′1 ◦ φ1

(
2G1

αk (λkx)
1 + G1

αk (λkx)

)
xαkγ̃1(λkx)

1 + G1
αk (λkx)

≤ 0.

We just need to show that Φ1(α, λ, ψ1, G1(x)) is Schur-convex in λ. After simplifications, we get

∂Φ1(α, λ, ψ1, G1(x))
∂λk

− ∂Φ1(α, λ, ψ1, G1(x))
∂λk+1

= −xψ′1

(
n

∑
i=1

φ1(
2G1

αi (λix)
1 + G1

αi (λix)
)

)
×{h[2η1(G1(λkx), αk)]ξ1[G1(λkx), αk]γ̃(λkx)

−h[2η1(G1(λk+1x), αk+1)]ξ1[G1(λk+1x), αk+1]γ̃(λk+1x)}.

By the monotonicity of the composite function, we find that h[2η1(G1(λx), α)]ξ1[G1(λx), α]γ̃1(λx)
is decreasing in α and increasing in λ. Since λ ∈ I+n , α ∈ D+

n , i.e. λk < λk+1, αk > αk+1, we have

∂Φ1(α, λ, ψ1, G1(x))
∂λk

− ∂Φ1(α, λ, ψ1, G1(x))
∂λk+1

≤ 0.

(2) Note that φ1 ◦ ψ2 is super-additive, ψ1 and φ1 are decreasing, 1− η1[G1(λix), α] is decreasing
in G1(λix) and Z1 ≤st Z2; then, we have

Ψ1(α, λ, ψ1, G1(x)) ≥ Ψ1(α, λ, ψ1, G2(x)) ≥ Ψ2(α, λ, ψ2, G2(x)),

and

Ψ2(α, λ, ψ2, G2(x)) ≥ Ψ2(α, µ, ψ2, G2(x)).

Thus, we complete the proof.

The following theorem compared two parallel systems consisting of heterogeneous
interdependent components with different resilience parameters as well as same scale parameters in
sense of usual stochastic order.

Theorem 2. Let X1, X2, . . . , Xn be a set of interdependent random variables with Xi ∼
TIIHL-RS(G1(x), αi, λi, ψ1), and Y1, Y2, . . . , Yn be another set of interdependent random variables
with Yi ∼ TIIHL-RS(G2(x), βi, λi, ψ2). Suppose that (α, λ) ∈ Un, (α, β) ∈ Sn, φ1 ◦ ψ2 is super-additive, and
ψ1 or ψ2 is log-convex. Then,

Z1 ≥st Z2, α �w β⇒ Xn:n ≥st Yn:n.

Proof. Assume that λ ∈ I+n , α ∈ D+
n , β ∈ D+

n , ψ1 is log-convex. According Lemma 1 and Lemma 2,
similar to the proof of Theorem 1(1), for all λ ∈ I+n , we only prove Φ1(α, λ, ψ1, G1(x)) is increasing
and Schur-convex in αi. The increasing property of Φ1(α, λ, ψ1, G1(x)) is obviously true. By using
Lemma 1, Lemma 2, and h[2η1(G1(λx), α)]ξ1[G1(λx), α] is increasing in α and decreasing λ, we obtain
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∂Φ1(α, λ, ψ1, G1(x))
∂αk

− ∂Φ1(α, λ, ψ1, G1(x))
∂αk+1

= −ψ′1

(
n

∑
i=1

φ1(
2G1

αi (λix)
1 + G1

αi (λix)
)

)
×{h[2η1(G1(λkx), αk)]ξ2[G1(λkx), αk]

−h[2η1(G1(λk+1x), αk+1)]ξ2[G1(λk+1x), αk+1]}
≥ 0.

The prove of λ ∈ D+
n , α ∈ I+n , β ∈ I+n is similar to that of the λ ∈ I+n , α ∈ D+

n , β ∈ D+
n , and hence

omitted for the sake of conciseness.

The following theorem compared two series systems consisting of heterogeneous interdependent
components with different resilience parameters as well as complete same scale parameters in the
sense of usual stochastic order.

