A Study of Forced Convection in Non-Newtonian Hybrid Nanofluids Embedded in a Heated Cylinder Within a Hexagonal Enclosure by Finite Element Method
Abstract
:1. Introduction
2. Overview of the Physical Model
2.1. Non-Newtonian Nanofluid’s Physical Characteristics
2.2. Characteristics of Hybrid Nanofluids
3. Governing Dimensional Equations
3.1. Boundary Conditions
3.2. Non-Dimensional Formula for Governing Equations
3.3. Physical Quantities
4. Thermophysical Properties
5. Numerical Methods
Grid Independent Test and Code Validation
6. Results and Discussion
6.1. Effect of on Streamlines and Isotherms
6.2. Effect of Power Law Index n on Streamlines and Isotherms
6.3. Impact of on Streamlines and Isotherms
6.4. Influence of on Streamlines and Isotherm
6.5. Distribution of Velocity for , , , and n
6.6. Evolution of Temperature for ,, and n
6.7. Changes in Average Nusselt Numbers
6.8. Statistical Analysis and Parametric Sensitivity Tests
6.8.1. Correlation Development
6.8.2. Response Surface Analysis
7. Conclusions
- (I)
- The heat transfer of non-Newtonian hybrid nanofluid fluids, thermal velocity, power law index (n), nanoparticle volume fraction (), Hartman number (), and numbers all possessed considerable effects on the fluid characteristics.The maximum exhibited more stable distribution of velocity profiles. However, as was imposed, the fluid demonstrated quasi-static behavior, regardless of the numbers. The power law fluid showed more stable response in terms of fluid mobility, whereas fluid corresponding to would require elevated numbers to stabilize the system. The impact of on velocity distribution had a marginal impact compared to other dimensionless parameters.
- (II)
- As , n, and increased, the average Nusselt number increased but the opposite outcome was observed at . The maximum value of average was obtained at , , and ( nanoparticles). The outcome was more thermally efficient for .
- (III)
- The temperature profiles, however, yielded the maximum value at at a non-zero number. The temperature profiles were more impacted by and rather than n or .
- (IV)
- The hybrid nanofluid improved the rate of heat transfer by approximately comparing to a single-phase nanofluid system (either or ).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arif, M.; Suneetha, S.; Basha, T.; Reddy, P.B.A.; Kumam, P. Stability analysis of diamond-silver-ethylene glycol hybrid based radiative micropolar nanofluid: A solar thermal application. Case Stud. Therm. Eng. 2022, 39, 102407. [Google Scholar] [CrossRef]
- Anee, M.J.; Siddiqa, S.; Hasan, M.F.; Molla, M.M. Lattice Boltzmann simulation of natural convection of ethylene glycol-alumina nanofluid in a C-shaped enclosure with MFD viscosity through a parallel computing platform and quantitative parametric assessment. Phys. Scr. 2023, 98, 095203. [Google Scholar] [CrossRef]
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical Report; Argonne National Lab. (ANL): Argonne, IL, USA, 1995. [Google Scholar]
- Khan, U.; Zaib, A.; Bakar, S.A.; Ishak, A. Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure. Case Studies Therm. Eng. 2021, 26, 101150. [Google Scholar] [CrossRef]
- Khetib, Y.; Abo-Dief, H.M.; Alanazi, A.K.; Said, Z.; Memon, S.; Bhattacharyya, S.; Sharifpur, M. The Influence of Forced Convective Heat Transfer on Hybrid Nanofluid Flow in a Heat Exchanger with Elliptical Corrugated Tubes: Numerical Analyses and Optimization. Appl. Sci. 2022, 12, 2780. [Google Scholar] [CrossRef]
- Nikushchenko, D.; Pavlovsky, V.; Nikushchenko, E. Fluid Flow Development in a Pipe as a Demonstration of a Sequential Change in Its Rheological Properties. Appl. Sci. 2022, 12, 3058. [Google Scholar] [CrossRef]
