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Abstract: In matrix population modeling the multi-year monitoring of a population structure 
results in a set of annual population projection matrices (PPMs), which gives rise to the stochastic 
growth rate λS, a quantitative measure of long-term population viability. This measure is usually 
found in the paradigm of population growth in a variable environment. The environment is 
represented by the set of PPMs, and λS ensues from a long sequence of PPMs chosen at random 
from the given set. because the known rules of random choice, such as the iid (independent and 
identically distributed) matrices, are generally artificial, the challenge is to find a more realistic 
rule. We achieve this with the a following a Markov chain that models, in a certain sense, the real 
variations in the environment. We develop a novel method to construct the ruling Markov chain 
from long-term weather data and to simulate, in a Monte Carlo mode, the long sequences of PPMs 
resulting in the estimates of λS. The stochastic nature of sequences causes the estimates to vary 
within some range, and we compare the range obtained by the “realistic choice” from 10 PPMs for 
a local population of a Red-Book species to those using the iid choice. As noted in the title of this 
paper, this realistic choice contracts the range of λS estimates, thus improving the estimation and 
confirming the Red-Book status of the species. 

Keywords: discrete-structured population; matrix population model; population projection 
matrices; stochastic growth rate; random choice; weather indices; Markov chain; Monte Carlo 
simulations 

 

1. Introduction 

Matrix population models (MPMs) represent the basic tool in the mathematical demography of 
plant and animal populations that are discrete-structured with regard to a certain classification trait 
[1], such as the age, size, or developmental stage of individuals in a local population of a given 
species. Mathematically, the MPM is a system of difference equations,  

x(t +1) = L(t)x(t), t = 0,1,2,...,  (1) 

where the vector of population structure, x(t) ∈ belongs to the positive orthant of the 

n-dimensional vector space and L(t) is a nonnegative n × n matrix called the population projection 
matrix (PPM) [1,2]. Each component of x(t) is the (absolute or relative) number of individuals in the 
corresponding status-specific group at moment t, while the elements of L(t), called vital rates [1], 
carry information about the rates of demographic processes in the population. They are 
time-dependent in general, but the zero-nonzero pattern of the population projection matrix (PPM) 
corresponds invariably to a single associated directed graph [3], which is called the life cycle graph [1] 
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(LCG), as a condensed graphical representation of the biological knowledge involved in the model 
and the way the population structure is observed in the study (an example is given in the next 
Section). 

The LCG is (practically always) strongly connected [3], signifying certain integrity of the life 
history of individuals and providing for the PPM being irreducible [4], or indecomposable in the other 
terminology [5]. 

The classical Perron–Frobenius Theorem for nonnegative irreducible matrices [4–6] provides 
the key to understanding the dynamics of x(t) as t  → ∞ when L(t) = L does not change in time. 
According to the Theorem, in the spectrum of L, there always exists a simple positive eigenvalue, λ1 
> 0, the dominant eigenvalue, which is equal to the spectral radius, ρ(L), of the matrix; matrix L has a 
positive eigenvector, x* > 0, corresponding to λ1. Hereafter, the sequence of x(t)/λ1t converges to a 
vector proportional to x* for any nonzero x(0) ≥ 0 when matrix L is primitive [1,2,5] (the imprimitive 
PPM guarantees convergence to a periodic vector function of t). 

Thus, the dominant eigenvalue represents the asymptotic growth rate: if λ1(L) < 1, the population 
declines and it grows exponentially if λ1(L) > 1. In applications, λ1(L) “does measure the adaptation 
that the local population possessed in the place where, and at the time when, the population data 
were collected to calibrate the matrix L“ ([7], p. 176; [8]).  

Real populations are, however, exposed to temporal variations in the environment, so that the 
vital rates estimated at one moment do not remain the same at another. A quantitative measure of 
adaptation that can be inferred from a time-depended PPM, i.e., a finite number of L(t)s, t = 0, 1, …, 
T, is based on the concept of population dynamics in a stochastic environment ([1], and refs. therein). 
Each of the given L(t)s represents a particular state of the environment, which provides either 
exponential growth or decline if the state remained unchanged. However, the stochastic environment 
is considered as a sequence of “annual” PPMs chosen at random from the given set [1]. Each of these 
projects the current population vector further for one step, and such a sequence of total population 
sizes (||…||1) converges, under unrestrictive technical conditions, to a finite limit with probability 1 
[9–11]: 

τ→∞

lim 1
τ

lnN (τ ) =
τ→∞

lim 1
τ

ln Lτ−1 ... L0 1
= ln λS  (2) 

(ln denotes the natural logarithm). The value of λS is then called the stochastic growth rate, and the 
question is how to estimate the Limit (2), given a particular set of “annual” PPMs.  