Theorem 3. Let X1, X2, . . . , Xn be a set of interdependent random variables with Xi ∼
TIIHL-RS(G1(x), αi, λ, ψ1), and Y1, Y2, . . . , Yn be another set of interdependent random variables with
Yi ∼ TIIHL-RS(G2(x), βi, λ, ψ2). Suppose that (α, β) ∈ Sn, φ1 ◦ ψ2 is super-additive, and ψ1 or ψ2 is
log-convex. Then,

Z1 ≤st Z2, α
w
� β⇒ X1:n ≤st Y1:n.

Proof. Assume that α ∈ D+
n , according to Lemma 1 and Lemma 2, we just need to prove that, for all

k ∈ {0, 1, . . . , n}, Ψ1(α, λ, ψ1, G1(x)) is decreasing and Schur-convex in αk. From Lemma 3, it can be
shown that h[1− η1(G1(λx), α)]η2[G1(λx), α] is increasing in α, we have

∂Ψ1(α, λ, ψ1, G1(x))
∂αk

− ∂Ψ1(α, λ, ψ1, G1(x))
∂αk+1

= 2{log G1(λx)}ψ′1

(
n

∑
i=1

φ1(
1− G1

αi (λx)
1 + G1

αi (λx)
)

)
×{h[1− η1(G1(λx), αk)]η2[G1(λx), αk]

−h[1− η1(G1(λx), αk+1)]η2[G1(λx), αk+1]}
≥ 0.

By using Z1 ≤st Z2, φ1 ◦ ψ2 is super-additive, and ψ1 or ψ2 is log-convex, it is easy to get

Ψ1(α, λ, ψ1, G1(x)) ≥ Ψ1(α, λ, ψ2, G2(x)).

Then, we have

Ψ1(α, λ, ψ1, G1(x)) ≥ Ψ2(β, λ, ψ2, G2(x)).

The prove of α ∈ I+n , β ∈ I+n is similar to that of the λ ∈ I+n , α ∈ D+
n , β ∈ D+

n , and hence omitted
for the sake of conciseness.

Combining Theorem 1(1) and Theorem 2, we obtain more general result as following.

Theorem 4. Let X1, X2, . . . , Xn be a set of interdependent random variables with Xi ∼
TIIHL-RS(G1(x), αi, λi, ψ1), and Y1, Y2, . . . , Yn be another set of interdependent random variables
with Yi ∼ TIIHL-RS(G2(x), βi, µi, ψ2). Suppose that (α, λ) ∈ Un, (λ, µ) ∈ Sn, γ̃(x) is decreasing in
x ∈ R+, φ1 ◦ ψ2 is super-additive, and ψ1 or ψ2 is log-convex. Then,

Z1 ≥st Z2, λ
w
� µ, α �w β⇒ Xn:n ≥st Yn:n.

Combining Theorem 1(2) and Theorem 3, we obtain more general result as following.
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Theorem 5. Let X1, X2, . . . , Xn be a set of interdependent random variables with Xi ∼
TIIHL-RS(G1(x), αi, λ, ψ1), and Y1, Y2, . . . , Yn be another set of interdependent random variables with
Yi ∼ TIIHL-RS(G2(x), βi, µ, ψ2). Suppose that (α, β) ∈ Sn, φ1 ◦ ψ2 is super-additive, and ψ1 or ψ2 is
log-convex. Then,

Z1 ≤st Z2, λ ≥ µ, α
w
� β⇒ X1:n ≤st Y1:n.

The following example shows that the condition of (α, λ) ∈ Un, (λ, µ) ∈ Sn, could not be relaxed
in Theorem 4.

Example 3. Consider two series systems consisting of two dependent components; we choose the Clayton–Oakes
copula, i.e.

ψ(x) = (θx + 1)−1/θ , 0 < θ < ∞.

Let G1(x) = 1 − e−x, G2(x) = 1 − e−2x, obvious G1(x) ≤ G2(x), suppose that θ1 = 0.2, θ2 = 0.4,
(λ1, λ2) = (0.8, 0.4), (µ1, µ2) = (0.6, 0.8), (α1, α2) = (0.8, 0.2), (β1, β2) = (0.4, 0.5), it is easy to see
(α, λ) ∈ Sn, (λ, µ) ∈ Sn. Figure 2 plots the reliability functions of X2:2 and Y2:2, which implies that the usual
stochastic ordering does not hold between X2:2 and Y2:2.

