Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring
Abstract
1. Introduction
2. Characterization of the Model
2.1. Test Methodology
- i.
- The test items subjected to both standard and accelerated conditions are classified into multiple groups, denoted by , where , with each group comprising the same number of items , for .
- ii.
- Suppose represent two PFFC samples with censoring schemes , where and , derived from MFLED.
- iii.
- Upon the occurrence of the first failure item in a group, that group, along with the groups, is randomly withdrawn from the groups. Similarly, when the second failure item occurs in a group, the group containing this failure item, along with the groups, is randomly withdrawn from the remaining groups. This process continues until the -th failure item occurs in a group, at which point the group that contains this failure item, along with the remaining groups, is withdrawn and the test is terminated. In our study, it is noteworthy that < and the groups are predetermined
- iv.
- The constant-stress partially accelerated life test (CSPALT) plan, as discussed in Meeker and Escobar [3], provides a practical balance between cost and efficiency by subjecting only a portion of test units to higher stress levels, while retaining others at normal conditions, under the CSPALT model and given the censoring schemes , the joint PDF of the < < …< can be derived using the principles of PFFC order statistics as
2.2. Assumptions
3. Maximum Likelihood Estimation
Asymptotic Confidence Bounds
4. Bootstrap Confidence Intervals
4.1. Parametric Bootstrap-p Confidence Interval
- 1.
- From the original dataset determine , and by using Equations (11)–(14).
- 2.
- Use the censoring strategy (, , , ) along with to produce a PFFC bootstrap sample .
- 3.
- Calculate the bootstrap estimates of the PFFC bootstrap sample generated from the previous step, represented as , where ℘ corresponds to , and .
- 4.
- Repeat steps (2) and (3) for a total of (N) times to derive , i = 1, 2…, N.
- 5.
- Organize , i = 1, 2 …N ascendingly as , i = 1, 2…, N.
4.2. Parametric Bootstrap-t Confidence Interval
- 4.
- Calculate utilizing the asymptotic variance-covariance matrix specified in (17).
- 5.
- Determine the statistic .
- 6.
- Steps 1–5 should be repeated for ( iterations in order to get .
- 7.
- Arrange the values of in ascending order to get 1, 2 …Nboot.
5. Bayes Estimation
5.1. Loss Functions
5.1.1. Symmetric Loss Function
5.1.2. Asymmetric Loss Function
5.2. MCMC Method
- (1)
- Put MLEs () as initial estimate ().
- (2)
- Set
- (3)
- Generate and from , , and with the normal proposal distributions using the M-H technique outlined below.
- (4)
- Produce a proposal from from from and from .
- (5)
- Set .
- (6)
- Repeat Steps N times and get
- (7)
- To compute the credible intervals of , , , and arrange , as and Then, the credible intervals of , , , and denoted such that (ß1, ß2, ß3, become .
5.3. Method for Hyperparameter Elicitation
- 1.
- Collect a number of samples (n) from MFLED under both normal and accelerated conditions.
- 2.
- Compute the corresponding maximum likelihood estimates (, , ) for .
- 3.
- Determine the mean and variance of (, , ) for as:
- 4.
- Determine the mean and variance of the specified priors, which in this paper are the gamma priors
- 5.
