Next Article in Journal
How to Obtain Global Convergence Domains via Newton’s Method for Nonlinear Integral Equations
Previous Article in Journal
A Study of Regular and Irregular Neutrosophic Graphs with Real Life Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalizations of Several Inequalities Related to Multivariate Geometric Means

1
College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China
2
Department of Electronic Information, Teacher’s College, Beijing Union University, Beijing 100011, China
3
Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China
4
School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(6), 552; https://doi.org/10.3390/math7060552
Submission received: 16 May 2019 / Revised: 10 June 2019 / Accepted: 11 June 2019 / Published: 17 June 2019

Abstract

:
In the paper, by some methods in the theory of majorization, the authors generalize several inequalities related to multivariate geometric means.

1. Introduction

Let x = ( x 1 , x 2 , , x n ) R + n = ( 0 , ) n and n 2 . Then, the arithmetic and geometric means of n positive numbers x 1 , x 2 , , x n are defined by
A ( x ) = 1 n i = 1 n x i and G ( x ) = i = 1 n x i 1 / n .
In [1] (p. 208, 3.2.34), it was stated that
i = 1 n ( x i + 1 ) [ G ( x ) + 1 ] n .
In the paper [2], Wang and Chen established that the inequality
i = 1 n [ ( x i + 1 ) p 1 ] [ ( G ( x ) + 1 ) p 1 ] n
is valid for p > 1 . In the paper [3], Wang extended Inequality (2) as follows:
  • if p 1 , then Inequality (2) is valid;
  • if 0 < p 1 , then Inequality (2) is reversed;
  • if p > 0 , then
    i = 1 n [ ( x i + 1 ) p + 1 ] [ ( G ( x ) + 1 ) p + 1 ] n ;
  • if p < 0 and 0 < x i < 1 | p | for 1 i n , then Inequality (3) is reversed.
In [4] (p. 11), it was proven that
k = 1 n ( a k + b k ) n k = 1 n a k n + k = 1 n b k n ,
where a k , b k 0 . When a k = x k and b k = 1 , Inequality (4) becomes (1). Inequality (4) is the Minkowski inequality of the product form.
We observe that the inequalities in (1)–(4) can be rearranged as
G ( x + 1 ) G ( x ) + 1 , G ( ( x + 1 ) p ± 1 ) [ G ( x ) + 1 ] p ± 1
and
G ( a + b ) > G ( a ) + G ( b ) ,
where
x + 1 = ( x 1 + 1 , x 2 + 1 , , x n + 1 )
and
( x + 1 ) p ± 1 = ( ( x 1 + 1 ) p ± 1 , ( x 2 + 1 ) p ± 1 , , ( x n + 1 ) p ± 1 ) .
Inequality (6) reveals that the geometric mean G ( x ) is sub-additive. For information about the sub-additivity, please refer to [5,6,7,8,9,10,11,12] and the closely related references therein. The sub-additive property of the geometric mean G ( x ) can also be derived from the property that the geometric mean G ( x ) is a Bernstein function; see [13,14,15,16,17,18,19] and the closely related references therein.
In this paper, by some methods in the theory of majorization, we will generalize the above inequalities in (1)–(3), (5), and (6).