FX2:2 (x)

FY2:2 (x)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

x

Figure 2. Plot of reliability functions of X2:2(x) and Y2:2(x).

Remark 1. About the existence of the condition of ϕ or ϕ is log-convex and φ1 ◦ ψ2 is super-additive, one can
refer to Zhang et al. [25].

3.2. Heterogeneous independent case

In this subsection, we investigate the order properties of the lifetime of parallel and series systems
with independent TIIHL-RS components.

Theorem 6. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn are two sets independent random variables with Xi ∼
TIIHL-RS(G1(x), α, λi, ψ0), and Yi ∼ TIIHL-RS(G2(x), α, µi, ψ0), for all i = 1, 2, . . . , n. Suppose (λ, µ) ∈
Sn, then

(1) if α ≤ 1, xγ̃1(x) or xγ̃2(x) is decreasing and convex in x ∈ R+, Z1 ≥rh Z2, λ
w
� µ⇒ Xn:n ≥rh Yn:n.

(2) if α ≥ 1, xγ1(x) or xγ2(x) is increasing and convex in x ∈ R+, Z1 ≤hr Z2, λ �w µ⇒ X1:n ≤hr Y1:n.

Proof. (1) For x > 0, the reversed hazard rate functions of Xn:n and Yn:n by:

γ̃Xn:n(x) =
n

∑
i=1

αλiγ̃1(λix)
1 + G1

α(λix)
, γ̃Yn:n(x) =

n

∑
i=1

αµiγ̃2(µix)
1 + G2

α(µix)
.
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Without loss of generality, we suppose that λ ∈ D+
n , according to stochastic order theory and

Lemma 1 and Lemma 2, it only need to prove that

0 ≥ ∂γ̃Xn:n

∂λk
≥ ∂γ̃Xn:n

∂λk+1
. (6)

Let η3(x) = 1
1+xa , η4(x) = xγ̃1(x); note that, for all a ≤ 1, η3(x) is decreasing and convex in x.

Thus, we have

∂γ̃Xn:n

∂λk
=

α

x
∂η3(G1(λkx))

∂λkx
η4(λkx) +

α

x
η3(G1(λkx))η′4(λkx) ≤ 0.

Next, we need to show that γ̃Xn:n(x) is Schur-convex function, that is ∂γ̃Xn:n
∂λk

≥ ∂γ̃Xn:n
∂λk+1

.

∂γ̃Xn:n

∂λk
− ∂γ̃Xn:n

∂λk+1
=

α

x
{∂η3[G1(λkx)]

∂λkx
η4(λkx) + η3[G1(λkx)]η′4(λkx)

−∂η3[G1(λk+1x)]
∂λk+1x

η4(λk+1x) + η3[G1(λk+1x)]η′4(λk+1x)}

≥ 0.

Thus, γ̃Xn:n(x) is a Schur-convex function, which shows that Equation (6) holds. Then,

n

∑
i=1

αλiγ̃1(λix)
1 + G1

α(λix)
≥

n

∑
i=1

αµiγ̃1(µix)
1 + G1

α(µix)
. (7)

Now, Z1 ≥rh Z2 implies γ̃1(x) ≥ γ̃2(x) and G1(x) ≤ G2(x), which yields

n

∑
i=1

αλiγ̃1(λix)
1 + G1

α(λix)
≥

n

∑
i=1

αλiγ̃2(λix)
1 + G2

α(λix)
.

Based on Equation (7), we have

n

∑
i=1

αλiγ̃1(λix)
1 + G1

α(λix)
≥

n

∑
i=1

αλiγ̃2(λix)
1 + G2

α(λix)
≥

n

∑
i=1

αµiγ̃2(µix)
1 + G2

α(µix)
.

(2) For x > 0, the hazard rate functions of X1:n and Y1:n by:

γX1:n(x) =
n

∑
i=1

2αG1
α(λix)λiγ1(λix)

1− 2G1
α(λix)

, γY1:n(x) =
n

∑
i=1

2αG2
α(µix)µiγ2(µix)

1− 2G2
α(µix)

.

Let

H(α, λ, x) =
2α

x

n

∑
i=1

G1
α(λix)λixγ1(λix)
1− 2G1

α(λix)
.

