Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security
Abstract
1. Introduction
Motivations and Contributions
- We provide the first systematic taxonomy of generative AI applications in IoV systems, categorizing them into three primary domains: training enhancement, decision-making support, and network management.
- We analyzes how generative AI models such as GANs, diffusion models, and LLMs can be adapted to different IoV scenarios, bridging the gap between AI research and vehicular technologies.
- We provide an in-depth analysis of security implications when integrating generative AI into safety-critical IoV applications, offering novel perspectives on trustworthy AI deployment.
- A clear roadmap is presented to guide future exploration in lightweight model deployment, real-time adaptive generation, and secure integration with next-generation networks such as 6G.
2. Foundations of Generative Artificial Intelligence and the Internet of Vehicles
2.1. History of Generative AI Models
2.2. Overview of Generative AI Models
2.2.1. VAE
2.2.2. GAN
2.2.3. Transformer
2.2.4. Diffusion Model
2.3. Multimodal Learning and Large Model Fine-Tuning
3. Generative AI for Training in Vehicle Network Systems
3.1. Synthetic Data Generation for Traffic and Sensor Inputs
3.2. Scene Reconstruction for Edge Cases and Rare Events
3.3. Data Augmentation for Perception and Learning Models
3.4. Summary of Generative AI for Training
4. Generative AI for Enhancing Decision-Making in Vehicle Network Systems
4.1. Traffic Flow Prediction
4.2. Decision Policy Generation for Autonomous Vehicles
4.3. Anomaly Detection Through Generative Modeling
4.4. Summary of Generative AI in Vehicular Decision-Making
5. Generative AI for Communication and Resource Management in Vehicle Network Systems
5.1. Generative AI for Communication Efficiency
5.2. Resource Allocation
5.3. Summary of Communication and Resource Management
6. Challenge and Future Directions
6.1. Model Lightweighting and Edge Deployment Challenges
- Model pruning removes redundant weights and neurons to reduce model size and computation while preserving task-specific accuracy.
- Quantization compresses model parameters from a 32-bit floating point to lower-precision formats (e.g., INT8 or FP16), significantly reducing memory usage and inference latency.
- Knowledge distillation transfers knowledge from a large “teacher” generative model to a smaller “student” model, enabling comparable performance with reduced complexity.
- Parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA) or prefix-tuning allow adaptation to specific vehicular tasks without retraining the full model.
6.2. Privacy and Security Challenges
6.3. Latency and Adaptability Challenges
6.4. Future Research Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duan, W.; Gu, J.; Wen, M.; Zhang, G.; Ji, Y.; Mumtaz, S. Emerging Technologies for 5G-IoV Networks: Applications, Trends and Opportunities. IEEE Netw. 2020, 34, 283–289. [Google Scholar] [CrossRef]
- Yan, H.; Li, Y. A survey of generative ai for intelligent transportation systems. arXiv 2023, arXiv:2312.08248. [Google Scholar] [CrossRef]
- Yan, H.; Li, Y. Generative AI for Intelligent Transportation Systems: Road Transportation Perspective. ACM Comput. Surv. 2025, 57, 315. [Google Scholar] [CrossRef]
- Xu, M.; Du, H.; Niyato, D.; Kang, J.; Xiong, Z.; Mao, S.; Han, Z.; Jamalipour, A.; Kim, D.I.; Shen, X.; et al. Unleashing the Power of Edge-Cloud Generative AI in Mobile Networks: A Survey of AIGC Services. IEEE Commun. Surv. Tutor. 2024, 26, 1127–1170. [Google Scholar] [CrossRef]
- Sun, G.; Xie, W.; Niyato, D.; Mei, F.; Kang, J.; Du, H.; Mao, S. Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases. IEEE Wirel. Commun. 2025, 32, 186–195. [Google Scholar] [CrossRef]
- Li, J.; Cheng, H.; Guo, H.; Qiu, S. Survey on artificial intelligence for vehicles. Automot. Innov. 2018, 1, 2–14. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Yang, H.; Yang, L. Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J. Autom. Sin. 2020, 7, 315–329. [Google Scholar] [CrossRef]