There exist several theoretical estimates of λS [1,12] suggesting certain assumptions about the 
L(t)s, such as their distribution (in a metric space) around an average matrix with a known variance. 
However, the question of estimation still remains open when the given PPMs differ drastically from 
one another [13, and refs therein]. Those who remember lectures on real analysis know an 
immediate answer: the limit of a convergent sequence is approached by its finite, distant enough 
term. The well-known Monte Carlo (MC) method prompts the means to construct the sequence once 
we accept a rule for the random choice of matrices at each step τ. A popular simple rule reduces to 
the independent, identically distributed (iid) matrices [1,13]. The iid choice can be readily implemented 
in (long enough) MC simulations, which produce a set of random realizations and result in a range 
of λS estimates over the set [13]. 

However, the iid choice is a crude caricature of the reality in which the PPMs follow variations 
in the environment rather than any iid rule, while the variations are caused by changing weather 
or/and other factors. The first step towards reality leads to Markov chains in weather modeling [14–
17], and the Markov chain was suggested long ago [11,18] to govern the random choice of PPMs and 
provide for the theoretical estimates of λS. Now, this tradition is continued in models “in which the 
environment makes transitions among several discrete states according to a Markov chain” ([19], p. 
1). Indeed, Markov chains have been applied in practical estimates of λS, in which the transition 
matrix construction varies from very simple, such as switching between “bad” and “good” 
environments [20], to highly sophisticated ones [21–24], yet these are nonetheless invented by the 
authors rather than by nature. 
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On the contrary, our study represents an attempt to construct a Markov chain that describes 
these real variations in the environment of a local population that are indirectly expressed in a given 
10-year time series of annual PPMs. Neither the pattern (graph) of transitions, nor the transition 
probabilities are a priori known, and the task is to reveal the pattern and estimate the probabilities 
(hence obtain the transition matrix, P = [pij]) from a vast variety of local meteorological and 
microphysical data comprising 59 years of observations. Constructed and calibrated in this way, 
then used in a series of MC simulations of Sequence (2), matrix P enables us to obtain more realistic 
estimates of the stochastic growth rate than those obtained before under the iid equiprobable 
matrices [13]. It was intuitively expected that the range of estimates should appear to be narrower 
than the former range [13], but absolutely not clear whether the more realistic λS estimate should be 
greater or less than the iid estimate. Our study gives certain answers to these questions. 

A by-product of this approach provides the opportunity to test a hypothesis that a realistic λS 
estimate should be close enough to the iid estimate under the distribution (of matrices to be 
randomly chosen at each step τ) given by the steady-state distribution of the chain states (the dominant 
eigenvector of P). The hypothesis is, however, rejected, and we discuss the reason why. 

2. Materials and Methods 

2.1. Case Study of Androsace albana 

Androsace albana Stev. is an alpine short-lived perennial monocarpic plant classified in Red 
Books as a Near Threatened species [25,26], inhabiting alpine heaths. The biology, ecology, and 
ontogenesis of the species (Figure 1) were described earlier [27,28], and the corresponding LCG was 
developed (Figure 2). 

 
Figure 1. Ontogenetic stages of Androsace albana: pl, seedlings; j, juvenile plants; im, 
immature plants; v, adult vegetative plants, and g, generative plants, the stages being 
distinguishable in the field [28]. 
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Figure 2. Life cycle graph for a local population of Androsace albana observed once per year. 
Ontogenetic stage notations as in Figure 1. Solid arrows indicate transitions occurring for 
one year (no transitions, in particular); dashed arrows correspond to annual recruitment 
[28]. 

Although the species reproduces by seeds and much is known about seed germination in the 
laboratory [27 and refs therein], the germination rate and the rate of seed mortality are highly 
uncertain in the field. To avoid uncertainties in model calibration, it was shown mathematically that 
removing the seed stage from the LCG does not affect the calibration of the remaining vital rates 
from the observation data (Appendix A in [29]). 

Consecutive transitions from stage to stage in 1 year proceed in parallel with the following 
observed events: 

- delays ↺ in stages im and v, which can be explained by the fact that the harsh conditions 
of the highlands force the plants to resort to the “space-holder strategy” [30], i.e., staying or 
growing in one place for as long as possible. Poor soil quality also results in some virginal 
plants accumulating resources for fruiting longer than one year [30–34]; 

- accelerated transitions pl    im as a manifestation of polyvariant ontogeny in A. albana 
under the alpine belt conditions in South-Western Caucasus. 

The monocarpic species has only one reproductive event in its life history, and the population 
recruitment can be observed at each of the three stages pl, j, or im, at the moment of next census. 
The parameters a, b and c are accordingly the average numbers of recruiting individuals (per 
generative plant) found at the corresponding stage by the next census [35]. 

The population vector, x(t) ∈ , consists of 5 components: 

x(t) = [pl(t), j(t), im(t), v(t), g(t)]T, t = 2009, 2010, …, 2019, (3) 

observed on permanent sample plots in Teberda State Nature Biosphere Reserve (North-West 
Caucasus) and censused once a year (early August) [28] during 11 successive years (Table 1). 