2. Definitions and Lemmas

Now, we recall some definitions and lemmas.
It is well known that a function f ( x 1 , x 2 , , x n ) of n variables is said to be symmetric if its value is unchanged for any permutation of its n variables x 1 , x 2 , , x n .
Definition 1
([20,21]). Let x = ( x 1 , x 2 , , x n ) and y = ( y 1 , y 2 , , y n ) R n .
1. 
If
i = 1 k x [ i ] i = 1 k y [ i ] a n d i = 1 n x [ i ] = i = 1 n y [ i ]
for 1 k n 1 , then x is said to be majorized by y (in symbol x y ), where x [ 1 ] x [ 2 ] x [ n ] and y [ 1 ] y [ 2 ] y [ n ] are rearrangements of x and y in descending order.
2. 
For x , y Ω and λ [ 0 , 1 ] , if
λ x + ( 1 λ ) y = ( λ x 1 + ( 1 λ ) y 1 , λ x 2 + ( 1 λ ) y 2 , , λ x n + ( 1 λ ) y n ) Ω ,
then Ω R n is said to be a convex set.
Definition 2
([20,21]). Let Ω R n be a symmetric and convex set.
1. 
If x y on Ω implies φ ( x ) φ ( y ) , then we say that the function φ : Ω R is Schur convex on Ω.
2. 
If φ is a Schur convex function on Ω, then we say that φ is Schur concave on Ω.
Lemma 1
([20,21]). Let Ω R n be a symmetric and convex set with nonempty interior Ω ° , and let φ : Ω R be continuous on Ω and continuously differentiable on Ω ° . If and only if φ is symmetric on Ω and
( x 1 x 2 ) φ x 1 φ x 2 0 , x Ω ° ,
the function φ is Schur convex on Ω.
Definition 3
([22] (pp. 64 and 107)). Let x , y Ω R + n .
1. 
If x 1 λ y 1 1 λ , x 2 λ y 2 1 λ , , x n λ y n 1 λ Ω for x , y Ω and λ [ 0 , 1 ] , then Ω is called a geometrically-convex set.
2. 
If Ω is a geometrically-convex set and
( ln x 1 , ln x 2 , , ln x n ) ( ln y 1 , ln y 2 , , ln y n )
implies φ ( x ) φ ( y ) for any x , y Ω , then φ : Ω R + is said to be a Schur geometrically-convex function on Ω.
3. 
If φ is a Schur geometrically-convex function on Ω, then φ is said to be a Schur geometrically-concave function on Ω.
Lemma 2
([22] (p. 108)). Let Ω R + n be a symmetric and geometrically-convex set with a nonempty interior Ω ° , and let φ : Ω R + be continuous on Ω and differentiable in Ω ° . If and only if φ is symmetric on Ω and
( ln x 1 ln x 2 ) x 1 φ x 1 x 2 φ x 2 0 , x Ω ° ,
the function φ is Schur geometrically-convex on Ω.
For more information on the Schur convexity and the Schur geometric convexity, please refer to the papers [23,24,25,26] and the monographs [20,22].
Lemma 3
(Bernoulli’s inequality [27,28]). For 0 x > 1 , if α 1 or α < 0 , then
( 1 + x ) α 1 + α x ;
if 0 < α < 1 , then Inequality (7) is reversed.
Lemma 4.
For p R \ { 0 } and x R + , define
h 1 ( x ) = p ( x + 1 ) p 1 ( x + 1 ) p + 1 , g 1 ( x ) = p x ( x + 1 ) p 1 ( x + 1 ) p + 1 , h 2 ( x ) = p ( x + 1 ) p 1 ( x + 1 ) p 1 , g 2 ( x ) = p x ( x + 1 ) p 1 ( x + 1 ) p 1 .
1. 
If p < 0 , the function h 1 ( x ) is increasing on R + ; if 0 < p 2 , the function h 1 ( x ) is decreasing on R + ; if p > 2 , the function h 1 ( x ) is increasing on 0 , ( p 1 ) 1 / p 1 and decreasing on ( p 1 ) 1 / p 1 , .
2. 
If p > 0 , the function g 1 ( x ) is increasing on R ; if p < 0 , the function g 1 ( x ) is decreasing on 0 , 1 | p | and increasing on 2 | p | , .
3. 
For p 0 , the function h 2 ( x ) is decreasing on R + .
4. 
If p 1 , the function g 2 ( x ) is increasing on R + ; if p < 1 and p 0 , the function g 2 ( x ) is decreasing on R + .
Proof. 
Straightforward computation gives
[ h 1 ( x ) ] = p [ p 1 ( x + 1 ) p ] [ ( x + 1 ) p + 1 ] 2 ( x + 1 ) p 2 , [ g 1 ( x ) ] = p [ 1 + p x + ( x + 1 ) p ] [ ( x + 1 ) p + 1 ] 2 ( x + 1 ) p 2 , [ h 2 ( x ) ] = p [ 1 p ( x + 1 ) p ] [ ( x + 1 ) p 1 ] 2 ( x + 1 ) p 2 , [ g 2 ( x ) ] = p [ ( x + 1 ) p 1 p x ] [ ( x + 1 ) p 1 ] 2 ( x + 1 ) p 2 .
If p < 0 and x R + or p > 2 and 0 < x ( p 1 ) 1 / p 1 , we have [ h 1 ( x ) ] 0 ; if 0 < p 2 and x R + or p > 2 and ( p 1 ) 1 / p 1 < x , we obtain [ h 1 ( x ) ] 0 .
If p > 0 and x R + , we acquire [ g 1 ( x ) ] 0 ; if p < 0 and 0 < x 1 | p | , we have [ g 1 ( x ) ] 0 ; if p < 0 and x 2 | p | , since ( x + 1 ) p < 1 and 1 + p x 1 , we acquire [ g 1 ( x ) ] 0 .
If p R \ { 0 } , we obtain [ h 2 ( x ) ] 0 for x R + .
For x R + , by Lemma 3, if p 1 , we have ( x + 1 ) p 1 + p x , then [ g 2 ( x ) ] 0 ; if 0 < p 1 , we have ( x + 1 ) p 1 + p x , and so, [ g 2 ( x ) ] 0 ; if p < 0 , we obtain ( x + 1 ) p 1 + p x , hence [ g 2 ( x ) ] 0 . The proof of Lemma 4 is complete. □
Let x = ( x 1 , x 2 , , x n ) R n and i 1 , , i k be positive integers. The elementary symmetric functions are defined by E 0 ( x ) = 1 ,
E k ( x ) = E k ( x 1 , x 2 , , x n ) = 1 i 1 < < i k n j = 1 k x i j , 1 k n ,
and E k ( x ) = 0 for k < 0 or k > n .
Lemma 5
(Newton’s inequality [20] (p. 134)). For x = ( x 1 , x 2 , , x n ) R + n and n 2 , let F ^ k ( x ) = 1 n k E k ( x ) for 1 k n 1 . Then
F ^ k ( x ) 2 F ^ k 1 ( x ) F ^ k + 1 ( x ) .