- Muneeshwaran, M.; Srinivasan, G.; Muthukumar, P.; Wang, C.C. Role of hybrid-nanofluid in heat transfer enhancement–A review. Int. Comm. Heat Mass Transf. 2021, 125, 105341. [Google Scholar] [CrossRef]
- Xiong, Q.; Altnji, S.; Tayebi, T.; Izadi, M.; Hajjar, A.; Sundén, B.; Li, L.K. A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustain. Energy Technol. Assess. 2021, 47, 101341. [Google Scholar] [CrossRef]
- Hussain, S.M.; Jamshed, W. A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method. Int. Comm. Heat Mass Transf. 2021, 129, 105671. [Google Scholar] [CrossRef]
- Anee, M.J.; Hasan, M.F.; Siddiqa, S.; Molla, M.M. MHD Natural Convection and Sensitivity Analysis of Ethylene Glycol Cu-Al2O3 Hybrid Nanofluids in a Chamber with Multiple Heaters: A Numerical Study of Lattice Boltzmann Method. Int. J. Energy Res. 2024, 2024, 5521610. [Google Scholar] [CrossRef]
- Ahmad, F.; Abdal, S.; Ayed, H.; Hussain, S.; Salim, S.; Almatroud, A.O. The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet. Case Stud. Therm. Eng. 2021, 27, 101257. [Google Scholar] [CrossRef]
- Jamshed, W.; Alanazi, A.K.; Isa, S.S.P.M.; Banerjee, R.; Eid, M.R.; Nisar, K.S.; Alshahrei, H.; Goodarzi, M. Thermal efficiency enhancement of solar aircraft by utilizing unsteady hybrid nanofluid: A single-phase optimized entropy analysis. Sustain. Energy Technol. Assess. 2022, 52, 101898. [Google Scholar] [CrossRef]
- Abbasi, A.; Al-Khaled, K.; Khan, M.I.; Khan, S.U.; El-Refaey, A.M.; Farooq, W.; Jameel, M.; Qayyum, S. Optimized analysis and enhanced thermal efficiency of modified hybrid nanofluid (Al2O3, CuO, Cu) with nonlinear thermal radiation and shape features. Case Studies Therm. Eng. 2021, 28, 101425. [Google Scholar] [CrossRef]
- Jana, S.; Salehi-Khojin, A.; Zhong, W.H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Alharbi, A.A.; Alzahrani, A.R.R. A COMSOL-Based Numerical Simulation of Heat Transfer in a Hybrid Nanofluid Flow at the Stagnant Point across a Stretching/Shrinking Sheet: Implementation for Understanding and Improving Solar Systems. Mathematics 2024, 12, 2493. [Google Scholar] [CrossRef]
- Nihaal, K.M.; Mahabaleshwar, U.S.; Swaminathan, N.; Laroze, D.; Shevchuk, I.V. A Numerical Investigation of Activation Energy Impact on MHD Water-Based Fe3O4 and CoFe2O4 Flow between the Rotating Cone and Expanding Disc. Mathematics 2024, 12, 2530. [Google Scholar] [CrossRef]
- Alhowaity, A.; Bilal, M.; Hamam, H.; Alqarni, M.; Mukdasai, K.; Ali, A. Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet. Sci. Rep. 2022, 12, 10406. [Google Scholar] [CrossRef]
- Bilal, S.; Khan, N.Z.; Shah, I.A.; Awrejcewicz, J.; Akgül, A.; Riaz, M.B. Heat and flow control in cavity with cold circular cylinder placed in non-newtonian fluid by performing finite element simulations. Coatings 2021, 12, 16. [Google Scholar] [CrossRef]
- Nadeem, S.; Hamed, Y.; Riaz, M.B.; Ullah, I.; Alzabut, J. Finite element method for natural convection flow of Casson hybrid (Al2O3–Cu/water) nanofluid inside H-shaped enclosure. AIP Adv. 2024, 14, 085130. [Google Scholar] [CrossRef]
- Zahid, F.; Riaz, M.B. Computational analysis of EMHD nanofluid flow over a thermally conductive surface: Enhancing heat transfer for industrial applications. Int. J. Thermofluids 2024, 25, 100987. [Google Scholar] [CrossRef]
- Niihara, K. New design concept of structural ceramics ceramic nanocomposites. J. Ceram. Soc. Jpn. 1991, 99, 974–982. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Nadeem, S.; Abbas, N.; Khan, A. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Res. Phys. 2018, 8, 829–835. [Google Scholar] [CrossRef]