- Mchergui, A.; Moulahi, T.; Zeadally, S. Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs). Veh. Commun. 2022, 34, 100403. [Google Scholar] [CrossRef]
- Shoaib, M.R.; Emara, H.M.; Zhao, J. A Survey on the Applications of Frontier AI, Foundation Models, and Large Language Models to Intelligent Transportation Systems. In Proceedings of the 2023 International Conference on Computer and Applications (ICCA), Cairo, Egypt, 28–30 November 2023. [Google Scholar]
- Lin, H.; Liu, Y.; Li, S.; Qu, X. How Generative Adversarial Networks Promote the Development of Intelligent Transportation Systems: A Survey. IEEE/CAA J. Autom. Sin. 2023, 10, 1781–1796. [Google Scholar] [CrossRef]
- Stappen, L.; Dillmann, J.; Striegel, S.; Vögel, H.-J.; Flores-Herr, N.; Schuller, B.W. Integrating Generative Artificial Intelligence in Intelligent Vehicle Systems. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 5790–5797. [Google Scholar]
- Shu, D.; Zhu, Z. Generative models and connected and automated vehicles: A survey in exploring the intersection of transportation and ai. arXiv 2024, arXiv:2403.10559. [Google Scholar] [CrossRef]
- Christopoulou, M.; Barmpounakis, S.; Koumaras, H.; Kaloxylos, A. Artificial Intelligence and Machine Learning as key enablers for V2X communications: A comprehensive survey. Veh. Commun. 2023, 39, 100569. [Google Scholar] [CrossRef]
- Teef, D.; Muhammad, K.; Nassisid, K.; Farus, B. Enhancing Vehicular Networks with Generative AI: Opportunities and Challenges. arXiv 2024, arXiv:2407.11020. [Google Scholar]
- Abirami, S.; Pethuraj, M.; Uthayakumar, M.; Chitra, P. A systematic survey on big data and artificial intelligence algorithms for intelligent transportation system. Case Stud. Transp. Policy 2024, 17, 101247. [Google Scholar] [CrossRef]
- Xu, M.; Niyato, D.; Kang, J.; Xiong, Z.; Jamalipour, A.; Fang, Y.; Kim, D.I. Integration of mixture of experts and multimodal generative ai in internet of vehicles: A survey. arXiv 2024, arXiv:2404.16356. [Google Scholar] [CrossRef]
- Xie, G.; Xiong, Z.; Zhang, X.; Xie, R.; Guo, S.; Guizani, M.; Poor, H.V. GAI-IoV: Bridging Generative AI and Vehicular Networks for Ubiquitous Edge Intelligence. IEEE Trans. Wirel. Commun. 2024, 23, 12799–12814. [Google Scholar] [CrossRef]
- Yan, G.; Liu, K.; Liu, C.; Zhang, J. Edge Intelligence for Internet of Vehicles: A Survey. IEEE Trans. Consum. Electron. 2024, 70, 4858–4877. [Google Scholar] [CrossRef]
- Lu, S.; Shi, W. Vehicle as a Mobile Computing Platform: Opportunities and Challenges. IEEE Netw. 2024, 38, 493–500. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Fernando, X.; Kashef, R. A survey on artificial-intelligence-based Internet of Vehicles utilizing unmanned aerial vehicles. Drones 2024, 8, 353. [Google Scholar] [CrossRef]
- Zhang, R.; Xiong, K.; Du, H.; Niyato, D.; Kang, J.; Shen, X.; Poor, H.V. Generative AI-Enabled Vehicular Networks: Fundamentals, Framework, and Case Study. IEEE Netw. 2024, 38, 259–267. [Google Scholar] [CrossRef]
- Haddaji, A.; Ayed, S.; Fourati, L.C. Artificial Intelligence techniques to mitigate cyber-attacks within vehicular networks: Survey. Comput. Electr. Eng. 2022, 104, 108460. [Google Scholar] [CrossRef]
- Rajapaksha, S.; Kalutarage, H.; Al-Kadri, M.O.; Petrovski, A.; Madzudzo, G.; Cheah, M. AI-based intrusion detection systems for in-vehicle networks: A survey. ACM Comput. Surv. 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Delgado, L.; Luis, J.; Ramos, J.A.L. A Comprehensive Survey on Generative AI Solutions in IoT Security. Electronics 2024, 13, 4965. [Google Scholar] [CrossRef]
- Aouedi, O.; Vu, T.H.; Sacco, A.; Nguyen, D.C.; Piamrat, K.; Marchetto, G.; Pham, Q.V. A Survey on Intelligent Internet of Things: Applications, Security, Privacy, and Future Directions. IEEE Commun. Surv. Tutor. 2025, 27, 1238–1292. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA, USA, 2014; pp. 1–9. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1–11. [Google Scholar]
- Li, X.; Xiao, B.; Chen, X.; Jiang, P.; Wang, X.V.; Zheng, P.; Xia, L.; Yin, C. MSDF-VAE: A Cloud–Edge Collaborative Method for Fault Diagnosis Based on Transfer Learning. IEEE Internet Things J. 2025, 12, 22393–22403. [Google Scholar] [CrossRef]