3. Main Results

In this section, we will make use of the Schur convexity of the symmetric function
E k ( ( x + 1 ) p + ξ ) = 1 i 1 < < i k n j = 1 k [ ( x i j + 1 ) p + ξ ] , 2 k n , n 2
to generalize the inequalities in (1)–(3), (5) and (6), where x R + n , the quantities i 1 , i 2 , , i k are positive integers, ξ = 0 ,   ± 1 , and ξ = 0 , ± 1 .
Our main results are Theorems 1–3 below.
Theorem 1.
Let 2 k n , p R \ { 0 } , i 1 , , i k N , and a = ( n k ) ( p 1 ) k 1 for p > 1 .
1. 
If 2 k n 1 , 0 < p 1 , and x R + n , or if 2 k n 1 , p > 1 with a < 1 , and x 0 , a 1 / p 1 n , or if k = n , p > 0 , and x R + n , then
n k [ G ( x ) + 1 ] k p 1 i 1 < < i k n j = 1 k ( x i j + 1 ) p n k [ A ( x ) + 1 ] k p ;
if p < 0 and x 0 , 1 | p | n or if k = n , p < 0 , and x R + n , then the double Inequality (8) is reversed.
2. 
If 2 k n 1 , p > 1 with a > 1 , and x 0 , a 1 / p 1 n , then
n k [ A ( x ) + 1 ] k p 1 i 1 < < i k n j = 1 k ( x i j + 1 ) p .
3. 
If 2 k n 1 , p > 0 , and x R + n , then
n k [ G ( x ) + 1 ] k p 1 i 1 < < i k n j = 1 k ( x i j + 1 ) p ;
if p < 0 and x R + n , then Inequality (9) is reversed.
Proof. 
When k = n , we have
E n ( ( x + 1 ) p ) x 1 = p ( x 1 + 1 ) E n ( ( x + 1 ) p ) .
From this, we obtain
( x 1 x 2 ) E n ( ( x + 1 ) p ) x 1 E n ( ( x + 1 ) p ) x 2 = p ( x 1 x 2 ) 2 ( x 1 + 1 ) ( x 2 + 1 ) E n ( ( x + 1 ) p ) 0 , p > 0 ; 0 , p < 0
and
( x 1 x 2 ) x 1 E n ( ( x + 1 ) p ) x 1 x 2 E n ( ( x + 1 ) p ) x 2 = p ( x 1 x 2 ) 2 ( x 1 + 1 ) ( x 2 + 1 ) E n ( ( x + 1 ) p ) 0 , p > 0 ; 0 , p < 0 .
Using Lemmas 1 and 2, we arrive at
  • if p > 0 , then E n ( ( x + 1 ) p ) is Schur concave on R + n ;
  • if p < 0 , then E n ( ( x + 1 ) p ) is Schur convex on R + n ;
  • if p > 0 , then E n ( ( x + 1 ) p ) is Schur geometrically convex on R n ;
  • if p < 0 , the E n ( ( x + 1 ) p ) is Schur geometrically concave on R n .
Since
( A n ( x ) , A n ( x ) , , A n ( x ) ) x
and
( ln G n ( x ) , ln G n ( x ) , , ln G n ( x ) ) ln x
for x R + n , applying Definitions 2 and 3, we obtain the double Inequality (8) for k = n .
When 2 k n 1 , a direct differentiation yields
E k ( ( x + 1 ) p ) x 1 = p ( x 1 + 1 ) p 1 ( x 2 + 1 ) p E k 2 ( ( x ^ + 1 ) p ) + p ( x 1 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p ) ,
where x ^ = ( x 3 , , x n ) . We clearly see that
Δ A ( E k ( ( x + 1 ) p ) ) ( x 1 x 2 ) E k ( ( x + 1 ) p ) x 1 E k ( ( x + 1 ) p ) x 2 = p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p )
and
( ln x 1 ln x 2 ) x 1 E k ( ( x + 1 ) p ) x 1 x 2 E k ( ( x + 1 ) p ) x 2 = p ( ln x 1 ln x 2 ) ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) + p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p ) .
Using Equation (13) and Lemma 2, we obtain that
  • if p > 0 , then E k ( ( x + 1 ) p ) is Schur geometrically convex on R + n ;
  • if p < 0 , then E k ( ( x + 1 ) p ) is Schur geometrically concave on 0 , 1 | p | n .
By Equation (12) and Lemma 1, we reveal that
  • if p < 0 , then E k ( ( x + 1 ) p ) is Schur convex on R + n ;
  • if 0 < p 1 , then E k ( ( x + 1 ) p ) is Schur concave on R + n ;
  • if p > 1 and x R + n ,
    (a)
    when x 1 = x 2 , we have Δ A ( E k ( ( x + 1 ) p ) ) = 0 ;
    (b)
    when x 1 x 2 ,
    • by Lagrange’s mean value theorem, we have
      1 ( x 2 + 1 ) p 1 1 ( x 1 + 1 ) p 1 = ( p 1 ) ( x 1 x 2 ) ( ξ + 1 ) p
      for at least one interior point ξ ( min { x 1 , x 2 } , max { x 1 , x 2 } ) ;
    • from Newton’s inequality, we obtain
      ( n k ) ( n 2 ) ( k 1 ) i = 3 n ( x i + 1 ) p = ( n k ) F ^ n 2 ( ( x ^ + 1 ) p ) ( k 1 ) F ^ n 3 ( ( x ^ + 1 ) p ) E k 1 ( ( x ^ + 1 ) p ) E k 2 ( ( x ^ + 1 ) p ) ( n k ) F ^ 1 ( ( x ^ + 1 ) p ) ( k 1 ) F ^ 0 ( ( x ^ + 1 ) p ) = n k ( k 1 ) ( n 2 ) i = 3 n ( x i + 1 ) p .
Substituting (14) and (15) into Inequality (12) yields