Table 1. Structure of the local A. albana population according to observation data (Table 1 in [36]). 

Stage 
Stage Group Sizes (in Absolute Numbers) at the Year of Observation 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
pl 37 30 19 49 19 16 4 10 3 12 13 
j 110 48 45 86 137 98 19 29 8 23 38 

im 99 55 43 87 95 34 10 13 4 13 2 
v 35 26 57 58 73 50 20 16 18 23 23 
g 13 1 1 4 6 3 4 2 1 2 1 

The observation data gained at each pair of successive years, t and t + 1, enabled us to calibrate 
the annual PPM, L(t), in a unique way to obey System (2) for t = 2009, …, 2018 (Table 2). Note that 
these 10 PPMs differ drastically from one another, with their λ1s being either markedly greater or 
less than 1. This means that variations in the environment from year to year do affect the 
germination and growth of A. albana plants. 

Table 2. A. albana population projection matrices (PPMs) calibrated from 2009–2019 data, their 
dominant eigenvalues, and the corresponding eigenvectors (Table 3 in [36]). 

Census year, 
t 

Matrix L(t): t → t + 1 λ1(L(t)) Vector x*, % 
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2009 

0 0 0 0 30
13

8
37 0 0 0 40

13

2
37

22
110

28
99 0 3

13

0 0 7
99

19
35 0

0 0 0 1
35 0

























 
0.5661 

10.61
18.20
16.99
51.59
2.60





















 

2010 

0 0 0 0 19
1

14
30 0 0 0 31

1

4
30

22
48

17
55 0 0

1

0 0 34
55

23
26 0

0 0 0 1
26 0

























 
1.2283 

15.90
31.99
18.25
32.83
1.03





















 

2011 

0 0 0 0 49
1

1
19 0 0 0 85

1

6
19

35
45

21
43 0 25

1

0 0 10
43

48
57 0

0 0 0 4
57 0

























 
1.5779 

17.20
30.40
39.39
12.45
0.55





















 

2012 

0 0 0 0 19
4

1
49 0 0 0 136

4

10
49

45
86

39
87 0 1

4

0 0 28
87

45
58 0

0 0 0 6
58 0

























 
1.2641 

6.01
43.15
29.67
19.56
1.60





















 

2013 

0 0 0 0 16
6

0 0 0 0 98
6

2
19

16
137

14
95 0 2

6

0 0 6
95

44
73 0

0 0 0 3
73 0

























 
0.6345  

7.76
47.54
14.34
28.51
1.85























 

2014 

0 0 0 0 4
3

0 0 0 0 19
3

2
16

2
98

6
34 0 0

3

0 0 4
34

16
50 0

0 0 0 4
50 0

























 

0.3988 

11.71
56.64
11.69
17.46
3.50






















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2015 

0 0 0 0 10
4

0 0 0 0 29
4

0 10
19

3
10 0 0

4

0 0 5
10

17
20 0

0 0 0 2
20 0

























 

1.0679 

9.19
26.66
18.28
41.94
3.93





















 

2016 

0 0 0 0 3
2

0 0 0 0 8
2

2
10

5
29

5
13 0 0

2

0 0 8
13

20
22 0

0 0 0 1
22 0























 

0. 9611 

5.26
14.04
6.02

71.30
3.37





















 

2017 

0 0 0 0 12
1

0 0 0 0 23
1

3
3

2
8

8
12 0 0

1

0 0 2
12

21
28 0

0 0 0 2
28 0























 

1.1206 

12.93
24.78
42.13
18.95
1.21





















 

2018 

0 0 0 0 13
2

0 0 0 0 38
2

1
12

1
23

0
13 0 0

2

0 0 1
13

22
23 0

0 0 0 1
23 0























 

0.9617 

13.22
38.66
2.89

43.27
1.96





















 

Table 3. Transition matrix of the Markov chain governing the random choice of annual 
PPMs and its dominant stochastic eigenvector. 

Incoming 
States 

Outgoing States Eigenvector, 
ss*  2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

2009 0 1/8 0 1/9 0 0 0 0 0 0 0.0359 
2010 1/2 1/4 0 1/9 1/3 0 0 1/9 0 1/3 0.1437 
2011 0 1/4 0 0 0 0 0 0 1/2 0 0.0359 
2012 0 0 1/2 1/9 1/3 1/4 0 0 0 1/3 0.1613 
2013 0 0 0 1/9 0 1/8 1/7 0 0 0 0.0519 
2014 0 1/8 1/2 1/9 1/3 0 2/7 1/9 0 1/6 0.1389 
2015 0 1/8 0 1/9 0 1/8 0 1/3 0 1/6 0.1164 
2016 1/2 0 0 0 0 1/4 2/7 1/3 0 0 0.1289 
2017 0 0 0 1/9 0 1/8 0 1/9 1/4 0 0.0661 
2018 0 1/8 0 2/9 0 1/8 2/7 0 1/4 0 0.1210 