- The estimated hyperparameters can be derived by equating the mean and variance of for with the mean and variance of the gamma priors, and solving the equations as follows:
6. Simulations
7. Applications
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ALTs | Accelerated life tests |
ACIs | Asymptotic confidence intervals |
B-p | Bootstrap-p |
B-t | Bootstrap-t |
B-pEs | Bootstrap-p estimates |
B-tEs | Bootstrap-t estimates |
B-p CIs | Bootstrap-p confidence intervals |
B-t CIs | Bootstrap-ts confidence intervals |
FRF | Failure rate function |
SCH | Scheme |
CSCH | Censoring scheme |
CSPALT | Constant-stress partially accelerated life test |
CRIs | Credible intervals |
CIs | Confidence intervals |
PALTs | Partially accelerated life tests |
PFFC | Progressive first-failure censoring |
FIM | Fisher information matrix |
LINX | Linear exponential |
LEDs | Light-emitting diodes |
MCMC | Markov chain Monte Carlo |
MEs | Mean Estimates |
MFLED | Modified Fréchet-Lomax exponential distribution |
MSEs | Mean squared errors |
MW | Mean of width |
ML | Maximum likelihood |
MLEs | Maximum likelihood estimates |
P | Parameters |
K-S | Kolmogorov–Smirnov |
SF | Survival function |
SQE | Squared error |
References
- Nelson, W.B. Accelerated Testing: Statistical Models, Test Plans, and Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Dey, S.; Nassar, M. Generalized inverted exponential distribution under constant stress accelerated life test: Different estimation methods with application. Qual. Reliab. Eng. Int. 2020, 36, 1296–1312. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A. Statistical Methods for Reliability Data; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Lin, C.T.; Hsu, Y.Y.; Lee, S.Y.; Balakrishnan, N. Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring. J. Stat. Simul. 2019, 89, 720–749. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E.M.; Ramadan, D.A. A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Math. 2022, 7, 18050–18079. [Google Scholar] [CrossRef]
- Hakamipour, N. Comparison between constant-stress and step-stress accelerated life tests under a cost constraint for progressive type I censoring. Seq. Anal. 2021, 40, 17–31. [Google Scholar] [CrossRef]
- Wang, B. Unbiased estimations for the exponential distribution based on step-stress accelerated life-testing data. Appl. Math. Comput. 2006, 173, 1227–1237. [Google Scholar] [CrossRef]
- Mahto, A.K.; Tripathi, Y.M.; Wu, S.J. Statistical inference based on progressively type-II censored data from the Burr X distribution under progressive-stress accelerated life test. J. Stat. Comput. Simul. 2021, 91, 368–382. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.H.; Al-Hussaini, E.K. Progressive stress accelerated life tests under finite mixture models. Metrika 2007, 66, 213–231. [Google Scholar] [CrossRef]
- Ahmad, H.H.; Ramadan, D.A.; Almetwally, E.M. Tampered Random Variable Analysis in Step-Stress Testing: Modeling, Inference, and Applications. Mathematics 2024, 12, 1248. [Google Scholar] [CrossRef]
- Haj Ahmad, H.; Almetwally, E.M.; Ramadan, D.A. Competing Risks in Accelerated Life Testing: A Study on Step-Stress Models with Tampered Random Variables. Axioms 2025, 14, 32. [Google Scholar] [CrossRef]
- Hassan, A.S.; Nassr, S.G.; Pramanik, S.; Maiti, S.S. Estimation in constant stress partially accelerated life tests for Weibull distribution based on censored competing risks data. Ann. Data Sci. 2020, 7, 45–62. [Google Scholar] [CrossRef]