- Hayat, T.; Nadeem, S.; Khan, A. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. Eur. Phys. J. E 2018, 41, 75. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.; Abbas, N. On both MHD and slip effect in micropolar hybrid nanofluid past a circular cylinder under stagnation point region. Can. J. Phys. 2019, 97, 392–399. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Mehryan, S.; Shafee, A.; Sheremet, M.A. Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity. J. Mol. Liq. 2019, 277, 388–396. [Google Scholar] [CrossRef]
- Hassan, M.; Ellahi, R.; Bhatti, M.M.; Zeeshan, A. A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Can. J. Phys. 2019, 97, 277–285. [Google Scholar] [CrossRef]
- Subhashini, S.; Sumathi, R. Dual solutions of a mixed convection flow of nanofluids over a moving vertical plate. Int. J. Heat Mass Transf. 2014, 71, 117–124. [Google Scholar] [CrossRef]
- Hasan, M.F.; Himika, T.A.; Molla, M.M. Large-eddy simulation of airflow and heat transfer in a general ward of hospital. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1754. [Google Scholar]
- Hassan, S.; Himika, T.A.; Molla, M.M.; Hasan, F. Lattice Boltzmann simulation of fluid flow and heat transfer through partially filled porous media. Comput. Eng. Phys. Model. 2019, 2, 38–57. [Google Scholar]
- Khan, Y.; Majeed, A.H.; Shahzad, H.; Awan, F.J.; Iqbal, K.; Ajmal, M.; Faraz, N. Numerical computations of non-Newtonian fluid flow in hexagonal cavity with a square obstacle: A hybrid mesh–based study. Front. Phys. 2022, 10, 891163. [Google Scholar] [CrossRef]
- Battira, M.M.; Brahmi, C.; Bessaih, R.; Chadi, K. Forced Convection of Cu-Water Nanofluid in Vented Square Enclosure with an Interior Rotating Hexagonal Cylinder. Int. J. Heat Technol. 2023, 41, 339. [Google Scholar] [CrossRef]
- Molla, M.M.; Hasan, M.F.; Islam, M.M. Elucidating thermal phenomena of non-Newtonian experimental data based copper-alumina-ethylene glycol hybrid nanofluid in a cubic enclosure with central heated plate by machine learning validations of D3Q27 MRT-LBM. Int. J. Thermofluids 2025, 26, 101033. [Google Scholar] [CrossRef]
- Yang, J.S.; Min, J.K.; Yang, C.; Jung, K. Numerical studies of natural convection phenomena for a vertical cylinder with multiple lateral baffles in triangular and hexagonal enclosures. Case Stud. Therm. Eng. 2023, 45, 102971. [Google Scholar] [CrossRef]
- Xuan, Y.; Li, Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow 2000, 21, 58–64. [Google Scholar] [CrossRef]
- Hossain, A.; Nag, P.; Molla, M.M. Mesoscopic simulation of MHD mixed convection of non-newtonian ferrofluids with a non-uniformly heated plate in an enclosure. Phys. Scr. 2022, 98, 015008. [Google Scholar] [CrossRef]
- Corcione, M.; Cianfrini, M.; Quintino, A. Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int. J. Therm. Sci. 2013, 71, 182–195. [Google Scholar] [CrossRef]
- Corcione, M.; Cianfrini, M.; Quintino, A. Natural convection in square enclosures differentially heated at sides using alumina-water nanofluids with temperature-dependent physical properties. Therm. Sci. 2015, 19, 591–608. [Google Scholar]
- Alsabery, A.I.; Tayebi, T.; Kadhim, H.T.; Ghalambaz, M.; Hashim, I.; Chamkha, A.J. Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block. J. Adv. Res. 2021, 30, 63–74. [Google Scholar] [CrossRef]
- Eshaghi, S.; Izadpanah, F.; Dogonchi, A.S.; Chamkha, A.J.; Hamida, M.B.B.; Alhumade, H. The optimum double diffusive natural convection heat transfer in H-Shaped cavity with a baffle inside and a corrugated wall. Case Stud. Therm. Eng. 2021, 28, 101541. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Hashim, I.; Hajjar, A.; Ghalambaz, M.; Nadeem, S.; Saffari Pour, M. Entropy generation and natural convection flow of hybrid nanofluids in a partially divided wavy cavity including solid blocks. Energies 2020, 13, 2942. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.; Yang, Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int. J. Heat Mass Transf. 2019, 137, 714–726. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 2007, 50, 2002–2018. [Google Scholar] [CrossRef]