Column 
Sum 1 1 1 1 1 1 1 1 1 1 1 

2.2. Local Meteodata, Statistical Treatment 
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In addition to monitoring the local population of A. albana, also monitored were climatic 
parameters at the site (an alpine heath), close to the permanent plots of the population under study. 
From a variety of meteorological data on the air and soil registered by the local temperature/ 
humidity sensors, we selected certain key environmental factors effecting the population status and 
development, i.e., seed germination, and seedling survival and growth, under severe conditions of 
the alpine belt. Twenty-one parameters were selected: the minimal, maximal, and average air 
temperatures in the previous-year autumn (September–October) and current-year spring plus early 
summer period (May–June); the soil surface and 10-cm-depth temperatures in the previous-year 
autumn (September–October) and current-year spring plus early summer period (May–June) the 
duration of freezing on the soil surface and 10 cm depth during the winter period (the sum of the days 
when the maximal temperature did not exceed −1 °C from the previous-year November to the 
current-year April); the daily average soil moisture pressure at the 10 cm soil depth during June, 17–30. 
The data on meteorological and soil indicators were collected by standard methods with automatic 
sensors. 

In addition, a weather station, the Teberda State Meteorological Station (TSMS, the 
Karachay-Cherkess Republic, Russian Federation), is located in a mountain valley (43.45° N, 41.73° 
E) 5 km from the alpine plots. We developed a database of 13 years (2007–2019) of observations at 
the TSMS accounting for 15 climatic indicators, which might demonstrate statistical relationships 
with the status and growth of the population under study. Ecologically significant climatic 
indicators were taken: the average, minimal and maximal temperatures in the previous-year autumn 
(September and October); the minimum, maximum, and average temperatures in spring (May) and 
early summer (June); the amount of precipitation in the previous-year fall (September and October), 
the current-year spring to early summer period (May and June), and the winter period (from the 
previous-year November to the current-year May). The TSMS collects climatic indicators according 
to the standard list of indicators framed by international requirements. Station staff kindly shared 
these data with us. 

To detect a factor effecting λ1(t), we developed multiple regression models by the least-squares 
method (ordinary least squares, OLS). Because the number of analyzed factors significantly exceeds 
the number of observations and only three predictors at most could be included in the model, they 
were selected by stepwise regression (forward regression). Before the analysis, all of the factors were 
checked for correlations, so as not to include factors correlated with each other in one model. The 
distribution of λ1(t), a dependent variable, corresponds to the normal distribution (p = 0.793 in the 
Shapiro–Wilk test [37]). Whether the errors are normally distributed was visually assessed on the 
quantile–quantile plots. 

Because λ1(t) was calculated annually, this variable can be considered a time series, so we 
checked the best models for autocorrelations. To do this, we built two generalized linear models 
(function gls of the nlme package in the statistical environment R [38]) with and without level-1 
autocorrelation (AR1) and compared them with each other using the log-likelihood ratio (anova 
function in R [39]). It was found that autocorrelations did not make any significant contributions and 
were therefore not included in the final models. 

As a result, the study allows us to conclude that the λ1(t) variable depends positively on the 
minimum air temperatures in May–June in the alpine heath; this was found to be the only significant 
predictor in the models with one factor included. The best multiple regression model explained 99% 
of the variance and included three factors: minimum air temperatures in May–June, precipitation 
from November to May, and maximum 10-cm-depth soil temperatures in May–June (Supplementary 
Material). The λ1(t) variable increases with increasing temperatures and decreasing precipitation. We 
revealed the highest significance of relationships between λ1(t) and weather factors (registered at the 
TSMS) in the models including the precipitation from November to May and the minimum 
temperatures from May to June (p < 0.1). However, the temperature time series had certain gaps, so 
that only the time series of the November-to-May precipitation sum, Pr(t), was selected for the 
further study.  

2.3. Revealing the Pattern of Transition Matrix and Estimating Its Elements 
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We construct a Markov chain formalism in which the element pij of the transition matrix, P = [pij], 
is a probability of the j to i transition, i.e., matrix P is column-stochastic [40]. For example, if we 
consider the sequence of given annual PPM as a realization of a Markov chain, then we see the 
chronological 10-year sequence: L(2009), …, L(2018) (Table 2). If this short-term sequence is repeated 
periodically in the long term, the transition matrix of the corresponding Markov chain would then 
have the following 10 × 10 pattern: 

P = ,  

The chain thus becomes a deterministic, rather than a stochastic, process. 
To obtain a longer-than-10 stochastic sequence of PPMs, we identify each of the 10 given PPMs, 