- Liang, J.E. Cross-Modal Information Recovery and Enhancement Using Multiple-Input–Multiple-Output Variational Autoencoder. IEEE Internet Things J. 2024, 11, 26470–26480. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Zhu, Q.-X.; He, Y.-L. Adaptive Multi-Head Self-Attention Based Supervised VAE for Industrial Soft Sensing With Missing Data. IEEE Trans. Autom. Sci. Eng. 2024, 21, 3564–3575. [Google Scholar] [CrossRef]
- Neumeier, M.; Botsch, M.; Tollkühn, A.; Berberich, T. Variational Autoencoder-Based Vehicle Trajectory Prediction with an Interpretable Latent Space. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 820–827. [Google Scholar]
- Xu, P.; Hayet, J.-B.; Karamouzas, I. Context-Aware Timewise VAEs for Real-Time Vehicle Trajectory Prediction. IEEE Robot. Autom. Lett. 2023, 8, 5440–5447. [Google Scholar] [CrossRef]
- Kammoun, A.; Slama, R.; Tabia, H.; Ouni, T.; Abid, M. Generative adversarial networks for face generation: A survey. ACM Comput. Surv. 2022, 55, 1–37. [Google Scholar] [CrossRef]
- Kozłowski, M.; Racewicz, S.; Wierzbicki, S. Image Analysis in Autonomous Vehicles: A Review of the Latest AI Solutions and Their Comparison. Appl. Sci. 2024, 14, 8150. [Google Scholar] [CrossRef]
- Liao, K.; Lin, C.; Zhao, Y.; Gabbouj, M. DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 725–733. [Google Scholar] [CrossRef]
- Mo, T.; Zheng, S.; Chan, W.-Y.; Yang, R. Review of AI Image Enhancement Techniques for In-Vehicle Vision Systems Under Adverse Weather Conditions. World Electr. Veh. J. 2025, 16, 72. [Google Scholar] [CrossRef]
- Ding, F.; Yu, K.; Gu, Z.; Li, X.; Shi, Y. Perceptual Enhancement for Autonomous Vehicles: Restoring Visually Degraded Images for Context Prediction via Adversarial Training. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9430–9441. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, C.; Ge, Y.; Wen, L.; Zhan, Y. All-Day Vehicle Detection From Surveillance Videos Based on Illumination-Adjustable Generative Adversarial Network. IEEE Trans. Intell. Transp. Syst. 2024, 25, 3326–3340. [Google Scholar] [CrossRef]
- Wang, M.; Su, T.; Chen, S.; Yang, W.; Liu, J.; Wang, Z. Automatic Model-Based Dataset Generation for High-Level Vision Tasks of Autonomous Driving in Haze Weather. IEEE Trans. Ind. Inform. 2023, 19, 9071–9081. [Google Scholar] [CrossRef]
- Li, K.; Dai, Z.; Wang, X.; Song, Y.; Jeon, G. GAN-Based Controllable Image Data Augmentation in Low-Visibility Conditions for Improved Roadside Traffic Perception. IEEE Trans. Consum. Electron. 2024, 70, 6174–6188. [Google Scholar] [CrossRef]
- Chen, T.; Ren, J. Integrating GAN and Texture Synthesis for Enhanced Road Damage Detection. IEEE Trans. Intell. Transp. Syst. 2024, 25, 12361–12371. [Google Scholar] [CrossRef]
- Yurtsever, E.; Yang, D.; Koc, I.M.; Redmill, K.A. Photorealism in Driving Simulations: Blending Generative Adversarial Image Synthesis With Rendering. IEEE Trans. Intell. Transp. Syst. 2022, 23, 23114–23123. [Google Scholar] [CrossRef]
- Xu, P.; Zhu, X.; Clifton, D.A. Multimodal Learning With Transformers: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12113–12132. [Google Scholar] [CrossRef]
- Papa, L.; Russo, P.; Amerini, I.; Zhou, L. A Survey on Efficient Vision Transformers: Algorithms, Techniques, and Performance Benchmarking. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7682–7700. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Zheng, A.; Tang, J.; Luo, B. MsKAT: Multi-Scale Knowledge-Aware Transformer for Vehicle Re-Identification. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19557–19568. [Google Scholar] [CrossRef]
- Dong, S.; Xie, W.; Yang, D.; Tian, J.; Li, Y.; Zhang, J.; Lei, J. SeaDATE: Remedy Dual-Attention Transformer With Semantic Alignment via Contrast Learning for Multimodal Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2025, 35, 4713–4726. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, J.; Wu, X.; Zhou, W.; Wang, Y. TrVLR: A Transformer-Based Vehicle Light Recognition Method in Vehicle Inspection. IEEE Trans. Intell. Transp. Syst. 2024, 25, 19995–20005. [Google Scholar] [CrossRef]