- Oztop, H.F.; Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 2008, 29, 1326–1336. [Google Scholar] [CrossRef]
- Basak, T.; Roy, S.; Thirumalesha, C. Finite element analysis of natural convection in a triangular enclosure: Effects of various thermal boundary conditions. Chem. Eng. Sci. 2007, 62, 2623–2640. [Google Scholar] [CrossRef]
- Siddiki, M.N.A.A.; Islam, S.; Ahmmed, M.U.; Molla, M.M. Numerical simulation of a non-Newtonian nanofluid on mixed convection in a rectangular enclosure with two rotating cylinders. Int. J. Amb. Energy 2024, 45, 2332525. [Google Scholar] [CrossRef]
- Sivakumar, V.; Sivasankaran, S.; Prakash, P.; Lee, J. Effect of heating location and size on mixed convection in lid-driven cavities. Comput. Math. Appl. 2010, 59, 3053–3065. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons Inc.: New York, NY, USA, 2001; 200p. [Google Scholar]
- Box, G.E.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992; pp. 270–310. [Google Scholar]
Thermophysical Properties | Base Fluid () | (Al2O3) | (TiO2) |
---|---|---|---|
(J/kgK) | 4179 | 765 | 686.2 |
(kg/m3) | 997.1 | 3970 | 4250 |
k (Wm−1K−1) | 0.613 | 40 | 8.95320 |
(1/K) | 21 | 0.85 | 0.90 |
Significant Factors | Lowest Value (−1) | Mid Value (0) | Highest Value (1) |
---|---|---|---|
50 | 275 | 500 | |
0 | 15 | 30 | |
0 | 0.02 | 0.04 |
Run Orders | ||||
---|---|---|---|---|
1 | −1 | 0 | 0 | 4.9959 |
2 | 0 | 0 | 0 | 9.5471 |
3 | 0 | 0 | 0 | 9.5471 |
4 | 0 | 0 | 0 | 9.5471 |
5 | 1 | 1 | −1 | 4.8279 |
6 | 0 | 1 | 0 | 8.3905 |
7 | 1 | −1 | 1 | 13.865 |
8 | 1 | 1 | 1 | 11.717 |
9 | 0 | 0 | 1 | 11.717 |
10 | −1 | −1 | 1 | 5.8841 |
11 | 0 | 0 | 0 | 9.5471 |
12 | −1 | 01 | 1 | 12.945 |
13 | 1 | 0 | 0 | 12.945 |
14 | −1 | −1 | −1 | 8.6379 |
15 | 0 | 0 | −1 | 8.6379 |
16 | −1 | 1 | −1 | 10.548 |
17 | 0 | 0 | 0 | 9.5471 |
18 | 0 | −1 | 0 | 10.548 |
19 | 1 | −1 | −1 | 12.601 |
20 | 0 | 0 | 0 | 9.5471 |
Source | DOF | F-Value | p-Value | Comment |
---|---|---|---|---|
Model | 9 | 24.85 | less than 0.0001 | significant |
1 | 137.75 | less than 0.0001 | ||
1 | 26.50 | 0.0004 | ||
1 | 18.56 | less than 0.0015 | ||
1 | 12.57 | 0.1398 | ||
1 | 0.3804 | 0.5511 | ||
1 | 1.53 | 0.2448 | ||
. | 1 | 12.44 | 0.0055 | |
. | 1 | 6.26 | 0.0314 | |
. | 1 | 5.86 | 0.0360 | |
lack of fit | 5 | - | - | insignificant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiki, M.N.-A.-A.; Islam, S.; Ahmmed, M.U.; Hasan, M.F.; Molla, M.M. A Study of Forced Convection in Non-Newtonian Hybrid Nanofluids Embedded in a Heated Cylinder Within a Hexagonal Enclosure by Finite Element Method. Mathematics 2025, 13, 445. https://doi.org/10.3390/math13030445
Siddiki MN-A-A, Islam S, Ahmmed MU, Hasan MF, Molla MM. A Study of Forced Convection in Non-Newtonian Hybrid Nanofluids Embedded in a Heated Cylinder Within a Hexagonal Enclosure by Finite Element Method. Mathematics. 2025; 13(3):445. https://doi.org/10.3390/math13030445
Chicago/Turabian StyleSiddiki, Md. Noor-A-Alam, Saiful Islam, Mahtab U. Ahmmed, Md Farhad Hasan, and Md. Mamun Molla. 2025. "A Study of Forced Convection in Non-Newtonian Hybrid Nanofluids Embedded in a Heated Cylinder Within a Hexagonal Enclosure by Finite Element Method" Mathematics 13, no. 3: 445. https://doi.org/10.3390/math13030445
APA StyleSiddiki, M. N.-A.-A., Islam, S., Ahmmed, M. U., Hasan, M. F., & Molla, M. M. (2025). A Study of Forced Convection in Non-Newtonian Hybrid Nanofluids Embedded in a Heated Cylinder Within a Hexagonal Enclosure by Finite Element Method. Mathematics, 13(3), 445. https://doi.org/10.3390/math13030445