L(t), t = 2009, …, 2018, with the value of precipitation sum, Pr(t), during the corresponding, t → t + 1, 
period (see Section 2.2). All of these values are different, and we call them reference values, numbered 
from 1 to 10 in chronological order. Fortunately, precipitations have been measured in the TSMS 
since 1960, providing a 59-point time series. The task is thereafter to associate each successive point, 
Pr(k), k = 1960, …, 2018, of that series to one of the 10 reference values, which was done using the 
absolute difference, |Pr(k)−Pr(t)|, as a measure of distance, selecting the closest reference point: 

tnext = t ∈{2009,...,2018} | Pr(k) − Pr(t) |= min
t

| Pr(k) − Pr(t) | .  (4) 

Because the reference values are different, we obtain, in a unique way, a 59-member sequence of 
year labels “t” (t = 2009, …, 2018) where every next label represents a particular transition event and 
the last 9 labels only represent the course of time. The total sequence enables identifying all possible 
types of transition occurring in the sequence and representing them as a directed graph (digraph, [3]) 
of transitions between 10 nodes identified with the reference years. The nine successive transitions 
2009 → 2010 → … → 2018 should constitute an evident subgraph of the total digraph. Counting the 
number of times a particular label transits to itself or another specific label, we obtain the frequency of 
this transition to be considered as the corresponding transition probability. 

For instance, to obtain the value of p12 we find first how many times label ”2010” occurs among 
the 59 labels (8 times, in fact), then count how many of all ”2010”s in the sequence are followed by 
“2009” (i.e., “2009” occurs immediately after “2010”; 1 time, in fact); the fraction of the latter by the 
former (1/8) gives therefore the frequency needed. Inspecting all of the remaining potential 
“followers” in this way, we obtain all remaining elements of the 2nd column in P. The nonzero 
values of these generate all the digraph arcs outgoing from the “2010” node. Repeating this step for 
each column of P results both in the completed digraph (matrix pattern) and the column-stochastic 
matrix itself. 

Once the transition matrix, P, has been found, its dominant eigenvector is calculated in a 
routine way. When normalized to be stochastic, this vector gives the steady-state distribution, ss*, of 
the chain states [40], and can be used in iid MC simulations (ss* iid) instead of the uniform 
distribution (equiprobable states). 

2.4. Estimating λS by the Direct MC Method with a Markov Chain 

Once the transition matrix, P = [pij], has been found, it allows MC experiments in which the 
sequence of PPMs follows a realization of the corresponding Markov chain that has a given finite 
length, long enough to reveal the convergence in the Sequence (2). To ensure that the random 
sequences are reproducible in computer experiments, we begin each realization with the same initial 
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population vector, x(τ = 0) = x(2009) (Table 1) and the same PPM, L0 = L(2009) (Table 2), albeit the 
limit does not depend on this choice [9–12]. 

Then, the first column of P, equal to [p11, p21, …, p10,1]T, gives the finite probability distribution for 
the next state, i, of the chain (a row number in this column) and, hence, for the next annual PPM to 
be chosen. This is equivalent to tossing an imperfect 10-face dice with unequal face probabilities, 
some of which may be zero in accordance with the pattern of P to be revealed. Face i gives the 
number of next column, [p1i, p2i, …, p10,i]T, thus defining the dice to be tossed. This is the basic step of 
our MC simulations, and Appendix A illustrates how efficiently it can be implemented in 
MATLAB. 

Note that the iid choice represents a particular case of the Markov chain choice when the 
transition matrix P consists of 10 identical columns giving the desired distribution, hence the dice 
becoming perfect when the distribution is uniform. This enables us to use the same computer 
program for simulating both nontrivial Markov chain sequences and the iid ones. 

3. Results 

3.1. The Pattern of P = [pij] and the Estimates of pij 

Following the procedure introduced in Section 2.3, we revealed a pattern of transitions among 
the Markov chain states associated with the 10 known annual PPMs, L(t), t = 2009, …, 2018 (Figure 3). 

 
Figure 3. The pattern of transitions between the weather types associated with given 
annual PPMs as revealed in the 59-year observations. 

Although appearing to be entangled, the graph is not trivially complete: some transitions have 
not been observed, and hence are not presented here. Clearly observed are the chronological 
successive transitions from 2009 to 2018, shown as the straightforward green arrows in the figure. In 
addition to a small number of backward curvilinear arrows, they clearly ensure the graph is strongly 
connected, i.e., for any pair of nodes there exists a finite directed path from one node to the other [3]. 
This means matrix P is irreducible [4] and, hence, the Markov chain is regular [40], containing the 
sole ergodic set of all 10 states; thus, Limit (2) exists when the random choice of PPMs is governed by 
this Markov chain. 

The elements of transition matrix, P = [pij], of this chain are obtained as the frequencies of the 
corresponding transitions revealed by means of the procedure introduced in Section 2.3 (Table 3). 
The last column of Table 3 shows the steady-state distribution of chain states (given by ss*, the 
dominant stochastic eigenvalue of P). 