Without loss of generality, it is assumed that λ ∈ D+
n , then λx ∈ D+

n . According to Lemma 1
and Lemma 2, it suffices to prove that H(α, λ, x) is increasing and Schur-convex in λx. Taking the
derivative of H(α, λ, x) with respect to λix, we have

∂H(α, λ, x)
∂λkx

=
2α

x

{
∂η2[G1(λkx)]

∂λkx
η(λkx) + η2[G1(λkx)]η′(λkx)

}
,

where η(x) = xγ1(x); from Lemma 3, it is easy to see that, for all α ≥ 1, η2(x) is increasing and convex
in x. Hence, ∂H(α,λ,x)

∂λkx ≥ 0, and
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∂H(α, λ, x)
∂λkx

− ∂H(α, λ, x)
∂λk+1x

=
2α

x

{
∂η2[G1(λkx)]

∂λkx
η(λkx) + η2[G1(λkx)]η′(λkx)

}
−2α

x

{
∂η2[G1(λk+1x)]

∂λk+1x
η(λk+1x) + η2[G1(λk+1x)]η′(λk+1x)

}
.

Denote Λ(x) = ∂η2[G1(x)]
∂x η(x) + η2[G1(x)]η′(x), since η2(x), η(x) is increasing and convex

functions, we have Λ(x) is increasing in x, thus

∂H(α, λ, x)
∂λkx

− ∂H(α, λ, x)
∂λk+1x

=
2α

x
{Λ(λkx)−Λ(λk+1x)} ≥ 0, for all λx ∈ D+

n .

Thus,

n

∑
i=1

2αG1
α(λix)λiγ1(λix)

1− 2G1
α(λix)

≥
n

∑
i=1

2αG1
α(µix)µiγ1(µix)

1− 2G1
α(µix)

. (8)

Similar to the first part proof, when Z1 ≤hr Z2, according to Equation (9), we have

n

∑
i=1

2αG1
α(λix)λiγ1(λix)

1− 2G1
α(λix)

≥
n

∑
i=1

2αG2
α(λix)λiγ2(λix)

1− 2G2
α(λix)

≥
n

∑
i=1

2αG2
α(µix)µiγ2(µix)

1− 2G2
α(µix)

.

The proof is finished.

A natural question is that whether the assumptions α ≤ 1 can be altered to α > 1 in Theorem 6(1).
The next example provides a negative answer.

Example 4. Consider two series systems consisting of two independent components. Let G1(x) = 1 −
e−x, G2(x) = 1− e−2x, then Z1 ≥rh Z2. Suppose that (λ1, λ2) = (0.4, 0.3), (µ1, µ2) = (0.6, 0.5), α = 2.

It is obvious that, λ
w
� µ; then, according to Figure 3, the reversed hazard rate ordering of X2:2 and Y2:2 does

not hold.

γ
˜
X2:2 (x)

γ
˜
Y2:2 (x)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5

10

15

20

25

30

35

x

Figure 3. The reversed hazard rate functions of X2:2 and Y2:2.

Remark 2. In particular, when α = 1, G(λx) = 1−e−λx

1+3e−λx , the results in Theorem 4 and Theorem 5 generalize
that of Proposition 1 in Dolati et al. [33] and Theorem 6(1) is a generalization of Proposition 4 (1) in
Dolati et al. [33].

Ordering results between order statistics are helpful in reliability. Here, we introduce numerical
applications to illustrate the theoretical results. Selecting a row of subsystems with better performance
from two sets of subsystems used to assemble a system is a key issue for reliability engineers.
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Example 5. Consider two systems M and N, composed of five types of subsystems, each of which has
dependent (independent) heterogeneous TIIHL-W distribution. Assume system M is assembled with subsystems
M1, M2, . . . , M5, and system N is assembled with subsystems N1, N2, . . . , N5, denote Xi and Yi the lifetimes of
Mi and Ni and Xi ∼ TIIHL-W(G1, αi, λi, ψ) and Yi ∼ TIIHL-W(G2, αi, µi, ψ), (i = 1, 2, . . . , 5), respectively.
Setting

(1) α = (0.2, 0.3, 0.4, 0.5, 0.8), λ = (0.7, 0.6, 0.5, 0.2, 0.2), β = (0.1, 0.2, 0.4, 0.5, 0.6), µ =