- Nassar, M.; Alam, F.M.A. Analysis of modified Kies exponential distribution with constant stress partially accelerated life tests under type-II censoring. Mathematics 2022, 10, 819. [Google Scholar] [CrossRef]
- Gouno, E.; Sen, A.; Balakrishnan, N. Optimal step-stress test under progressive Type-I censoring. IEEE Trans. Reliab. 2004, 53, 388–393. [Google Scholar] [CrossRef]
- Wu, S.J.; Lin, Y.P.; Chen, S.T. Optimal step-stress test under type I progressive group-censoring with random removals. J. Stat. Plan. Inference 2008, 138, 817–826. [Google Scholar] [CrossRef]
- Bai, D.S.; Chung, S.W. Optimal design of partially accelerated life tests for the exponential distribution under type-I censoring. IEEE Trans. Reliab. 1992, 7, 400–406. [Google Scholar] [CrossRef]
- Fan, T.H.; Wang, W.L.; Balakrishnan, N. Exponential progressive step-stress life-testing with link function based on Box–Cox transformation. J. Stat. Plan. Inference 2008, 138, 2340–2354. [Google Scholar] [CrossRef]
- Ismail, A.A.; Al-Babtain, A.A. On Studying Partially Accelerated Life Tests Under Progressive Stress. J. Testing Eval. 2015, 43, 897–905. [Google Scholar] [CrossRef]
- Algarni, A.; Almarashi, A.M.; Okasha, H.; Ng, H.K.T. E-bayesian estimation of chen distribution based on type-I censoring scheme. Entropy 2020, 22, 636. [Google Scholar] [CrossRef]
- Kundu, D.; Howlader, H. Bayesian inference and prediction of the inverse Weibull distribution for Type-II censored data. Comput. Stat. Data Anal. 2010, 54, 1547–1558. [Google Scholar] [CrossRef]
- Wu, M.; Gui, W. Estimation and prediction for Nadarajah-Haghighi distribution under progressive type-II censoring. Symmetry 2021, 13, 999. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M. Estimation of parameters of Weibull–Gamma distribution based on progressively censored data. Stat. Pap. 2018, 59, 725–757. [Google Scholar] [CrossRef]
- Wu, S.J.; Kuş, C. On estimation based on progressive first-failure-censored sampling. Comput. Stat. Data Anal. 2009, 53, 3659–3670. [Google Scholar] [CrossRef]
- Xie, Y.; Gui, W. Statistical inference of the lifetime performance index with the log-logistic distribution based on progressive first-failure-censored data. Symmetry 2020, 12, 937. [Google Scholar] [CrossRef]
- Lin, H.; Wang, L.; Lio, Y.; Dey, S. Estimation of Matusita measure between generalized inverted exponential distributions under progressive first-failure censored data. J. Comput. Applied Math. 2023, 421, 114836. [Google Scholar] [CrossRef]
- Farhat, A.T.; Ramadan, D.A.; El-Desouky, B.S. Application of Modified Fréchet-Lomax Exponential Distribution to COVID-19 with some Characteristics. Mans. J. Math. 2025, 41, 24–40. [Google Scholar]
- Ijaz, M.; Asim, S.M.; Alamgir. Lomax exponential distribution with an application to real-life data. PLoS ONE 2019, 14, e0225827. [Google Scholar] [CrossRef]
- Khalil, A.; Ahmadini, A.A.H.; Ali, M.; Mashwani, W.K.; Alshqaq, S.S.; Salleh, Z. A novel method for developing efficient probability distributions with applications to engineering and life science data. J. Math. 2021, 2021, 4479270. [Google Scholar] [CrossRef]
- Lawless, J.F. Statistical Models and Methods for Lifetime Data; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ren, J.; Gui, W. Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution. Comput. Stat. 2021, 36, 479–513. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2000; pp. 201–215. [Google Scholar]
- Efron, B. The Jackknife, the Bootstrap and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982. [Google Scholar]
- Hall, P. Theoretical comparison of bootstrap confidence intervals. Ann. Stat. 1988, 16, 927–953. [Google Scholar] [CrossRef]