3.2. Estimates of λS 

Each realization of the finite random sequence from Definition (2) generates its own value of the 
λS estimate. (An algorithm to calculate the final term of the sequence, then to obtain an estimate, is 
presented in Appendix B). Several realizations generate a set of estimates, with their minimal and 
maximal values, and hence a range of estimates. The length of the finite sequence and the number of 
times it has to be constructed constitute a design of MC experiments to estimate the λS for a given set 
of annual PPMs. The longer the sequence, the closer its final term to the limit value. The greater the 
number of random realizations, the wider should be the range of estimates ensuing from the set. 

2009 2011 2010 2012 2013 2014 2015 2018 2017 2016 
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We apply the same design of simulation experiments as before (Table 6 in [13]) plus two more 
options for comparison of the results. (The algorithm to repeat construction of the sequence of a 
given length and to obtain the range of estimates is presented in Appendix C). 

The figures shown in Table 4 confirm our expectations described above (see the digits in bold). 
In this regard, one thousand repetitions of the one-million-long sequence in the Markov chain series 
generate the most reliable range of λS estimates, and this range has an order of 10–3. Other series 
generate consistently greater estimates and the markedly wider ranges of estimates as was expected 
(see Section 1). Unfortunately, the first decimal digit only obtained in the iid estimates can be 
trusted. 
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Table 4. Estimating the stochastic growth rate, λS, of the local A. albana population by the direct Monte Carlo technique. 

Product 
“length” 1 

Number of 
Realizations 

Range of Variations in the Estimates of λS; Range Length in the Following Series: 
Markov Chain Equiprobable iid  ss* iid  

1 × 105 
13 [0.924332, 0.928207]; 0.003876 [0.935773, 0.939521]; 0.003749 [0.940098, 0.945336]; 0.005237 
33 [0.924332, 0.928207]; 0.003876 [0.933281, 0.939521]; 0.006240 [0.939897, 0.945336]; 0.005439 
100 [0.923628, 0.928371]; 0.004743 [0.933281, 0.940469]; 0.007188 [0.939383, 0.945336]; 0.005953 

2 × 105 
13 [0.925053, 0.927760]; 0.002707 [0.935810, 0.938245]; 0.002434 [0.940534, 0.943727]; 0.003193 
33 [0.924339, 0.927760]; 0.003420 [0.935694, 0.93465]; 0.002770 [0.940534, 0.943727]; 0.003193 
100 [0.924046, 0.927760]; 0.003714 [0.935120, 0.939514]; 0.004394 [0.940331, 0.943907]; 0.003571 

3 × 105 
13 [0.925153, 0.927434]; 0.002281 [0.935323, 0.938044]; 0.002721 [0.940505, 0.942882]; 0.002377 
33 [0.924483, 0.927434]; 0.002950 [0.935323, 0.938272]; 0.002949 [0.940505, 0.942919]; 0.002415 
100 [0.924483, 0.927434]; 0.002950 [0.934746, 0.938613]; 0.003867 [0.939569, 0.943653]; 0.004084 

5 × 105 
13 [0.924771, 0.926431]; 0.001660 [0.936047, 0.937644]; 0.001597 [0.941309, 0.942485]; 0.001176 
33 [0.924771, 0.926558]; 0.001787 [0.936047, 0.937886]; 0.001838 [0.941043, 0.943080]; 0.002037 
100 [0.924714, 0.926724; 0.002009 [0.935679, 0.938194]; 0.002515 [0.941012, 0.943089]; 0.002077 

1 × 106 

13 [0. 925045, 0.925313]; 0.000676 [0.936453, 0.937261]; 0.000807 [0.941301, 0.942233]; 0.000933 
33 [0. 925045, 0.926010]; 0.000965 [0.936453, 0.937261]; 0.000808 [0.941301, 0.942275]; 0.000974 
100 [0.925045, 0.926048]; 0.001003 [0.936341, 0.937473]; 0.001133 [0.941218, 0.942491]; 0.001273 

1000 [0. 924874, 0.926079]; 0.001205 [0.936297, 0.937635]; 0.001339 [0.941195, 0.942521]; 0.001326 
1 The number of a finite member of the sequence {N(τ)} that approximates its limit (2) as τ → ∞; this coincides with the number of cofactors in the product of 
randomly chosen matrices Lτ–1 Lτ–2 … L1 L0 that still retains vector x(τ) from becoming the computer zero due to normalizing, at each step, by coef = 0.936979, a 
specially selected “scaling factor”; greater detail is provided in [41]. 