Δ A ( E k ( ( x + 1 ) p ) ) = p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p ) = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) × ( x 1 x 2 ) + 1 ( x 2 + 1 ) p 1 1 ( x 1 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p ) E k 2 ( ( x ^ + 1 ) p ) = p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) p 1 ( ξ + 1 ) p E k 1 ( ( x ^ + 1 ) p ) E k 2 ( ( x ^ + 1 ) p ) 1 .
If a > 1 and x ( 0 , a 1 / p 1 ] n , using min { x 1 , x 2 } < ξ < max { x 1 , x 2 } , we have
n 2 i = 3 n ( x i + 1 ) p > n 2 i = 3 n ( 0 + 1 ) p = 1
and
1 ( ξ + 1 ) p k 1 ( n k ) ( p 1 ) .
Consequently, the inequalities from (16)–(17) imply Δ ( E k ( ( x + 1 ) p ) ) 0 for x ( 0 , a 1 / p 1 ] n .
If a < 1 and x 0 , a 1 / p 1 n , we obtain
Δ A ( E k ( ( x + 1 ) p ) ) = p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) × 1 + p 1 ( ξ + 1 ) p E k 1 ( ( x ^ + 1 ) p ) E k 2 ( ( x ^ + 1 ) p ) p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) 1 + ( n k ) ( p 1 ) ( k 1 ) ( n 2 ) ( ξ + 1 ) p i = 3 n ( x i + 1 ) p p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) × 1 + ( n k ) ( p 1 ) ( k 1 ) ( ξ + 1 ) p k 1 ( n k ) ( p 1 ) 1 / p 1 + 1 p = p ( x 1 x 2 ) 2 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p ) 1 ( ξ + 1 ) p 1 < 0 .
It is easy to obtain that, if p > 1 and a > 1 , then E k ( ( x + 1 ) p ) is Schur convex on 0 , a 1 / p 1 n ; if p > 1 and a < 1 , then E k ( ( x + 1 ) p ) is Schur concave on 0 , a 1 / p 1 n .
Using (10) and by Definitions 2 and 3, the inequalities in (8) and (9) hold. The proof of Theorem 1 is complete. □
Theorem 2.
Let 2 k n and p R \ { 0 } , i 1 , , i k N , and
b = 1 2 4 ( 4 n 3 k 1 ) ( p 1 ) k 1 + 1 1 1 / p , 1 < p 2 .
1. 
If k = n , 0 < p 2 , and x R + n , or if k = n , p > 2 , and x ( p 1 ) 1 / p 1 , n , or if 2 k n 1 , 0 < p 1 , and x R + n , then
n k [ ( G ( x ) + 1 ) p + 1 ] k 1 i 1 < < i k n j = 1 k [ ( x i j + 1 ) p + 1 ] n k [ ( A ( x ) + 1 ) p + 1 ] k .
If 2 k n , p < 0 , and x 0 , 1 | p | n , then the double Inequality (18) is reversed.
2. 
If 2 k n , p > 2 , and x 0 , ( p 1 ) 1 / p 1 n , or if 2 k n 1 , 1 < p 2 , and x ( 0 , b ] n , or if 2 k n , p < 0 , and x R + n , then
n k [ ( A ( x ) + 1 ) p + 1 ] k 1 i 1 < < i k n j = 1 k [ ( x i j + 1 ) p + 1 ] .
3. 
If 2 k n 1 , p > 0 , and x R + n or if 2 k n , p < 0 , and x 2 | p | , n , then
n k [ ( G ( x ) + 1 ) p + 1 ] k 1 i 1 < < i k n j = 1 k [ ( x i j + 1 ) p + 1 ] .
4. 
If k = n , p > 2 , and x R + n , then
[ ( G ( x ) + 1 ) p + 1 ] n i = 1 n ( x i + 1 ) p + 1 .
Proof. 
When k = n , a direct differentiation yields
E n ( ( x + 1 ) p + 1 ) x 1 = p ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 E n ( ( x + 1 ) p + 1 ) .
From Lemma 4, it follows that
( x 1 x 2 ) E n ( ( x + 1 ) p + 1 ) x 1 E n ( ( x + 1 ) p + 1 ) x 2 = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 E n ( ( x + 1 ) p + 1 ) 0 , 0 < p 2 , x R + n ; 0 , p > 2 , x 0 , ( p 1 ) 1 / p 1 n ; 0 , p > 2 , x ( p 1 ) 1 / p 1 , n ; 0 , p < 0 , x R + n
and
( ln x 1 ln x 2 ) x 1 E n ( ( x + 1 ) p + 1 ) x 1 x 2 E n ( ( x + 1 ) p + 1 ) x 2 = p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 x 2 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 E n ( ( x + 1 ) p + 1 ) 0 , p > 0 , x R + n , 0 , p < 0 , x 0 , 1 | p | n , 0 , p < 0 , x 2 | p | , n .
Therefore, from Lemmas 1 and 2, we acquire
  • if 0 < p 2 , then E n ( ( x + 1 ) p + 1 ) is Schur concave on R + n ;
  • if p > 2 , then E n ( ( x + 1 ) p + 1 ) is Schur convex on 0 , ( p 1 ) 1 / p 1 n ;
  • if p > 2 , then E n ( ( x + 1 ) p + 1 ) is Schur concave on ( p 1 ) 1 / p 1 , n ;
  • if p < 0 , then E n ( ( x + 1 ) p + 1 ) is Schur convex on R + n ;
  • if p > 0 , then E n ( ( x + 1 ) p + 1 ) is Schur geometrically convex on R + n ;
  • if p < 0 , then E n ( ( x + 1 ) p + 1 ) is Schur geometrically concave on 0 , 1 | p | n ;
  • if p < 0 , then E n ( ( x + 1 ) p + 1 ) is Schur geometrically convex on 2 | p | , n .
From Relations (10) and (11), employing Definitions 2 and 3, we conclude that inequalities in (18)–(21) for k = n .
If 2 k n 1 , since