(1.2, 0.8, 0.5, 0.4, 0.3). Clearly, λ
w
� µ, α �w β, let G1(x) = 1 − e−x, G2(x) = 1 − e−2x, h(a, b) =

1/(1− e−ax)b, it is obvious that h(a, b) is decreasing in a and increasing in b, and take ψ = (3x + 1)−1/3 is
the Clayton copula generator. We have,

F̄X5:5 = 1− ψ(
5

∑
i=1

φ(
2(1− e−λix)αi

1 + (1− e−λix)αi
))

= 1− 2
[h(0.7, 0.4) + 2h(0.7, 0.2) + h(0.6, 0.6) + 2h(0.6, 0.3) + h(0.5, 0.8)]1/2

− 2
[2h(0.5, 0.4) + h(0.2, 1.6) + h(0.2, 1) + 2h(0.2, 0.8) + 2h(0.2, 0.5)− 11]1/2 ,

F̄Y5:5 = 1− ψ(
5

∑
i=1

φ(
2(1− e−2µix)βi

1 + (1− e−2µix)βi
))

= 1− 2
[h(2.4, 0.2) + 2h(2.4, 0.1) + h(1.6, 0.4) + 2h(1.6, 0.2) + h(1, 0.8)]1/2

− 2
[2h(1, 0.4) + h(0.8, 1) + 2h(0.8, 0.5) + h(0.6, 1.2) + 2h(0.6, 0.6)− 11]1/2 .

Then,

F̄X5:5 − F̄Y5:5

sgn
= [h(0.7, 0.4)− h(2.4, 0.2)] + [h(0.7, 0.2)− h(2.4, 0.1)] + [h(0.6, 0.6)− h(1.6, 0.4)]

+[h(0.6, 0.3)− h(1.6, 0.2)] + [h(0.5, 0.8)− h(1, 0.8)] + [h(0.5, 0.4)− h(1, 0.4)]

+[h(0.2, 1.6)− h(0.6, 1.2)] + [h(0.2, 1)− h(0.8, 1)] + [h(0.2, 0.8)− h(0.6, 0.6)]

+[h(0.2, 0.5)− h(0.8, 0.5)]

≥ 0.

where the inequality is derived from condition h(a, b) is decreasing in a and increasing in b. Thus, the conclusion
of Theorem 4 holds, and we get X5:5 ≥st Y5:5. This means that M systems is better than N system in sense of
usual stochastic order.

(2) α = (0.5, 0.6, 0.3, 0.4, 0.1), λ1 = λ2 = · · · = λn = λ = 0.6, β = (0.8, 0.7, 0.4, 0.3, 0.2), µ1 =

µ2 = · · · = µn = µ = 0.4. Clearly, λ > µ, α
w
� β, letG1(x) = 1− e−2x, G2(x) = 1− e−x, p(a, b) =

4(1− e−ax)b/(1− (1− e−ax)b)2, it is obvious that p(a, b) is increasing in a and decreasing in b, and take
ψ = (3x + 1)−1/3 is the Clayton copula generator. We have

FX1:5 = 1− ψ(
5

∑
i=1

φ(
1− (1− e−λx)αi

1 + (1− e−λx)αi
))

= 1− 1
[1 + p(1.2, 0.1) + p(1.2, 0.3) + p(1.2, 0.4) + p(1.2, 0.5) + p(1.2, 0.6)]1/2 ,
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FY1:5 = 1− ψ(
5

∑
i=1

φ(
1− (1− e−2µx)βi

1 + (1− e−2µx)βi
))

= 1− 1
[1 + p(0.8, 0.2) + p(0.8, 0.3) + p(0.8, 0.4) + p(0.8, 0.7) + p(0.8, 0.8)]1/2 .

Then,

FX1:5 − FY1:5

sgn
= [p(1.2, 0.1)− p(0.8, 0.2)] + [p(1.2, 0.3)− p(0.8, 0.3)] + [p(1.2, 0.4)− p(0.8, 0.4)]

+[p(1.2, 0.5)− p(0.8, 0.7)] + [p(1.2, 0.6)− p(0.8, 0.8)]

≥ 0.

where the inequality is derived from condition p(a, b) is decreasing in a and increasing in b. Thus, the conclusion
of Theorem 5 holds, and we get X1:5 ≤st Y1:5. This means that N systems is better than M system in sense of
usual stochastic order.

