Long-Range Correlations and Characterization of Financial and Volcanic Time Series
Abstract
1. Introduction
2. Variance Scaling Methods
2.1. Rescaled Range Analysis
2.2. Detrended Fluctuation Analysis
2.3. Diffusion Entropy Analysis
2.4. Estimation Procedure
The Shannon Entropy
- The time series data is first transformed into a diffusion process.
- Shannon’s entropy of the diffusion process is calculated. A log-linear equation or log-quadratic equation is derived from the Shannon entropy by substituting Equations (3) and (4) respectively. Simplifying the result from the substitutions, we have the following relation for stationary time series:For the non-stationary series, the relation is as follows:Thus (or is derived by an estimation of the slope of the above linear-log equation or by the coefficients from the quadratic-log equation. For details of the algorithm used when transforming the series into a diffusion process, we refer the reader to Reference [7].
3. Financial and Volcanic Time Series
3.1. Financial Time Series
3.2. Volcanic Time Series
3.3. Stationarity of the Financial and Volcanic Time Series
3.3.1. Augmented Dickey-Fuller
3.3.2. Financial Time Series
3.3.3. Volcanic Time Series
4. Results
Figures
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://www.physionet.org/tutorials/fmnc/node5.html (accessed on 3 October 2019).
- Barany, E.; Beccar Varela, M.P.; Florescu, I.; Sengupta, I. Detecting market crashes by analysing long-memory effects using high-frequency data. Quant. Financ. 2012, 12, 623–634. [Google Scholar] [CrossRef]
- Mariani, M.C.; Liu, Y. Normalized truncated Lévy walks applied to the study of financial indices. Physica A 2007, 377, 590–598. [Google Scholar] [CrossRef]
- Qi, J.; Yang, H. Hurst exponents for short time series. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 2011, 84, 066114. [Google Scholar] [CrossRef] [PubMed]
- Beccar-Varela, M.P.; Gonzales-Huizar, H.; Mariani, M.C.; Tweneboah, O.K. Lévy Flights and Wavelets Analysis of Volcano-Seismic Data. Pure Appl. Geophys. 2019, 177, 723–736. [Google Scholar] [CrossRef]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. SIGIR 2018, 95–104. [Google Scholar] [CrossRef]
- Scafetta, N. An Entropic Approach to the Analysis of Time Series. Ph.D. Thesis, University of North Texas, Denton, TX, USA, 2001. [Google Scholar]
- Scafetta, N.; Grigolini, P. Scaling detection in time series: Diffusion entropy analysis. Phys. Rev. E Stat. Nonliner Soft Matter Phys. 2002, 66, 036130. [Google Scholar] [CrossRef]
- Scafetta, N.; Latora, V.; Grigolini, P. Lévy scaling: The diffusion entropy analysis applied to DNA sequences. Phys. Rev. E Stat. Nonliner Soft Matter Phys. 2002, 66, 031906. [Google Scholar] [CrossRef]
- Morariu, V.V.; Buimaga-Iarinca, L.; Vamoș, C.; Șoltuz, Ș.M. Detrended fluctuation analysis of autoregressive processes. Fluct. Noise Lett. 2007, 7, L249–L255. [Google Scholar] [CrossRef]
- Mariani, M.C.; Tweneboah, O.K. Stochastic differential equations applied to the study of geophysical and financial time series. Physica A 2016, 443, 170–178. [Google Scholar] [CrossRef]
- Krištoufek, L. Rescaled range analysis and Detrended Fluctuation Analysis: Finite sample properties and confidence intervals. Czech Econ. Rev. 2010, 4, 315–329. [Google Scholar]
- Huang, J.; Shang, P.; Zhao, X. Multifractal diffusion entropy analysis on stock volatility in financial markets. Physica A 2012, 391, 5739–5745. [Google Scholar] [CrossRef]
- Haubold, A.; Haubold, H.J.; Kumar, D. Heliosheath: Diffusion Entropy Analysis and Nonextensivity q-triplet. arXiv 2012, arXiv:1202.3417. [Google Scholar]
- Brooks, C. A measure of persistence in daily pound exchange rates. Appl. Econ. Lett. 1995, 2, 428–431. [Google Scholar] [CrossRef]
- Available online: https://en.wikipedia.org/wiki/Rescaled_range (accessed on 10 October 2019).
- Available online: http://fusionwiki.ciemat.es/wiki/Long-range_correlation (accessed on 10 October 2019).
- Available online: http://www.ueltschi.org/teaching/chapShannon.pdf (accessed on 15 October 2019).