E k ( ( x + 1 ) p + 1 ) x 1 = p ( x 1 + 1 ) p 1 [ ( x 2 + 1 ) p + 1 ] E k 2 ( ( x ^ + 1 ) p + 1 ) + p ( x 1 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p + 1 ) .
Therefore, we have
Δ A ( E k ( ( x + 1 ) p + 1 ) ) ( x 1 x 2 ) E k ( ( x + 1 ) p + 1 ) x 1 E k ( ( x + 1 ) p + 1 ) x 2 = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 i = 1 2 [ ( x i + 1 ) p + 1 ] E k 2 ( ( x ^ + 1 ) p + 1 ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p + 1 ) .
By Equation (23) and Lemma 1, it is easy to obtain that
  • if p < 0 , then E k ( ( x + 1 ) p + 1 ) is Schur convex on R + n ;
  • if 0 < p 1 , then E k ( ( x + 1 ) p + 1 ) is Schur concave on R + n ;
  • if p > 1 and x R + n ,
    (a)
    when x 1 = x 2 , we have Δ A ( E k ( ( x + 1 ) p + 1 ) = 0 ;
    (b)
    when x 1 x 2 , using Cauchy’s mean value theorem, we have
    ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 = p 1 ( ξ + 1 ) p ( p 1 ) [ ( ξ + 1 ) p + 1 ] 2
    for some point ξ ( min { x 1 , x 2 } , max { x 1 , x 2 } ) such that
    Δ A ( E k ( ( x + 1 ) p + 1 ) ) = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 i = 1 2 [ ( x i + 1 ) p + 1 ] + E k 1 ( ( x ^ + 1 ) p + 1 ) E k 2 ( ( x ^ + 1 ) p + 1 ) = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × p 1 ( ξ + 1 ) p ( p 1 ) [ ( ξ + 1 ) p + 1 ] 2 i = 1 2 [ ( x i + 1 ) p + 1 ] + E k 1 ( ( x ^ + 1 ) p + 1 ) E k 2 ( ( x ^ + 1 ) p + 1 ) .
If p > 2 and x 0 , ( p 1 ) 1 / p 1 , then p 1 ( x + 1 ) p 0 , so Δ A ( E k ( ( x + 1 ) p + 1 ) ) 0 for x 0 , ( p 1 ) 1 / p 1 n .
If 1 < p 2 and x ( 0 , b ] , we derive p 1 ( x + 1 ) p 0 . Using
( min { x 1 , x 2 } + 1 ) p + 1 < ( ξ + 1 ) p + 1 < ( max { x 1 , x 2 } + 1 ) p + 1
and Newton’s inequality leads to
Δ A ( E k ( ( x + 1 ) p + 1 ) ) = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × p 1 ( ξ + 1 ) p ( p 1 ) [ ( ξ + 1 ) p + 1 ] 2 i = 1 2 [ ( x i + 1 ) p + 1 ] + E k 1 ( ( x ^ + 1 ) p + 1 ) E k 2 ( ( x ^ + 1 ) p + 1 ) p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × p 1 ( ξ + 1 ) p ( p 1 ) [ ( ξ + 1 ) p + 1 ] 2 i = 1 2 [ ( x i + 1 ) p + 1 ] + n k k 1 n 2 i = 3 n [ ( x i + 1 ) p + 1 ] 1 p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × p 1 ( ξ + 1 ) p ( p 1 ) [ ( ξ + 1 ) p + 1 ] [ ( max { x 1 , x 2 } + 1 ) p + 1 ] + n k k 1 n 2 i = 3 n [ ( x i + 1 ) p + 1 ] 1 p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × p 1 ( b + 1 ) p 2 ( p 1 ) [ ( b + 1 ) p + 1 ] + 2 ( n k ) k 1 = p 2 ( p 1 ) ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 2 ( ( x ^ + 1 ) p + 1 ) × ( b + 1 ) p [ ( b + 1 ) p + 1 ] + ( 4 n 3 k 1 ) ( p 1 ) k 1 0 .
By Lemma 1, if 1 < p 2 , then E k ( ( x + 1 ) p + 1 ) is Schur convex with respect to x ( 0 , b ] n ; if p > 2 , then E k ( ( x + 1 ) p + 1 ) is Schur convex on 0 , ( p 1 ) 1 / p 1 n .
When 2 k n 1 , from (22), we obtain
( ln x 1 ln x 2 ) x 1 E k ( ( x + 1 ) p + 1 ) x 1 x 2 E k ( ( x + 1 ) p + 1 ) x 2 = p ( ln x 1 ln x 2 ) × x 1 ( x 1 + 1 ) p 1 ( x 1 + 1 ) p + 1 x 2 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p + 1 i = 1 2 [ ( x i + 1 ) p + 1 ] E k 2 ( ( x ^ + 1 ) p + 1 ) + p ( x 1 x 2 ) x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p + 1 ) .
Using Equation (24) and Lemma 2, we obtain that
  • if p > 0 , then E k ( ( x + 1 ) p + 1 ) is Schur geometrically convex on R + n ;
  • if p < 0 , then E k ( ( x + 1 ) p + 1 ) is Schur geometrically concave on 0 , 1 | p | n ;
  • if p < 0 , then E k ( ( x + 1 ) p + 1 ) is Schur geometrically convex on 2 | p | , n .
By (10) and Lemmas 1 and 2, we arrive at Inequalities (18)–(21). The proof of Theorem 2 is complete. □
Theorem 3.
Let 2 k n , p R \ { 0 } , i 1 , , i k N ,
c = n 1 + ( n 1 ) 2 + 4 ( n k ) ( k 1 ) / ( p 1 ) 2 ( n k ) 1 / p 1 , p > 1 ,
and
d = 2 n + k 3 k 1 1 / p 1 , 0 < p < 1 .
1. 
If k = n , p 1 , and x R + n , or if 2 k n 1 , p > 1 , and x ( 0 , c ] n , or if 2 k n 1 , p = 1 , and x R + n , then
n k [ ( G ( x ) + 1 ) p 1 ] k 1 i 1 < < i k n j = 1 k [ ( x i j + 1 ) p 1 ] n k [ ( A ( x ) + 1 ) p 1 ] k .
2. 
If k = n , 0 < p < 1 , and x R + n or f 2 k n 1 , 0 < p < 1 , and x ( 0 , d ] n , then