- Zhang, X.; Ling, Y.; Li, K.; Shi, W.; Zhou, Z. Multimodality Adaptive Transformer and Mutual Learning for Unsupervised Domain Adaptation Vehicle Re-Identification. IEEE Trans. Intell. Transp. Syst. 2024, 25, 20215–20226. [Google Scholar] [CrossRef]
- Yin, H.; Tian, D.; Lin, C.; Duan, X.; Zhou, J.; Zhao, D.; Cao, D. V2VFormer++: Multi-Modal Vehicle-to-Vehicle Cooperative Perception via Global-Local Transformer. IEEE Trans. Intell. Transp. Syst. 2024, 25, 2153–2166. [Google Scholar] [CrossRef]
- He, C.; Shen, Y.; Fang, C.; Xiao, F.; Tang, L.; Zhang, Y.; Zuo, W.; Guo, Z.; Li, X. Diffusion Models in Low-Level Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 4630–4651. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, J.; Liu, Y.; Yan, M.; Lv, J.; Liu, J.; Xiong, W.; Zhang, H.; Cao, L.; Chen, S. Diffusion Model-Based Image Editing: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 4409–4437. [Google Scholar] [CrossRef]
- Scarpellini, G.; Fiorini, S.; Giuliari, F.; Morerio, P.; Bue, A.D. DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 28098–28108. [Google Scholar]
- Xu, H.; Lei, Y.; Chen, Z.; Zhang, X.; Zhao, Y.; Wang, Y.; Tu, Z. Bayesian Diffusion Models for 3D Shape Reconstruction. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 10628–10638. [Google Scholar]
- Alexandru, R.; Blu, T.; Dragotti, P.L. Diffusion SLAM: Localizing Diffusion Sources From Samples Taken by Location-Unaware Mobile Sensors. IEEE Trans. Signal Process. 2021, 69, 5539–5554. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Tu, Z.; Liu, X.; Guo, Q.; Juefei-Xu, F.; Xu, R.; Yu, H. Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 15205–15215. [Google Scholar]
- Yang, B.; Su, H.; Gkanatsios, N.; Ke, T.W.; Jain, A.; Schneider, J.; Fragkiadaki, K. Diffusion-ES: Gradient-Free Planning with Diffusion for Autonomous and Instruction-Guided Driving. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 15342–15353. [Google Scholar]
- Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array 2021, 10, 100057. [Google Scholar] [CrossRef]
- Azadani, M.N.; Boukerche, A. A Novel Multimodal Vehicle Path Prediction Method Based on Temporal Convolutional Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25384–25395. [Google Scholar] [CrossRef]
- Xiao, Y.; Codevilla, F.; Gurram, A.; Urfalioglu, O.; López, A.M. Multimodal End-to-End Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2022, 23, 537–547. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Cai, Y.; Chen, L.; Li, Y.; Sotelo, M.A.; Li, Z. Robust-FusionNet: Deep Multimodal Sensor Fusion for 3-D Object Detection Under Severe Weather Conditions. IEEE Trans. Instrum. Meas. 2022, 71, 2513713. [Google Scholar] [CrossRef]
- Prakash, A.; Chitta, K.; Geiger, A. Multi-modal fusion transformer for end-to-end autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7077–7087. [Google Scholar]
- Wu, J.; Gao, B.; Gao, J.; Yu, J.; Chu, H.; Yu, Q.; Gong, X.; Chang, Y.; Tseng, H.E.; Chen, H.; et al. Prospective role of foundation models in advancing autonomous vehicles. Research 2024, 7, 0399. [Google Scholar] [CrossRef]
- Elallid, B.B.; Benamar, N.; Hafid, A.S.; Rachidi, T.; Mrani, N. A comprehensive survey on the application of deep and reinforcement learning approaches in autonomous driving. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 7366–7390. [Google Scholar] [CrossRef]
- Feng, L.; Li, Q.; Peng, Z.; Tan, S.; Zhou, B. TrafficGen: Learning to Generate Diverse and Realistic Traffic Scenarios. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 3567–3575. [Google Scholar]
- Hui, S.; Wang, H.; Wang, Z.; Yang, X.; Liu, Z.; Jin, D.; Li, Y. Knowledge enhanced GAN for IoT traffic generation. In Proceedings of the ACM Web Conference, Lyon, France, 25–29 April 2022. [Google Scholar]
- Tamayo-Urgilés, D.; Sanchez-Gordon, S.; Valdivieso Caraguay, Á.L.; Hernández-Álvarez, M. GAN-Based Generation of Synthetic Data for Vehicle Driving Events. Appl. Sci. 2024, 14, 9269. [Google Scholar] [CrossRef]
- Cao, M.; Ramezani, R. Data generation using simulation technology to improve perception mechanism of autonomous vehicles. J. Phys. Conf. Ser. 2023, 2547, 012006. [Google Scholar] [CrossRef]