(3) α1 = α2 = · · · = αn = α = 0.6, λ = (0.7, 0.6, 0.5, 0.2, 0.2), µ = (1.2, 0.8, 0.5, 0.4, 0.3). Clearly,

λ
w
� µ, letG1(x) = 1− e−x, G2(x) = 1− e−2x, q1(a) = a/(eax − 1), q2(a) = [1 + (1− e−ax)0.6]−1, and,

q(a) = q1(a) · q2(a), it is obvious that q(a, b) is decreasing in a. We have

γ̃X5:5(x) =
n

∑
i=1

αλiγ̃1(λix)
1 + G1

α(λix)

= q(0.7) + q(0.6) + q(0.5) + q(0.2) + q(0.2),

γ̃Y5:5(x) =
n

∑
i=1

αµiγ̃2(µix)
1 + G2

α(µix)

= q(2.4) + q(1.6) + q(1) + q(0.8) + q(0.6).

Then,

γ̃X5:5(x)− γ̃Y5:5(x)
sgn
= [q(0.7)− q(2.4)] + [q(0.6)− q(1.6)] + [q(0.5)− q(1)]

+[q(0.2)− q(0.8)] + [q(0.2)− q(0.6)]

≥ 0.

where the inequality is derived from condition q(a) is decreasing in a. Thus, the conclusion of Theorem 6(1)
holds, and we get X5:5 ≥rh Y5:5. This means that M systems is better than N system in sense of reversed hazard
rate order.

(4) α1 = α2 = · · · = αn = α = 1.6, λ = (0.2, 0.3, 0.4, 0.5, 0.8), µ = (0.7, 0.6, 0.5, 0.2, 0.2). Clearly,
λ �w µ, let G1(x) = 1− e−2x, G2(x) = 1− e−x, R(a) = [a(1− e−ax)1.6]/[1− 2(1− e−ax)1.6], it is
obvious that R(a) is increasing in a. We have

γX1:5(x) =
n

∑
i=1

2αG1
α(λix)λiγ1(λix)

1− 2G1
α(λix)

= R(1.6) + R(1) + R(0.8) + R(0.6) + R(0.4),

γY1:5(x) =
n

∑
i=1

2αG2
α(µix)µiγ2(µix)

1− 2G2
α(µix)

= R(0.7) + R(0.6) + R(0.5) + R(0.2) + R(0.2).
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Then,

γX1:5(x)− γY1:5(x)
sgn
= [R(1.6)− R(0.7)] + [R(1)− R(0.6)] + [R(0.8)− R(0.5)]

+[R(0.6)− R(0.2)] + [R(0.4)− R(0.2)]

≥ 0.

where the inequality is derived from condition R(a) is increasing in a. Thus, the conclusion of Theorem 6(2)
holds, and we get X1:5 ≤hr Y1:5. This means that N systems is better than M system in sense of hazard rate order.

4. Conclusions and Application

In this paper, we obtain the relevant results of the stochastic comparisons for the lifetimes of two
series (parallel) systems consisting of heterogeneous TIIHL-RS components, in the sense of the usual
stochastic order and the (reversed) hazard rate order, respectively. We show that the higher is the
heterogeneity between the components of the system, the higher is the reliability of the parallel system,
and the lower is the reliability of the series system. Our results provide a unified method for studying
some special distributions, such as the TIIHL-exponential distribution, the TIIHL-Rayleigh distribution,
the TIIHL-Weibull distribution, the TIIHL-exponential Lomax distribution, etc. In future research
work, we will further obtain stronger order, such as likelihood ratio, and study the skewness and
dispersion of system lifetimes, which is also of interest to the ordering properties of system lifetimes
under random shock.

In Equation (4), let G(x) = 1− e−xθ
, θ > 0, x > 0, then

H(x, α, λ) =
2[1− e−(λx)θ

]α

1 + [1− e−(λx)θ
]α

, x > 0, α > 0, λ > 0, θ > 0.

The TIIHL-Weibull distribution was successfully applied to life analysis and reliability analysis
by Hassan et al. [31] and Hassan et al. [32], and we believe that its application is not limited to this.
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