1 i 1 < < i k n j = 1 k [ ( x i j 1 ) p + 1 ] n k [ ( G ( x ) + 1 ) p 1 ] k .
3. 
If p < 0 , k = n is an even integer, and x R + n , or if 2 k n 1 , k is an even integer, p < 0 , and x 0 , 1 | p | n , then
1 i 1 < < i k n j = 1 k [ ( x i j 1 ) p + 1 ] n k [ ( A ( x ) + 1 ) p 1 ] k .
If p < 0 , k = n is an odd integer, and x R + n , or if 2 k n 1 , k is an odd integer, p < 0 , and x 0 , 1 | p | n , then Inequality (26) is reversed.
Proof. 
The proof is divided into three cases.
Case 1. If k = n , a direct differentiation yields
E n ( ( x + 1 ) p 1 ) x 1 = p ( x 1 + 1 ) p 1 ( x 1 + 1 ) p 1 E n ( ( x + 1 ) p 1 ) .
From Lemma 4, it follows that
( x 1 x 2 ) E n ( ( x + 1 ) p 1 ) x 1 E n ( ( x + 1 ) p 1 ) x 2 = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p 1 E n ( ( x + 1 ) p 1 ) 0 , if p > 0 ; 0 , if p < 0 and n is an even integer ; 0 , if p < 0 and n is an odd integer
and
( ln x 1 ln x 2 ) x 1 E n ( ( x + 1 ) p 1 ) x 1 x 2 E n ( ( x + 1 ) p + 1 ) x 2 = p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p 1 E n ( ( x + 1 ) p 1 ) 0 , if p 1 ; 0 , if 0 < p < 1 ; 0 , if p < 0 and n is an even integer ; 0 , if p < 0 and n is an odd integer .
Therefore, from Lemmas 1 and 2, we have
  • if p > 0 , then E n ( ( x + 1 ) p 1 ) is Schur concave on R + n ; if p < 0 and n is an even (or odd, respectively) integer, then E n ( ( x + 1 ) p 1 ) is Schur concave (or Schur convex, respectively) on R + n ;
  • if p 1 , then E n ( ( x + 1 ) p 1 ) is Schur geometrically convex on R + n ; if 0 < p < 1 , then E n ( ( x + 1 ) p 1 ) is Schur geometrically concave on R + n ; if p < 0 and n is an even (or odd, respectively) integer, then E n ( ( x + 1 ) p 1 ) is Schur geometrically concave (or convex, respectively) on R + n .
For k = n , by Relations (10) and (11) and by Definitions 2 and 3, the inequalities in (25) and (26) hold.
Case 2. When 2 k n 1 , since
E k ( ( x + 1 ) p 1 ) x 1 = p ( x 1 + 1 ) p 1 [ ( x 2 + 1 ) p 1 ] E k 2 ( ( x ^ + 1 ) p 1 ) + p ( x 1 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) ,
we have
Δ ( E k ( ( x + 1 ) p 1 ) ) ( x 1 x 2 ) E k ( ( x + 1 ) p 1 ) x 1 E k ( ( x + 1 ) p 1 ) x 2 = p ( x 1 x 2 ) { ( x 1 + 1 ) p 1 [ ( x 2 + 1 ) p 1 ] [ ( x 1 + 1 ) p 1 ] ( x 2 + 1 ) p 1 } × E k 2 ( ( x ^ + 1 ) p 1 ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) = p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p 1 i = 1 2 [ ( x i + 1 ) p 1 ] E k 2 ( ( x ^ + 1 ) p 1 ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) .
Utilizing the monotonicity of p ( x + 1 ) p 1 and Lemma 4, we obtain that
  • if 0 < p 1 , then Δ ( E k ( ( x + 1 ) p 1 ) ) 0 for x R + n , so the function E n ( ( x + 1 ) p 1 ) is a Schur-concave function on R + n ;
  • if p < 0 and k is an even (or odd, respectively) integer, then Δ ( E k ( ( x + 1 ) p 1 ) ) 0 for x R + n . This shows from Lemma 1 that, if p < 0 and n is an even (or odd, respectively) integer, the function E n ( ( x + 1 ) p 1 ) is Schur concave (or Schur convex, respectively) on R + n ;
  • if p > 1 and x ( 0 , c ] n , from (28), it follows that
    Δ ( E k ( ( x + 1 ) p 1 ) ) = p ( x 1 x 2 ) { ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 } E k 2 ( ( x ^ + 1 ) p 1 ) + p ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) = p ( x 1 x 2 ) E k 2 ( ( x ^ + 1 ) p 1 ) { ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 + ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) 1 } .
Suppose x 1 x 2 and x ( 0 , c ] n . By Lagrange’s mean value theorem, we have
( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 = ( p 1 ) ( x 1 x 2 ) ( ξ + 1 ) p 2
for some ξ in the open interval ( min { x 1 , x 2 } , max { x 1 , x 2 } ) and
( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( p 1 ) ( ξ + 1 ) p 2 1 ( p 1 ) ( ξ + 1 ) p 1 ( p 1 ) ( c + 1 ) p .
For k = 2 , , n and x ( 0 , c ] n , using Lemma 5 yields
E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) ( n k ) F ^ 1 ( ( x ^ + 1 ) p 1 ) ( k 1 ) F ^ 0 ( ( x ^ + 1 ) p 1 ) n k k 1 ( c + 1 ) p n k k 1 .