- Song, Z.; He, Z.; Li, X.; Ma, Q.; Ming, R.; Mao, Z.; Pei, H.; Peng, L.; Hu, J.; Yao, D.; et al. Synthetic Datasets for Autonomous Driving: A Survey. IEEE Trans. Intell. Veh. 2024, 9, 1847–1864. [Google Scholar] [CrossRef]
- Winter, K.; Vivekanandan, A.; Polley, R.; Shen, Y.; Schlauch, C.; Bouzidi, M.K.; Derajic, B.; Grabowsky, N.; Mariani, A.; Rochau, D.; et al. Generative AI for Autonomous Driving: A Review. arXiv 2025, arXiv:2505.15863. [Google Scholar] [CrossRef]
- Karunakaran, D.; Perez, J.S.B.; Worrall, S. Generating edge cases for testing autonomous vehicles using real-world data. Sensors 2023, 24, 108. [Google Scholar] [CrossRef]
- Hu, Z.; Lou, S.; Xing, Y.; Wang, X.; Cao, D.; Lv, C. Review and Perspectives on Driver Digital Twin and Its Enabling Technologies for Intelligent Vehicles. IEEE Trans. Intell. Veh. 2022, 7, 417–440. [Google Scholar] [CrossRef]
- Singh, D.; AlZubi, A.A.; Kaur, M.; Kumar, V.; Lee, H.-N. Deep Multi-Patch Hierarchical Network-Based Visibility Restoration Model for Autonomous Vehicles. IEEE Trans. Veh. Technol. 2025, 74, 7061–7071. [Google Scholar] [CrossRef]
- Liu, S.; Yang, H.; Zheng, M.; Xiao, L. Multi-UAV-Assisted MEC in IoV with Combined Multi-Modal Semantic Communication under Jamming Attacks. IEEE Trans. Mob. Comput. 2025, 24, 7600–7614. [Google Scholar] [CrossRef]
- Baresi, L.; Hu, D.Y.X.; Stocco, A.; Tonella, P. Efficient domain augmentation for autonomous driving testing using diffusion models. arXiv 2024, arXiv:2409.13661. [Google Scholar]
- Zheng, Z.; Cheng, Y.; Xin, Z.; Yu, Z.; Zheng, B. Robust Perception Under Adverse Conditions for Autonomous Driving Based on Data Augmentation. IEEE Trans. Intell. Transp. Syst. 2023, 24, 13916–13929. [Google Scholar] [CrossRef]
- Yu, W.; Sun, Y.; Zhou, R.; Liu, X. GAN Based Method for Labeled Image Augmentation in Autonomous Driving. In Proceedings of the 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–5. [Google Scholar]
- Zhang, K.; Feng, X.; Jia, N.; Zhao, L.; He, Z. TSR-GAN: Generative adversarial networks for traffic state reconstruction with time space diagrams. Phys. A Stat. Mech. Its Appl. 2022, 591, 126788. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, J.-D. A generative model for traffic demand with heterogeneous and spatiotemporal characteristics in massive wi-fi systems. Electronics 2022, 11, 1848. [Google Scholar] [CrossRef]
- Katariya, V.; Baharani, M.; Morris, N.; Shoghli, O.; Tabkhi, H. DeepTrack: Lightweight Deep Learning for Vehicle Trajectory Prediction in Highways. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18927–18936. [Google Scholar] [CrossRef]
- Sun, T.; Sun, B.; Jiang, Z.; Hao, R.; Xie, J. Traffic flow online prediction based on a generative adversarial network with multi-source data. Sustainability 2021, 13, 12188. [Google Scholar] [CrossRef]
- Meng, X.; Lin, C.; Wang, Y.; Zhang, Y. Netgpt: Generative pretrained transformer for network traffic. arXiv 2023, arXiv:2304.09513. [Google Scholar] [CrossRef]
- Rasouli, A.; Tsotsos, J.K. Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice. IEEE Trans. Intell. Transp. Syst. 2020, 21, 900–918. [Google Scholar] [CrossRef]
- Garikapati, D.; Shetiya, S.S. Autonomous vehicles: Evolution of artificial intelligence and the current industry landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Atakishiyev, S.; Salameh, M.; Yao, H.; Goebel, R. Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions. IEEE Access 2024, 12, 101603–101625. [Google Scholar] [CrossRef]
- Padmaja, B.; Moorthy, C.V.; Venkateswarulu, N.; Bala, M.M. Exploration of issues, challenges and latest developments in autonomous cars. J. Big Data 2023, 10, 61. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, W.; Deng, B.; Wang, Z.; Zhang, F.; Zheng, W.; Cao, W.; Nan, J.; Lian, Y.; Burke, A.F. Autonomous driving system: A comprehensive survey. Expert Syst. Appl. 2024, 242, 122836. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, S.; Can, C.; Li, R.; Hua, H.; Tian, K.; Mo, Z.; Gao, X.; Wu, K.; Zhou, S.; et al. Generative ai for autonomous driving: Frontiers and opportunities. arXiv 2025, arXiv:2505.08854. [Google Scholar] [CrossRef]