 

 
 



Mathematics 2020, 8, 2252 12 of 17 

 

4. Discussion 

The LCG for the stage-structured population of A. albana (Figure 2) deliberately does not 
contain the stage of dormant seeds. The motivation for this was provided in the original case study 
[28] and repeated here in Section 2.1. In fact, the dormant seeds represent one of the “cryptic life 
stages” ([42], p.1), and one of the ‘’persistent problems in the construction of matrix population 
models” ([43], p.1). It has recently become a subject of extensive discussion [42–44], yet without any 
definite conclusion that the seed stage is necessary in a model. Moreover, a deeper investigation of 
the A. albana model with the seed stage incorporated within certain botanical bounds for uncertain 
seed-related parameters [29] revealed that it cannot principally change the qualitative outcome of 
the “no-seeds” model. 

The expectations of how the ranges of the stochastic growth rate depend on the length of the 
finite sequence and the number of realizations were both prompted by a tenet of real analysis, in 
addition to common sense and our observations from our former MC experiments (Table 6 in [13]). 
However, it was only a hypothesis that “Realistic choice of annual matrices contracts the range of 
λS estimates” as compared to the iid choice. This hypothesis is now confirmed with the evident 
proof in Table 4: every line, excepting those with the smallest number (13) of realizations, confirms 
the point. Thus, the outcome of this comparison is not surprising to the authors. 

The unexpected finding is that the ss* iid experiments always yield worse estimates than the 
equiprobable iid series (cf. the 4th and 5th columns), despite the former being strongly related to the 
Markov chain (the steady-state distribution). Moreover, these figures indicate our corresponding 
hypothesis (see the last paragraph of Section 1) is unfounded. Indeed, the “hypothesis” was rejected 
by experts [45] who studied population dynamics under environmental variability [21, 45–47], with 
an argument that the ss* iid choices ignore the transient dynamics and possible autocorrelations. 

Regarding the absolute values of the λS estimates obtained from 10 annual PPMs (Table 2), these 
are markedly greater than those obtained from eight PPMs (Table 6 in [13], the difference is in the 
order of 10−1) and correspondingly closer to 1. A clear reason is that λ1 of the 9th ppm is clearly 
greater than 1, while the 10th λ1, although less than 1, is close to 1 (Table 2). However, the 10-year 
estimates of λS are still less than 1, implying an unfavorable forecast of the species viability in this 
habitat in the long term. This confirms the Red-Book classification of A. albana [25,26], although the 
classification is traditionally based on field observations and expert assessments rather than any 
quantitative measures ensuing from the population models. 

Comparing the values obtained under the “realistic choice” to those in the iid series, we reveal 
the former to be markedly lower (Table 2). This means that less favorable environments occurred in 
the long time series of observations much more frequently than would be the case under the 
independent permanent probability distributions. If a model is a kind of caricature of reality, then 
the governing Markov chain calibrated from real weather data represents a step forward, from the 
crude iid to a softer image of reality. As a method that provides more accurate estimates of λS, it can 
be recommended for the application to any discrete-structured population case study with 
multi-year data combined with weather observations. 

It may seem at first glance that, in our Markov chain simulations, we have used the well-known 
MCMC method (Markov Chain Monte Carlo). However, our method is original: although the 
classical MCMC searches for “an ergodic Markov chain whose stationary distribution is f ” ([48], p. 
268]) (ss* in our notation), a given steady-state distribution of its state probabilities, we build a chain 
by analyzing its long (59-year) realization in a vast array of local meteorological data and obtain ss* 
in a routine way from the transition matrix. 

5. Conclusions 

Given a finite set of annual PPMs signifying the variable environment of a local population, the 
stochastic growth rate, λS, can be approximated, in accordance with its definition as a certain limit of 
the time-averaged population size, from a finite sequence of PPMs chosen randomly from the set for 
each successive term of the sequence. The rule of the random choice should conform with real 
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variations in key factors of the environment, and a governing Markov chain represents a step 
forward in this direction. Once the transition matrix of the chain has been constructed and calibrated 
from real observation data, it can govern the choice in a series of Monte Carlo simulations to result in 
a certain range of λS estimates. The greater the number of random realizations in a series, the wider is 
the range. However, the longer the sequence, the closer the estimate approaches to the limit. 

The main conclusion concerning the range of λS estimates is given in the title of this paper, 
compared to the iid rule of the random choice, which is a simple artificial construction popular in the 
literature. In our case study, the “realistic choice” results in a range of 10−3 order of magnitude, while 
the actual value of λS is markedly less than those obtained in the iid estimates. Therefore, only their 
first decimal digits can be trusted in the absence of the governing Markov chain. The absolute value 
of λS in the range of [0.924874, 0.926079] means that the local Androsace albana population may 
decrease by more than half in 10 years under the observed conditions. This confirms the current 
Red-Book classification of the species [25,26] as Near Threatened, albeit the findings indicate it is 
even more “Threatened” than previously indicated by the iid method, witnessing the urgent need to 
further monitor the population of this rare endemic species. 
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Appendix A. Tossing a 10-Face Dice with Unequal Face Probabilities 