For x ( 0 , c ] n , by Equation (29) and the inequalities in (30) and (31), we obtain
Δ ( E k ( ( x + 1 ) p 1 ) ) = p ( x 1 x 2 ) 2 E k 2 ( ( x ^ + 1 ) p 1 ) × ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 + ( p 1 ) ( ξ + 1 ) p 2 E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) 1 p ( x 1 x 2 ) 2 ( p 1 ) ( ξ + 1 ) p 2 E k 2 ( ( x ^ + 1 ) p 1 ) × ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( p 1 ) ( ξ + 1 ) p 2 + n k ( k 1 ) ( n 2 ) i = 3 n ( x i + 1 ) p n 1 k 1 p ( x 1 x 2 ) 2 ( p 1 ) ( ξ + 1 ) p 2 E k 2 ( ( x ^ + 1 ) p 1 ) × 1 ( p 1 ) ( c + 1 ) p + n k k 1 ( c + 1 ) p n 1 k 1 = 0 .
Therefore, if p > 1 , then Δ ( E k ( ( x + 1 ) p 1 ) ) 0 for x ( 0 , c ] n . Therefore, from Lemma 1, it follows that
  • if 0 < p 1 , the function E k ( ( x + 1 ) p 1 ) is Schur concave on R + n ;
  • if p < 0 and k is an even (or odd, respectively) integer, the function E k ( ( x + 1 ) p 1 ) is Schur concave (or Schur convex, respectively) on R + n ;
  • if p > 1 , the function E k ( ( x + 1 ) p 1 ) is Schur concave on ( 0 , c ] n .
Case 3. If 2 k n 1 , then from (27), it follows that
Δ G ( E k ( ( x + 1 ) p 1 ) ( ln x 1 ln x 2 ) x 1 E k ( ( x + 1 ) p 1 ) x 1 x 2 E k ( ( x + 1 ) p 1 ) x 2 = p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 ( x 2 + 1 ) p 1 i = 1 2 [ ( x i + 1 ) p 1 ] E k 2 ( ( x ^ + 1 ) p 1 ) + p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) .
Using the monotonicity of function p x ( x + 1 ) p 1 and Lemma 4 results in
  • if p 1 , then Δ ( E k ( ( x + 1 ) p 1 ) 0 for x R + n ;
  • if p < 0 and k is an even (or odd, respectively) integer, then Δ ( E k ( ( x + 1 ) p 1 ) 0 for x 0 , 1 | p | n ;
  • if 0 < p < 1 , then
    Δ G ( E k ( ( x + 1 ) p 1 ) = p ( ln x 1 ln x 2 ) { x 1 ( x 1 + 1 ) p 1 [ ( x 2 + 1 ) p 1 ] [ ( x 2 + 1 ) p 1 ] x 2 ( x 2 + 1 ) p 1 } E k 2 ( ( x ^ + 1 ) p 1 ) + p ( ln x 1 ln x 2 ) x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) = p ( ln x 1 ln x 2 ) E k 2 ( ( x ^ + 1 ) p 1 ) { ( x 1 x 2 ) ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 + x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) 1 } .
Suppose x 1 x 2 , by Lagrange’s mean value theorem, we have
x 1 ( x 1 + 1 ) p 1 x 2 ( x 2 + 1 ) p 1 = ( x 1 x 2 ) ( ξ + 1 ) p 2 ( 1 + p ξ )
for some ξ ( min { x 1 , x 2 } , max { x 1 , x 2 } ) . Therefore, using Lemma 5 leads to
E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) n k ( k 1 ) ( n 2 ) i = 3 n ( x i + 1 ) p n k k 1 , x R + n .
For x ( 0 , d ] n , substituting (33) and (34) into (32) yields
Δ G ( E k ( ( x + 1 ) p 1 ) = p ( ln x 1 ln x 2 ) ( x 1 x 2 ) E k 2 ( ( x ^ + 1 ) p 1 ) × ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 + ( ξ + 1 ) p 2 ( 1 + p ξ ) E k 1 ( ( x ^ + 1 ) p 1 ) E k 2 ( ( x ^ + 1 ) p 1 ) 1 p ( ln x 1 ln x 2 ) ( x 1 x 2 ) E k 2 ( ( x ^ + 1 ) p 1 ) { ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 + ( ξ + 1 ) p 2 ( 1 + p ξ ) n k ( k 1 ) ( n 2 ) i = 3 n ( x i + 1 ) p n 1 k 1 } = p ( ln x 1 ln x 2 ) ( x 1 x 2 ) ( ξ + 1 ) p 2 ( 1 + p ξ ) E k 2 ( ( x ^ + 1 ) p 1 ) × ( x 1 + 1 ) p 1 ( x 2 + 1 ) p 1 ( ξ + 1 ) p 2 ( 1 + p ξ ) + n k ( k 1 ) ( n 2 ) i = 3 n ( x i + 1 ) p n 1 k 1 p ( ln x 1 ln x 2 ) ( x 1 x 2 ) ( ξ + 1 ) p 2 ( 1 + p ξ ) E k 2 ( ( x ^ + 1 ) p 1 ) × ( d + 1 ) 2 p + n k k 1 ( d + 1 ) p n 1 k 1 = 0 .
Therefore, using Lemma 2, we obtain that
  • if p 1 , the function E k ( ( x + 1 ) p 1 ) is Schur geometrically convex on R + n ;
  • if p < 0 and k is an even (or odd, respectively) integer, the function E k ( ( x + 1 ) p 1 ) is a Schur geometrically-concave (or convex, respectively) function on 0 , 1 | p | n ;
  • if 0 < p < 1 , the function E k ( ( x + 1 ) p 1 ) is Schur geometrically concave on ( 0 , d ] n .
For k = n , by Relations (10) and (11) and by Definitions 2 and 3, the inequalities in (25) and (26) hold. Theorem 3 is thus proven. □
Remark 1.
This paper is a corrected and revised version of the preprint [29].