- Muhammad, K.; Ullah, A.; Lloret, J.; Ser, J.D.; de Albuquerque, V.H.C. Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4316–4336. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, B.; Zhao, Y.; Yuan, Y.; Zhou, T.; Li, Z. Collaborative Multimodal Fusion Network for Multiagent Perception. IEEE Trans. Cybern. 2025, 55, 486–498. [Google Scholar] [CrossRef]
- Brödermann, T.; Sakaridis, C.; Fu, Y.; Van Gool, L. CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes. IEEE Robot. Autom. Lett. 2025, 10, 3134–3141. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Y.; Deng, R.; Xu, S.; Gao, J.; Burke, A. A Survey of Autonomous Driving from a Deep Learning Perspective. ACM Comput. Surv. 2025, 57, 1–60. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Y.; Fan, Y.; Gao, F.; Tsukada, M.; Gao, Z. A Survey on Recent Advancements in Autonomous Driving Using Deep Reinforcement Learning: Applications, Challenges, and Solutions. IEEE Trans. Intell. Transp. Syst. 2024, 25, 19365–19398. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, J.; Lv, C. Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 7391–7403. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.-L.; Ji, Z.-Y.; Zeng, D.; Zhang, X.-P. VWP: An Efficient DRL-Based Autonomous Driving Model. IEEE Trans. Multimed. 2024, 26, 2096–2108. [Google Scholar] [CrossRef]
- Solaas, J.R.V.; Tuptuk, N.; Mariconti, E. Systematic Review: Anomaly Detection in Connected and Autonomous Vehicles. arXiv 2024, arXiv:2405.02731. [Google Scholar] [CrossRef]
- Ahmad, H.; Gulzar, M.M.; Aziz, S.; Habib, S.; Ahmed, I. AI-based anomaly identification techniques for vehicles communication protocol systems: Comprehensive investigation, research opportunities and challenges. Internet of Things 2024, 27, 101245. [Google Scholar] [CrossRef]
- Özdemir, Ö.; İşyapar, M.T.; Karagöz, P.; Schmidt, K.W.; Demir, D.; Karagöz, N.A. A Survey of Anomaly Detection in In-Vehicle Networks. arXiv 2024, arXiv:2409.07505. [Google Scholar] [CrossRef]
- Edozie, E.; Shuaibu, A.N.; Sadiq, B.O.; John, U.K. Artificial intelligence advances in anomaly detection for telecom networks. Artif. Intell. Rev. 2025, 58, 100. [Google Scholar] [CrossRef]
- Khan, H.; Tejani, G.G.; AlGhamdi, R.; Alasmari, S.; Sharma, N.K.; Sharma, S.K. A secure and efficient deep learning-based intrusion detection framework for the internet of vehicles. Sci. Rep. 2025, 15, 12236. [Google Scholar] [CrossRef]
- Oucheikh, R.; Fri, M.; Fedouaki, F.; Hain, M. Deep real-time anomaly detection for connected autonomous vehicles. Procedia Comput. Sci. 2020, 177, 456–461. [Google Scholar] [CrossRef]
- Ye, S.; Wu, Q.; Fan, P.; Fan, Q. A survey on semantic communications in internet of vehicles. Entropy 2025, 27, 445. [Google Scholar] [CrossRef]
- Liang, C.; Du, H.; Sun, Y.; Niyato, D.; Kang, J.; Zhao, D.; Imran, M.A. Generative AI-Driven Semantic Communication Networks: Architecture, Technologies, and Applications. IEEE Trans. Cogn. Commun. Netw. 2025, 11, 27–47. [Google Scholar] [CrossRef]
- Xin, G.; Fan, P.; Letaief, K.B. Semantic communication: A survey of its theoretical development. Entropy 2024, 26, 102. [Google Scholar] [CrossRef]
- Feng, H.; Yang, Y.; Han, Z. Scalable ai generative content for vehicular network semantic communication. arXiv 2023, arXiv:2311.13782. [Google Scholar] [CrossRef]
- Du, B.; Du, H.; Niyato, D.; Li, R. Task-Oriented Semantic Communication in Large Multimodal Models-based Vehicle Networks. IEEE Trans. Mob. Comput. 2025, 1–15. [Google Scholar] [CrossRef]
- Cheng, G.; Chong, B.; Lu, H. TCC-SemCom: A Transformer-CNN Complementary Block-Based Image Semantic Communication. IEEE Commun. Lett. 2025, 29, 625–629. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, R.; Zou, D.; Zhang, Q.; Xu, W. IoV-Oriented Integrated Sensing, Computation, and Communication: System Design and Resource Allocation. IEEE Trans. Veh. Technol. 2024, 73, 16283–16294. [Google Scholar] [CrossRef]