- Zellner, A. Bayesian estimation and prediction using asymmetric loss functions. J. Am. Stat. Assoc. 1986, 81, 446–451. [Google Scholar] [CrossRef]
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 721–741. [Google Scholar] [CrossRef] [PubMed]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Dey, S.; Singh, S.; Tripathi, Y.M.; Asgharzadeh, A. Estimation and prediction for a progressively censored generalized inverted exponential distribution. Stat. Methodol. 2016, 32, 185–202. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Sandhu, R.A. A simple simulational algorithm for generating progressive Type-II censored samples. Am. Stat. 1995, 49, 229–230. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Wang, F.K. Estimating the Burr XII parameters in constant-stress partially accelerated life tests under multiple censored data. Commun.-Stat.-Simul. Comput. 2012, 41, 1711–1727. [Google Scholar] [CrossRef]
SCH: | P | MLE | Boot-P | Boot-t | Bayes | |
---|---|---|---|---|---|---|
MLEs | B-pEs | B-tEs | SQE | LINX: | ||
Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | ||
I: | 0.98996 (0.118203) | 0.99481 (0.14157) | 0.96261 (0.113938) | 0.99584 (0.12485) | 0.997256, 0.993422 (0.124909, 0.124742) | |
1.33296 (0.843549) | 1.34082 (0.966729) | 1.24933 (0.758567) | 1.34518 (0.85883) | 1.345471, 1.344726 (0.859231, 0.855327) | ||
1.61839 (0.071673) | 1.59414 (0.063199) | 1.56312 (0.053733) | 1.62543 (0.072892) | 0.162575, 0.165141 (0.72919, 0.725472) | ||
5.04509 (2.24321) | 4.82203 (1.52907) | 4.69756 (1.33695) | 4.96605 (2.06473) | 4.967131, 4.965426 (2.06724, 2.06028) | ||
II: | 0.72987 (0.030107) | 0.71455 (0.023503) | 0.69311 (0.025822) | 0.73397 (0.031223) | 0.734432, 0.733526 (0.031231, 0.031129) | |
0.77743 (0.184755) | 0.76219 (0.187466) | 0.70870 (0.17045) | 0.78253 (0.185318) | 0.782938, 0.782271 (0.185426, 0.185281) | ||
1.58344 (0.133729) | 1.60354 (0.206116) | 1.56313 (0.163075) | 1.66538 (0.136254) | 1.684237, 1.673242 (0.137225, 0.135422) | ||
3.97315 (0.506339) | 3.96332 (0.542733) | 3.86682 (0.557473) | 3.94344 (0.544304) | 3.943758, 3.942471 (0.546196, 0.54256) | ||
III: | 1.08664 (1.02648) | 1.09573 (0.712011) | 1.02276 (0.490098) | 1.09632 (1.028188) | 1.096552, 1.960841 (1.028361, 1.028012) | |
1.26775 (2.26894) | 1.30915 (2.53062) | 1.16893 (1.70341) | 1.27064 (2.271507) | 1.271423, 1.270031 (2.275117, 2.269136) | ||
1.65601 (0.20685) | 1.65951 (0.224709) | 1.63283 (0.197213) | 1.68975 (0.214418) | 1.692543, 1.684352 (0.214511, 0.214403) | ||
4.16982 (0.77581) | 4.22051 (0.802373) | 4.15264 (0.747182) | 4.13043 (0.75685) | 4.130570, 4.130232 (0.758857, 7.754082) |
SCH: | P | MLE | Boot-P | Boot-t | Bayes | |
---|---|---|---|---|---|---|
MLEs | B-pEs | B-tEs | SQE | LINX: | ||
Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | ||
I: | 0.93374 (0.070961) | 0.921521 (0.035088) | 0.898139 (0.0299217) | 0.945986 (0.072033) | 0.945987, 0.945982 (0.072034, 0.072030) | |
1.24617 (0.715527) | 1.18249 (0.149045) | 1.11547 (0.101943) | 1.274631 (0.72436) | 1.275426, 1.272532 (0.726143, 0.722583) | ||
1.50289 (0.072667) | 1.52589 (0.050548) | 1.49886 (0.0448837) | 1.51335 (0.0733628) | 1.514235, 1.512438 (0.07347, 0.073215) | ||
4.42952 (0.534393) | 4.41443 (0.173745) | 4.32113 (0.105018) | 4.38064 (0.485045) | 4.38097, 4.37965 (0.485433, 0.483886) | ||
II: | 0.86103 (0.03476) | 0.85510 (0.032736) | 0.833491 (0.0133811) | 0.89103 (0.03476) | 0.891282, 0.889162 (0.035226, 0.035017) | |