Author Contributions

The authors contributed equally to this work. The authors read and approved the final manuscript.

Funding

The authors Bo-Yan Xi, Ying Wu and Feng Qi were partially supported by the National Natural Science Foundation of China under Grant No. 11361038, by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZZ18154, and by the Inner Mongolia Autonomous Region Natural Science Foundation Project under Grant No. 2018LH01002, China.

Acknowledgments

The authors are thankful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin, Germany; New York, NY, USA, 1970. [Google Scholar]
  2. Wang, Z.; Chen, J. Simple proof and application of a geometric inequality. J. Ningbo Univ. 1995, 8, 70–72. (In Chinese) [Google Scholar]
  3. Wang, W.-L. Some inequalities for symmetric functions and applications. J. Ningbo Univ. 1995, 8, 27–29. (In Chinese) [Google Scholar]
  4. Kuang, J.-C. Chángyòng Bùděngshì (Applied Inequalities), 4th ed.; Shandong Science and Technology Press: Ji’nan, China, 2010. (In Chinese) [Google Scholar]
  5. Chen, C.-P.; Qi, F.; Srivastava, H.M. Some properties of functions related to the gamma and psi functions. Integral Transform. Spec. Funct. 2010, 21, 153–164. [Google Scholar] [CrossRef]
  6. Guo, B.-N.; Qi, F.; Luo, Q.-M. The additivity of polygamma functions. Filomat 2015, 29, 1063–1066. [Google Scholar] [CrossRef]
  7. Guo, S.; Qi, F. A class of completely monotonic functions related to the remainder of Binet’s formula with applications. Tamsui Oxf. J. Math. Sci. 2009, 25, 9–14. [Google Scholar]
  8. Li, W.-H.; Qi, F. Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are (α,m)-convex. Filomat 2013, 27, 1575–1582. [Google Scholar] [CrossRef]
  9. Liu, A.-Q.; Li, G.-F.; Guo, B.-N.; Qi, F. Monotonicity and logarithmic concavity of two functions involving exponential function. Internat. J. Math. Ed. Sci. Tech. 2008, 39, 686–691. [Google Scholar] [CrossRef]
  10. Qi, F.; Guo, B.-N. Some properties of extended remainder of Binet’s first formula for logarithm of gamma function. Math. Slovaca 2010, 60, 461–470. [Google Scholar] [CrossRef]
  11. Qi, F.; Guo, S.; Guo, B.-N. Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 2010, 233, 2149–2160. [Google Scholar] [CrossRef]
  12. Qi, F.; Niu, D.-W.; Guo, B.-N. Monotonic properties of differences for remainders of psi function. Int. J. Pure Appl. Math. Sci. 2007, 4, 59–66. [Google Scholar]
  13. Guo, B.-N.; Qi, F. On the degree of the weighted geometric mean as a complete Bernstein function. Afr. Mat. 2015, 26, 1253–1262. [Google Scholar] [CrossRef]
  14. Qi, F.; Lim, D. Integral representations of bivariate complex geometric mean and their applications. J. Comput. Appl. Math. 2018, 330, 41–58. [Google Scholar] [CrossRef]
  15. Qi, F.; Zhang, X.-J.; Li, W.-H. An elementary proof of the weighted geometric mean being a Bernstein function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 35–38. [Google Scholar]
  16. Qi, F.; Zhang, X.-J.; Li, W.-H. An integral representation for the weighted geometric mean and its applications. Acta Math. Sin. 2014, 30, 61–68. [Google Scholar] [CrossRef]
  17. Qi, F.; Zhang, X.-J.; Li, W.-H. Lévy-Khintchine representation of the geometric mean of many positive numbers and applications. Math. Inequal. Appl. 2014, 17, 719–729. [Google Scholar] [CrossRef]
  18. Qi, F.; Zhang, X.-J.; Li, W.-H. Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean. Mediterr. J. Math. 2014, 11, 315–327. [Google Scholar] [CrossRef]
  19. Qi, F.; Zhang, X.-J.; Li, W.-H. The harmonic and geometric means are Bernstein functions. Bol. Soc. Mat. Mex. 2017, 23, 713–736. [Google Scholar] [CrossRef]
  20. Marshall, A.W.; Olkin, I.; Arnold, B.C. Inequalities: Theory of Majorization and its Applications, 2nd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
  21. Wang, B.-Y. Foundations of Majorization Inequalities; Beijing Normal University Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
  22. Zhang, X.-M. Geometrically Convex Functions; An’hui University Press: Hefei, China, 2004. (In Chinese) [Google Scholar]
  23. Chu, Y.-M.; Zhang, X.-M.; Wang, G.-D. The Schur geometrical convexity of the extended mean values. J. Convex Anal. 2008, 15, 707–718. [Google Scholar]
  24. Guan, K.-Z. Schur convexity of the complete symmetric function. Math. Inequal. Appl. 2006, 9, 567–576. [Google Scholar] [CrossRef]
  25. Sun, T.-C.; Lü, Y.-P.; Chu, Y.-M. Schur multiplicative and harmonic convexities of generalized Heronian mean in n variables and their applications. Int. J. Pure Appl. Math. 2009, 55, 25–33. [Google Scholar]
  26. Xi, B.-Y.; Gao, D.-D.; Zhang, T.; Guo, B.-N.; Qi, F. Shannon type inequalities for Kapur’s entropy. Mathematics 2019, 7, 22. [Google Scholar] [CrossRef]
  27. Bullen, P.S. Handbook of Means and Their Inequalities. In Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2003; Volume 560. [Google Scholar]
  28. Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
  29. Xi, B.-Y.; Wu, Y.; Shi, H.-N.; Qi, F. Generalizations of Several Inequalities Related to Multivariate Geometric Means. HAL Archives. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01865896 (accessed on 8 June 2019).

Share and Cite

MDPI and ACS Style

Xi, B.-Y.; Wu, Y.; Shi, H.-N.; Qi, F. Generalizations of Several Inequalities Related to Multivariate Geometric Means. Mathematics 2019, 7, 552. https://doi.org/10.3390/math7060552

AMA Style

Xi B-Y, Wu Y, Shi H-N, Qi F. Generalizations of Several Inequalities Related to Multivariate Geometric Means. Mathematics. 2019; 7(6):552. https://doi.org/10.3390/math7060552

Chicago/Turabian Style

Xi, Bo-Yan, Ying Wu, Huan-Nan Shi, and Feng Qi. 2019. "Generalizations of Several Inequalities Related to Multivariate Geometric Means" Mathematics 7, no. 6: 552. https://doi.org/10.3390/math7060552

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop