Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs
Abstract
1. Introduction
2. Main Result
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [Google Scholar] [CrossRef]
- Ali, A.; Furtula, B.; Gutman, I.; Vukičević, D. Augmented Zagreb index: Extremal results and bounds. MATCH Commun. Math. Comput. Chem. 2021, 85, 211–244. [Google Scholar]
- Aarthi, K.; Elumalai, S.; Balachandran, S.; Mondal, S. Extremal values of the atom-bond sum-connectivity index in bicyclic graphs. J. Appl. Math. Comput. 2023, 69, 4269–4285. [Google Scholar] [CrossRef]
- Liu, H. Comparison between Merrifield-Simmons index and some vertex-degree-based topological indices. Comput. Appl. Math. 2023, 42, 89. [Google Scholar] [CrossRef]
- Liu, H. Extremal problems on Sombor indices of unicyclic graphs with a given diameter. Comput. Appl. Math. 2022, 41, 138. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y. Sharp bounds on the symmetric division deg index of graphs and line graphs. Comp. Appl. Math. 2023, 42, 285. [Google Scholar] [CrossRef]
- Maitreyi, V.; Elumalai, S.; Balachandran, S.; Liu, H. The minimum Sombor index of trees with given number of pendant vertices. Comp. Appl. Math. 2023, 42, 331. [Google Scholar] [CrossRef]
- Shegehalli, V.S.; Kanabur, R. Arithmetic-geometric indices of path graph. J. Comput. Math. Sci. 2015, 6, 19–24. [Google Scholar]
- Shegehalli, V.S.; Kanabur, R. Arithmetic-geometric indices of some class of graph. J. Comput. Math. Sci. 2015, 6, 194–199. [Google Scholar]
- Shegehalli, V.S.; Kanabur, R. Computation of new degree-based topological indices of graphene. J. Math. 2016, 2016, 4341919. [Google Scholar] [CrossRef]
- Milovanović, I.x.; Matejixcx, M.M.; Milovanovixcx, E.I. Upper bounds for arithmetic-geometric index of graphs. Sci. Publ. State Univ. Novi Pazar Ser. A Appl. Math. Inform. Mech. 2018, 10, 49–54. [Google Scholar] [CrossRef]
- Hertz, A.; Bonte, S.; Devillez, G.; Dusollier, V.; Mélot, H.; Schindl, D. Extremal chemical graphs for the arithmetic-geometric index. MATCH Commun. Math. Comput. Chem. 2025, 93, 791–818. [Google Scholar] [CrossRef]
- Vujošević, S.; Popivoda, G.; Vukixcxevixcx, x.K.; Furtula, B.; Škrekovski, R. Arithmetic-geometric index and its relations with geometric-arithmetic index. Appl. Math. Comput. 2021, 391, 125706. [Google Scholar] [CrossRef]
- Guo, X.; Gao, Y. Arithmetic-geometric spectral radius and energy of graphs. MATCH Commun. Math. Comput. Chem. 2020, 83, 651–660. [Google Scholar]
- Li, G.; Zhang, M. Sharp bounds on the arithmetic-geometric index of graphs and line graphs. Discrete Appl. Math. 2022, 318, 47–60. [Google Scholar] [CrossRef]
- Rodríguez, J.M.; Sánchez, J.L.; Sigarreta, J.M.; Tours, E. Bounds on the arithmetic-geometric index. Symmetry 2021, 13, 689. [Google Scholar] [CrossRef]
- Zheng, L.; Tian, G.X.; Cui, S.Y. On spectral radius and energy of arithmetic-geometric matrix of graphs. MATCH Commun. Math. Comput. Chem. 2020, 83, 635–650. [Google Scholar]
- Rada, J. Exponential vertex-degree-based topological indices and discrimination. MATCH Commun. Math. Comput. Chem. 2019, 82, 29–41. [Google Scholar]
- Cruz, R.; Monsalve, J.; Rada, J. Trees with maximum exponential Randić index. Discrete Appl. Math. 2020, 283, 634–643. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. The path and the star as extremal values of vertex-degree-based topological indices among trees. MATCH Commun. Math. Comput. Chem. 2019, 82, 715–732. [Google Scholar]
- Das, K.C.; Elumalai, S.; Balachandran, S. Open problems on the exponential vertex-degree-based topological indices of graphs. Discrete Appl. Math. 2021, 293, 38–49. [Google Scholar] [CrossRef]
- Jahanbani, A.; Cancan, M.; Motamedi, R. Extremal Trees for the Exponential of Forgotten Topological Index. J. Math. 2022, 2022, 7455701. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S. On exponential geometric-arithmetic index of graphs. J. Math. Chem. 2024, 60, 205–217. [Google Scholar] [CrossRef]
- Balachandran, S.; Vetrík, T. Exponential second Zagreb index of chemical trees. Trans. Combin. 2021, 10, 97–106. [Google Scholar]
- Bera, J.; Das, K.C. The minimal molecular tree for the exponential Randić index. Mathematics 2024, 12, 3601. [Google Scholar] [CrossRef]
- Carballosa, W.; Quintana, Y.; Rodríguez, J.M.; Sigarreta, J.M. Exponential topological indices: Optimal inequalities and applications. J. Math. Chem. 2023, 61, 933–949. [Google Scholar] [CrossRef]
- Cruz, R.; Monsalve, J.; Rada, J. The balanced double star has maximum exponential second Zagreb index. J. Combin. Optim. 2021, 41, 544–552. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J. Extremal graphs for exponential VDB indices. Kragujev. J. Math. 2022, 46, 105–113. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D.Y. On the exponential augmented Zagreb index of graphs. J. Appl. Math. Comput. 2024, 70, 839–865. [Google Scholar] [CrossRef]
- Moon, S.; Park, S. Bounds for the geometric-arithmetic index of unicyclic graphs. J. Appl. Math. Comput. 2023, 69, 2955–2971. [Google Scholar] [CrossRef]
- Vukićevixcx, X.K.; Vujoševixcx, S.; Popivoda, G. Unicyclic graphs with extremal values of arithmetic-geometric index. Discrete Appl. Math. 2021, 302, 67–75. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Q.; Zhang, H. Unicyclic graphs with extremal Lanzhou index. Appl. Math.—J. Chin. Univ. 2022, 37, 350–365. [Google Scholar] [CrossRef]
- Das, K.C.; Mondal, S.; Huh, D. Open problem on the maximum exponential augmented Zagreb index of unicyclic graphs. Comput. Appl. Math. 2024, 43, 317. [Google Scholar] [CrossRef]
- Eliasi, M. Unicyclic and bicyclic graphs with maximum exponential second Zagreb index. Discrete Appl. Math. 2022, 307, 172–179. [Google Scholar] [CrossRef]
- Ali, A.; Alanazi, A.M.; Hassan, T.S.; Shang, Y. On unicyclic graphs with a given number of pendent vertices or matching number and their graphical edge-weight-function indices. Mathematics 2024, 12, 3658. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, Y. Extremal unicyclic graphs of Sombor index. Appl. Math. Comput. 2024, 463, 128374. [Google Scholar] [CrossRef]
- Cruz, R.; Rada, J.; Sanchez, W. Extremal unicyclic graphs with respect to vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2022, 88, 481–503. [Google Scholar] [CrossRef]
- Das, K.C. On the exponential atom-bond connectivity index of graphs. Mathematics 2025, 13, 269. [Google Scholar] [CrossRef]
- Deng, H.; Vetrík, T.; Balachandran, S. On the harmonic index and diameter of unicyclic graphs. Math. Rep. 2020, 22, 11–18. [Google Scholar]
- Ergotić, S.M. On unicyclic graphs with minimum Graovac-Ghorbani index. Mathematics 2024, 12, 384. [Google Scholar] [CrossRef]
- Ning, W.; Wang, K. On the Estrada indices of unicyclic graphs with fixed diameters. Mathematics 2021, 9, 2395. [Google Scholar] [CrossRef]
- Nithyaa, P.; Elumalai, S.; Balachandran, S.; Masrec, M. Ordering unicyclic graphs with a fixed girth by Sombor indices. MATCH Commun. Math. Comput. Chem. 2024, 92, 205–224. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica, Version 7.0; Wolfram Research, Inc.: Champaign, IL, USA, 2008. [Google Scholar]
- Stein, W.A. Sage Mathematics Software, Version 6.8. The Sage Development Team. 2015. Available online: http://www.sagemath.org (accessed on 21 April 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, K.C.; Bera, J. Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics 2025, 13, 1391. https://doi.org/10.3390/math13091391
Das KC, Bera J. Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics. 2025; 13(9):1391. https://doi.org/10.3390/math13091391
Chicago/Turabian StyleDas, Kinkar Chandra, and Jayanta Bera. 2025. "Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs" Mathematics 13, no. 9: 1391. https://doi.org/10.3390/math13091391
APA StyleDas, K. C., & Bera, J. (2025). Resolving an Open Problem on the Exponential Arithmetic–Geometric Index of Unicyclic Graphs. Mathematics, 13(9), 1391. https://doi.org/10.3390/math13091391