0.99823 (0.300914) | 0.94318 (0.221974) | 0.887744 (0.1900786) | 0.102243 (0.32062) | 0.10463, 0.10382 (0.322324, 0.317512) | ||
1.5282 (0.201181) | 1.57326 (0.158992) | 1.54262 (0.1228922) | 1.53217 (0.201181) | 1.53321, 1.53141 (0.20824, 0.200612) | ||
4.11984 (0.35887) | 4.12186 (0.216281) | 4.03675 (0.2071083) | 4.10284 (0.339425) | 4.103723, 4.101531 (0.339787, 0.339127) | ||
III: | 0.88683 (0.103146) | 0.88856 (0.08317) | 0.860537 (0.040624) | 0.898244 (0.10526) | 0.898278, 0.898145 (0.105264, 0.105238) | |
0.99186 (0.517752) | 0.99611 (0.40868) | 0.927417 (0.182321) | 1.01949 (0.529116) | 1.01969, 1.01891 (0.529202, 0.528862) | ||
1.58903 (0.130558) | 1.58574 (0.079017) | 1.55312 (0.0330395) | 1.6042 (0.13349) | 1.60426, 1.60402 (0.133502, 0.133453) | ||
4.14956 (0.428595) | 4.15459 (0.258639) | 4.06453 (0.1602438) | 4.10491 (0.417234) | 4.10521, 4.10399 (0.417298, 0.417043) |
SCH: | P | MLE | Boot-P | Boot-t | Bayes | |
---|---|---|---|---|---|---|
MLEs | B-pEs | B-tEs | SQE | LINX: | ||
Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | ||
I: | 0.448765 (0.133829) | 0.442805 (0.139062) | 0.431792 (0.145933) | 0.460173 (0.125946) | 0.460206, 0.460073 (0.072034, 0.072030) | |
0.882178 (0.265189) | 0.836739 (0.26424) | 0.775376 (0.230768) | 0.909804 (0.270492) | 0.912411, 0.909224 (0.270841, 0.269327) | ||
1.66196 (0.149287) | 1.70078 (0.175462) | 1.65759 (0.140934) | 1.67713 (0.154431) | 1.67719, 1.67695 (0.15473251, 0.1541264) | ||
4.82548 (1.13221) | 4.81325 (1.01727) | 4.64309 (0.815276) | 4.78083 (1.06049) | 4.78114, 4.77992 (0.485433, 0.483886) | ||
II: | 0.350502 (0.206345) | 0.345849 (0.211251) | 0.337247 (0.218633) | 0.372735 (0.1918522) | 0.374239, 0.369953 (0191481, 0.19241) | |
0.548334 (0.219891) | 0.537974 (0.23656) | 0.495048 (0.23893) | 0.556247 (0.2073821) | 0.558214, 0.553719 (0.204518, 0.209421) | ||
1.67161 (0.340768) | 1.73298 (0.481137) | 1.67336 (0.374413) | 1.692281 (0.3412736) | 1.69285, 1.691821 (0.34132, 0.341226 | ||
3.82199 (0.259815) | 3.84037 (0.263617) | 3.70568 (0.29649) | 3.782199 (0.265421) | 3.7864314, 3.77638 (0.26341, 0.26732 | ||
III: | 0.51021 (0.144465) | 0.50112 (0.14712) | 0.4644 (0.15231) | 0.5283198 (0.721583) | 0.532401, 0.52324 (0.7180213, 0.722354 | |
0.88141 (0.770236) | 0.924579 (0.816932) | 0.781107 (0.516176) | 0.907564 (0.7731537) | 0.910236, 0.9030236 (0.7737852, 0.7726341) | ||
1.70661 (0.299814) | 1.72057 (0.357603) | 1.66406 (0.279754) | 1.738975 (0.314418) | 1.741161, 1.735721 (0.3192814, 0.31219 | ||
4.10861 (0.573625) | 4.11694 (0.501255) | 3.96033 (0.463666) | 4.0599043 (0.52432) | 4.062713, 4.056237 (0.52612, 0.521634) |
SCH: | P | MLE | Boot-P | Boot-t | Bayes | |
---|---|---|---|---|---|---|
MLEs | B-pEs | B-tEs | SQE | LINX: | ||
Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | Mean (MSE) | ||
I: | 0.426457 (0.146109) | 0.448998 (0.123255) | 0.437602 (0.131379) | 0.437301 (0.135531) | 0.440214, 0.432603 (0.13454, 0.135946) | |
0.861212 (0.24373) | 0.883718 (0.0830145) | 0.819096 (0.0148375) | 0.867562 (0.248943) | 0.869142, 0.863909 (0.24961631, 0.248163) | ||
1.56086 (0.125088) | 1.66022 (0.0262556) | 1.62027 (0.0149662) | 1.56908 (0.1317125) | 1.574219, 1.56395 (0.134335, 0.1276822) | ||
4.39153 (0.41703) | 4.82678 (0.685791) | 4.32113 (0.105018) | 4.34331 (0.374268) | 4.34363, 4.34235 (0.374588, 0.373311) | ||
II: | 0.397729 (0.166536) | 0.395252 (0.169831) | 0.387245 (0.175868) | 0.4131698 (0.149128) | 0.4135132, 0.412715 (0.1485221, 0.14934) | |
0.658085 (0.178674) | 0.629836 (0.21586) | 0.587753 (0.20968) | 0.7016704 (0.132135) | 0.7032360, 0.698216 (0.131243, 0.133214) | ||