- Mekrache, A.; Bradai, A.; Moulay, E.; Dawaliby, S. Deep reinforcement learning techniques for vehicular networks: Recent advances and future trends towards 6G. Veh. Commun. 2022, 33, 100398. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, X.; Hong, X.; Zhang, Z.; Li, M.; Hu, G.; Hou, F. Reinforcement Learning Enabled Dynamic Resource Allocation in the Internet of Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 4957–4967. [Google Scholar] [CrossRef]
- Jahan, N.; Hasan, M.K.; Islam, S.; Nazri, M.Z.A.; Ariffin, K.A.Z.; Abbas, H.S.; Alqahtani, A.; Gohel, H. Game-Theoretic-GAI Approach for Computation Offloading and Resource Management for Mobile Edge Collaborative Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2025, 1–12. [Google Scholar] [CrossRef]
- Zheng, J.; Du, B.; Du, H.; Kang, J.; Niyato, D.; Zhang, H. Energy-Efficient Resource Allocation in Generative AI-Aided Secure Semantic Mobile Networks. IEEE Trans. Mob. Comput. 2024, 23, 11422–11435. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Li, L.; Lu, Y.; Yang, J. GAI-Based Resource Management in RIS-Aided Next-Generation Network and Communication. IEEE Trans. Cogn. Commun. Netw. 2025, 11, 847–857. [Google Scholar] [CrossRef]
- Bandi, A.; Adapa, P.V.S.R.; Kuchi, Y.E.V.P.K. The power of generative ai: A review of requirements, models, input–output formats, evaluation metrics, and challenges. Future Internet 2023, 15, 260. [Google Scholar] [CrossRef]
- Biswas, A.; Wang, H.-C. Autonomous vehicles enabled by the integration of IoT, edge intelligence, 5G, and blockchain. Sensors 2023, 23, 1963. [Google Scholar] [CrossRef]
- Hua, K.; Su, S.; Wang, Y. Intelligent service migration for the internet of vehicles in edge computing: A mobility-aware deep reinforcement learning framework. Comput. Netw. 2025, 257, 111021. [Google Scholar] [CrossRef]
- Zeng, W.; Zheng, J.; Gao, L.; Niu, J.; Ren, J.; Wang, H.; Cao, R.; Ji, S. Generative AI-Aided Multimodal Parallel Offloading for AIGC Metaverse Service in IoT Networks. IEEE Internet Things J. 2025, 12, 13273–13285. [Google Scholar] [CrossRef]
- Yang, W.; Xiong, Z.; Guo, S.; Mao, S.; Kim, D.I.; Debbah, M. Efficient Multi-user Offloading of Personalized Diffusion Models: A DRL-Convex Hybrid Solution. IEEE Trans. Mob. Comput. 2025, 24, 9092–9109. [Google Scholar] [CrossRef]
- Ibrahum, A.D.M.; Hussain, M.; Hong, J.E. Deep learning adversarial attacks and defenses in autonomous vehicles: A systematic literature review from a safety perspective. Artif. Intell. Rev. 2025, 58, 28. [Google Scholar] [CrossRef]
- Arifin, M.M.; Ahmed, M.S.; Ghosh, T.K.; Udoy, I.A.; Zhuang, J.; Yeh, J.H. A survey on the application of generative adversarial networks in cybersecurity: Prospective, direction and open research scopes. arXiv 2024, arXiv:2407.08839. [Google Scholar] [CrossRef]
- Wang, C.; Ming, Y.; Liu, H.; Deng, Y.; Yang, M.; Feng, J. Puncturable Registered ABE for Vehicular Social Networks: Enhancing Security and Practicality. IEEE Trans. Dependable Secur. Comput. 2025. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, J.; Cao, Z.; Dong, X.; Choo, K.-K.R. Efficient Multilevel Threshold Changeable Homomorphic Data Encapsulation With Application to Privacy-Preserving Vehicle Positioning. IEEE Trans. Intell. Transp. Syst. 2025, 26, 5494–5508. [Google Scholar] [CrossRef]
- Sedar, R.; Kalalas, C.; Dini, P.; Vázquez-Gallego, F.; Alonso-Zarate, J.; Alonso, L. Knowledge Transfer for Collaborative Misbehavior Detection in Untrusted Vehicular Environments. IEEE Trans. Veh. Technol. 2025, 74, 425–440. [Google Scholar] [CrossRef]
- Khan, M.A.; Alasiry, A.; Marzougui, M.; Bayhan, I.; Kuna, S.S.; Rao, G.S.N.; Algamdi, S.A.; Aldossary, H. Securing Intelligent Transportation Systems: A Dual-Framework Approach for Privacy Protection and Cybersecurity Using Generative AI. IEEE Trans. Intell. Transp. Syst. 2025, 1–12. [Google Scholar] [CrossRef]
- Li, T.; Xie, S.; Zeng, Z.; Dong, M.; Liu, A. ATPS: An AI Based Trust-Aware and Privacy-Preserving System for Vehicle Managements in Sustainable VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19837–19851. [Google Scholar] [CrossRef]
- Song, Z.; Tao, Y.; Hua, Z.; Wang, S.; Pan, G.; An, J. Generative Artificial Intelligence-Empowered Multidomain Internet of Vehicles Systems: Scalability, Efficiency, and Suitability. IEEE Veh. Technol. Mag. 2025, 20, 53–62. [Google Scholar] [CrossRef]