- Hurst, H.E. Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 1951, 116, 770–799. [Google Scholar]
- Timothy, G.; Robert, G.B.; Nicholas, W.; Franzke, C. A brief history of long memory: Hurst, Mandelbrot and the road to ARFIMA. Entropy 2016, 19, 437. [Google Scholar]
- Peng, C.K.; Sergey, V.B.; Shlomo, H.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 1994, 49, 1685. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Goldberger, A.L.; Havlin, S.; Mantegna, R.N.; Matsa, M.E.; Peng, C.K.; Simons, M.; Stanley, H.E. Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 1995, 51, 5084. [Google Scholar] [CrossRef]
- Heneghan, C.; McDarby, G. Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2000, 62, 6103. [Google Scholar] [CrossRef]
- Siwy, Z.; Ausloos, M.; Ivanova, K. Correlation studies of open and closed state fluctuations in an ion channel: Analysis of ion current through a large-conductance locust potassium channel. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2000, 65, 031907. [Google Scholar] [CrossRef]
- Janosi, I.M.; Muller, R. Empirical mode decomposition and correlation properties of long daily ozone records. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 71, 056126. [Google Scholar] [CrossRef]
- Santhanam, M.S.; Bandyopadhyay, J.N.; Angom, D. Quantum spectrum as a time series: Fluctuation measures. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 73, 015201. [Google Scholar] [CrossRef] [PubMed]
- Talkner, P.; Lutz, E.; Hänggi, P. Fluctuation theorems: Work is not an observable. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007, 75, 032903. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://galileo.phys.virginia.edu/classes/152.mf1i.spring02/Entropy.pdf (accessed on 10 October 2019).
- Mariani, M.C.; Bhuiyan, M.A.M.; Tweneboah, O.K.; Gonzalez-Huizar, H.; Florescu, I. Volatility models applied to geophysics and high frequency financial market data. Physica A 2018, 503, 304–321. [Google Scholar] [CrossRef]
- Mariani, M.C.; Bhuiyan, M.A.M.; Tweneboah, O.K. Estimation of stochastic volatility by using Ornstein–Uhlenbeck type models. Physica A 2018, 491, 167–176. [Google Scholar] [CrossRef]
Market | p-Value |
---|---|
BVSP | 0.015 |
SPC | 0.034 |
HSI | 0.033 |
IGPA | 0.03 |
MERV | 0.014 |
MXX | 0.024 |
Nasdaq | 0.04 |
PSI | <0.01 |
SETI | <0.01 |
SP500 | <0.01 |
XU100 | 0.01 |
Eruption Number | p-Value |
---|---|
1 | 0.3568 |
2 | 0.6747 |
3 | 0.3024 |
4 | 0.095 |
5 | 0.2064 |
6 | 0.3271 |
7 | 0.2374 |
8 | 0.4059 |
Market | R/S(H) | DFA () | DEA () | (R/S) | (DFA) |
---|---|---|---|---|---|
BVSP | 0.59 | 0.72 | 0.57 | 0.56 | 0.63 |
SPC | 0.59 | 0.62 | 0.60 | 0.56 | 0.56 |
HSI | 0.65 | 0.7 | 0.60 | 0.56 | 0.63 |
IGPA | 0.74 | 0.65 | 0.53 | 0.63 | 0.56 |
MERV | 0.62 | 0.62 | 0.56 | 0.56 | 0.56 |
MXX | 0.64 | 0.66 | 0.59 | 0.56 | 0.56 |
Nasdaq | 0.6 | 0.72 | 0.56 | 0.56 | 0.56 |
PSI | 0.66 | 0.71 | 0.55 | 0.63 | 0.56 |
SETI | 0.64 | 0.70 | 0.54 | 0.56 | 0.56 |
SP500 | 0.63 | 0.66 | 0.65 | 0.58 | 0.60 |
XU100 | 0.64 | 0.70 | 0.54 | 0.56 | 0.56 |
Eruption Number | R/S(H) | DFA () | DEA () | (R/S) | (DFA) |
---|---|---|---|---|---|
1 | 0.45 | 0.74 | 0.6837 | 0.4756 | 0.6547 |
2 | 0.51 | 0.92 | 0.6837 | 0.5093 | 0.8682 |
3 | 0.38 | 0.85 | 0.6837 | 0.4472 | 0.7636 |
4 | 0.39 | 0.66 | 0.6837 | 0.4509 | 0.5957 |
5 | 0.39 | 0.76 | 0.6837 | 0.4513 | 0.6729 |
6 | 0.37 | 0.67 | 0.6837 | 0.4433 | 0.6002 |
7 | 0.42 | 0.81 | 0.6837 | 0.4634 | 0.7194 |
8 | 0.504 | 0.75 | 0.6837 | 0.5018 | 0.6684 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, M.C.; Asante, P.K.; Bhuiyan, M.A.M.; Beccar-Varela, M.P.; Jaroszewicz, S.; Tweneboah, O.K. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics 2020, 8, 441. https://doi.org/10.3390/math8030441
Mariani MC, Asante PK, Bhuiyan MAM, Beccar-Varela MP, Jaroszewicz S, Tweneboah OK. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics. 2020; 8(3):441. https://doi.org/10.3390/math8030441
Chicago/Turabian StyleMariani, Maria C., Peter K. Asante, Md Al Masum Bhuiyan, Maria P. Beccar-Varela, Sebastian Jaroszewicz, and Osei K. Tweneboah. 2020. "Long-Range Correlations and Characterization of Financial and Volcanic Time Series" Mathematics 8, no. 3: 441. https://doi.org/10.3390/math8030441
APA StyleMariani, M. C., Asante, P. K., Bhuiyan, M. A. M., Beccar-Varela, M. P., Jaroszewicz, S., & Tweneboah, O. K. (2020). Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics, 8(3), 441. https://doi.org/10.3390/math8030441