Consider an imperfect 10-face dice with unequal faces numbered from 1 to 10, and let Column = 
[p1, p2, …, p10]T ∈ be a given stochastic vector, a finite probability distribution of faces at each tossing, 
with some faces being improbable (zero probability). The cumulative sum, cumsum(Column) = [p1, p1 + 
p2, …, p1 + p2 + … + p10]T, is then a 10-vector specifying the corresponding partition of the segment [0, 
1]. If rand is the name of a standard random number generator [49] sampling a number from those 
uniformly distributed in (0, 1), then ran = rand is a next random number and we have to see which 
smaller part of [0, 1] it falls into. This can be done by the logical operation ‘≤’ comparing ran with 
cumsum(Column), whereby the number of the first ‘1’ in the output logical vector gives the face 
number as a result of tossing. We easily find it by subtracting the sum of the vector from (10 + 1). 

A MATLAB string implementing this basic step of the MC simulation algorithm can be shown 
as follows: 

>> 11−sum(rand <= cumsum(Column)); (A1) 

and it returns a face number as a result of random tossing. 

Appendix B. Calculating the Final Term of a Given-Length Sequence 

A MATLAB user-developed function, called lamS_Ana_num, has three input variables: All, a 3D 
numeric array representing a finite set of given annual PPMs arranged along the 3rd dimension in 
the chronological order; Tau, a length of the sequence to be obtained, and coef, a scaling factor that 
provides for each successive term of the sequence not becoming computer zero, nor infinity (see the 
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footer to Table 4). The function works with a global variable [50] Pnum, the numeric form of a given 
column-stochastic matrix P, and returns the corresponding estimate of λS. The MATLAB code is as 
follows (non-executable comments after %): 
function [lamS] = lamS_Ana_num(All,Tau, coef) 
% function lamS_Ana_num calculates stochastic lambda following definition (2)  
% input All is a 3D array of all numeric annual matrices available in the study. 
% in 2020, all = 10; Tau= Length of the product   
% random choice is governed by a Markov chain with an m-by-m matrix P (see below)   
% transition matrix Pnum is a global numeric variable.   
% @ Logofet D.O., 2020 
global Pnum; size(All);m=ans(3);  
% removed all checks for correct arguments! 
tau=1; Column=Pnum(:,1); xPROD = [37 110 99 35 13]';% initial vector = x2009 for A.albana 
while (tau <= Tau), % length of the product = Tau  
   row = (m+1)-sum(rand<=cumsum(Column)); % random choice from 'm' annual matrices 
   Ltau = All(:,:,row); % randomly (MC) chosen current matrix. 
   xPROD = double(Ltau * xPROD/coef); % double precision calculation. 
   tau=tau+1;Column=Pnum(:,row); 
end; 
lamS = (exp(log(norm(xPROD, 1))/Tau + log(coef))); 
end 

To implement a series of MC simulations with the equiprobable iid choice, it is sufficient to 
assign the Pnum to have all of the columns identical and equal to [1, 1, …, 1]T/10:  

>> Pnum = ones(10)/10;  (A2) 

and to call the former function as before. For an ss* iid series (Table 4), the trick is similar: 

>> Pnum = diag(ss_star)∗ones(10); (A3) 

here ss_star denotes the stochastic dominant eigenvector of the transition matrix P.  

Appendix C. Getting a Given Number of Random Realizations 

To ensure stochastic results are reproducible, the random number generator must be launched 
from the same initial status in all series. In MATLAB, this is achieved, for instance, by returning the 
status to its default value [51]: 

>> rng('default'); (A4) 

A MATLAB user-developed function, called repeatAnaMC, has the same three input variables as 
lamS_Ana_num (Appendix B) in addition to the first one, the given number of random realizations. 
Two output variables are the minimal and the maximal values of the λS estimates over the set of 
realizations. The MATLAB code is the following (non-executable comments after %): 
function [lamSmin, lamSmax] = repAnaMCnum(repeat, AllLnum, Tau, coef) 
% repeats calculation of stochastic lambda for 'repeat' times (=13, 33, …) 
% and detects the range of variations for A.albana ('Ana' in the function name); 
% the rest 2 input arguments are the same as in function 'lamS_Ana_num'(MC).   
% @ Logofet D.O., 2020 
size(repeat); rng('default'); % to reproduce the results. 
if any(size(repeat)~=[1 1]), error 'Incorrect size of the input!', end; 
first=[];  
  for rep=1:repeat, 
    lamS=lamS_Ana_num(AllLnum,Tau, coef);% next lambdaS, which may happen = 0; 
    if lamS==0, lamS=[]; end;% excludes 0 lambdaS from accumulation in 'first'  
    first=[first; lamS];% adjoins the next nonzero lambdaS; 
    if rem(rep,10)==0, rep, min(first),max(first),end,% for vision during the long calculation 
  end;  
    format long; lamSmin=min(first); lamSmax=max(first);%bounds of the range 
end 
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