- Yang, L.; Luo, Z.; Zhang, S.; Teng, F.; Li, T. Continual Learning for Smart City: A Survey. IEEE Trans. Knowl. Data Eng. 2024, 36, 7805–7824. [Google Scholar] [CrossRef]
Ref | Year | Description | Focus |
---|---|---|---|
[6] | 2018 | An overview of AI applications in vehicles, focusing on deep learning and RL for autonomous perception and traffic analysis | General AI overviews for the IoV |
[7] | 2020 | An overview of AI applications in AVs for perception, localization, mapping, decision-making, and future opportunities | |
[8] | 2022 | A survey of AI techniques (ML, DL, and swarm intelligence) in VANETs for routing, resource allocation, and security with future directions | |
[9] | 2023 | Reviews frontier AI, foundation models, and LLMs in an ITS for traffic management and autonomous driving | |
[10] | 2023 | A survey of GAN applications in the ITS, covering autonomous driving, traffic flow, and anomaly detection with future directions | Training and data synthesis |
[11] | 2023 | Investigates GAI integration in intelligent vehicles for multimodal interaction and user experience enhancement | |
[12] | 2024 | A survey on integrating generative models with CAVs to enhance prediction, simulations, and decision-making in transportation | |
[13] | 2023 | A comprehensive review of AI/ML in V2X communications for handover, beam selection, and resource management | Vehicular communications |
[14] | 2024 | Explores GAI applications in vehicular networks for communication optimization and security with framework proposals | |
[15] | 2024 | A systematic survey of big data and AI algorithms for traffic prediction, vehicle recognition, and route optimization in an ITS | Traffic prediction and ITS optimization |
[16] | 2024 | Surveys MoE and multimodal GAI integration in the IoV for advancing artificial general intelligence | |
[17] | 2024 | Proposes a GAI-IoV framework for edge intelligence, optimizing resource allocation and inference strategy | Edge intelligence and resource management |
[18] | 2024 | A comprehensive survey of edge intelligence in the IoV, covering architecture, inference, training, sensing, and future trends | |
[19] | 2024 | Explores vehicles as mobile computing platforms with five functions, discussing business models and challenges | |
[20] | 2024 | A survey of AI applications in UAV-assisted Internet of Vehicles, focusing on resource management, routing, and trajectory optimization | |
[21] | 2024 | An exploration of generative AI in vehicular networks with a multi-modality framework and a DRL-based resource allocation case study | |
[22] | 2022 | A survey of AI techniques for mitigating cyber-attacks in vehicular networks, exploring intrusion detection and defense strategies | IoV security and privacy |
[23] | 2023 | A survey of AI techniques for intrusion detection in in-vehicle networks, discussing methods, datasets, and future directions | |
[24] | 2024 | A comprehensive review of GAI applications in IoT security, covering access control, blockchain, and cyber threat detection | |
[25] | 2025 | A comprehensive survey of intelligent IoT applications, security, privacy challenges, and future research directions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhang, X.; Wang, A.; Zhou, J.; Du, Y.; Deng, Q.; Liu, L. Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security. Mathematics 2025, 13, 2795. https://doi.org/10.3390/math13172795
Yuan X, Zhang X, Wang A, Zhou J, Du Y, Deng Q, Liu L. Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security. Mathematics. 2025; 13(17):2795. https://doi.org/10.3390/math13172795
Chicago/Turabian StyleYuan, Xiaoming, Xinling Zhang, Aiwen Wang, Jiaxin Zhou, Yingying Du, Qingxu Deng, and Lei Liu. 2025. "Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security" Mathematics 13, no. 17: 2795. https://doi.org/10.3390/math13172795
APA StyleYuan, X., Zhang, X., Wang, A., Zhou, J., Du, Y., Deng, Q., & Liu, L. (2025). Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security. Mathematics, 13(17), 2795. https://doi.org/10.3390/math13172795