1.68033 (0.304688) | 1.63887 (0.150127) | 1.59913 (0.122116) | 1.692118 (0.348127) | 1.6950138, 1.68924 (0.348127, 0.348127) | ||
4.08086 (0.188729) | 4.04438 (0.215647) | 3.96104 (0.215775) | 4.065012 (0.1636233) | 4.0660241, 4.04930 (0.163832, 0.1633107) | ||
III: | 0.416928 (0.156621) | 0.412096 (0.160658) | 0.402241 (0.167307) | 0.4231698 (0.149128) | 0.426239, 0.421427 (0.148224, 0.151811) | |
0.700667 (0.251296) | 0.687573 (0.264977) | 0.636709 (0.245689) | 0.7216704 (0.232135) | 0.725374, 0.717103 (0.221651, 0.236039) | ||
1.64828 (0.242527) | 1.69457 (0.267445) | 1.64588 (0.21032) | 1.6521182 (0.248127) | 1.655127, 1.649128 (0.246013, 0.250712) | ||
4.0988 (0.400514) | 4.10638 (0.448956) | 4.01762 (0.414179) | 4.0650121 (0.362331) | 4.065531, 4.064702 (0.361821, 0.363237) |
MOW of SCH (I): | MOW of SCH (II): | MOW of SCH (III): | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs |
1.04922 | 1.12272 | 1.04511 | 0.04634 | 0.757333 | 0.571604 | 0.53935 | 0.03991 | 6.78832 | 3.08824 | 2.67374 | 0.111907 | |
3.00646 | 2.92983 | 2.71654 | 0.03005 | 1.86238 | 2.0255 | 1.90652 | 0.04853 | 9.0383 | 6.50349 | 5.37888 | 0.030823 | |
1.05837 | 0.917924 | 0.877832 | 0.06988 | 1.23396 | 1.65064 | 1.55557 | 0.03148 | 1.91666 | 1.94518 | 1.84671 | 0.03472 | |
4.481 | 3.67658 | 3.63208 | 0.117283 | 3.2226 | 3.18492 | 3.16359 | 0.084346 | 4.12455 | 3.27528 | 3.2112 | 0.112669 |
MOW of SCH (I): | MOW of SCH (II): | MOW of SCH (III): | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-p CIs | MCMCs |
0.809484 | 0.977113 | 0.931175 | 0.03345 | 0.736345 | 0.83426 | 0.79524 | 0.03345 | 0.940861 | 1.08504 | 1.01535 | 0.026428 | |
2.38864 | 2.73872 | 2.58255 | 0.02377 | 1.96291 | 1.47298 | 1.34204 | 0.02377 | 2.30301 | 2.49211 | 2.30318 | 0.06481 | |
0.886629 | 0.87473 | 0.85822 | 0.06584 | 0.967843 | 1.29054 | 1.22135 | 0.068314 | 1.11006 | 1.38248 | 1.30672 | 0.035144 | |
3.1672 | 2.562 | 2.49444 | 0.082896 | 2.87494 | 2.21379 | 2.15709 | 0.081279 | 3.03033 | 2.52861 | 2.46008 | 0.081281 |
MOW of SCH (I): | MOW of SCH (II): | MOW of SCH (III): | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs |
0.383604 | 0.480127 | 0.454451 | 0.05345 | 0.297329 | 0.263209 | 0.247813 | 0.073675 | 1.32917 | 0.916058 | 0.762043 | 0.0511907 | |
2.17554 | 1.94514 | 1.80396 | 0.072377 | 1.47358 | 1.54766 | 1.45415 | 0.074352 | 4.65786 | 3.46171 | 2.71811 | 0.060823 | |
1.35155 | 1.40957 | 1.31819 | 0.05854 | 1.7934 | 3.13499 | 2.70275 | 0.06315 | 1.84765 | 2.32357 | 2.14196 | 0.06472 | |
4.23784 | 2.70742 | 2.61982 | 0.087896 | 3.09187 | 2.09188 | 2.02766 | 0.062173 | 3.86059 | 2.81748 | 2.72388 | 0.0712669 |
MOW of SCH (I): | MOW of SCH (II): | MOW of SCH (III): | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs | ACIs | B-p CIs | B-t CIs | MCMCs |
0.303674 | 0.403508 | 0.383232 | 0.042051 | 0.2721 | 0.219165 | 0.202322 | 0.0379154 | 0.341243 | 0.33323 | 0.317408 | 0.0379154 | |
1.82961 | 1.89019 | 1.75296 | 0.04821 | 1.47751 | 1.66766 | 1.56896 | 0.0383223 | 1.71365 | 1.74445 | 1.64051 | 0.0383223 | |
1.1581 | 1.41887 | 1.30983 | 0.06647 | 1.6201 | 1.59018 | 1.45879 | 0.0390132 | 1.45629 | 1.9246 | 1.75702 | 0.0390132 | |
3.12598 | 2.76494 | 2.67366 | 0.081817 | 2.83328 | 1.89634 | 1.88533 | 0.0621636 | 2.98204 | 1.95411 | 1.90363 | 0.0621636 |
The Failure Times Under Normal Use Conditions | The Failure Times Under Accelerated Use Conditions | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
− | − | − | − |
Models-Normal Conditions | Parameters | k-s | p-Value | |||
---|---|---|---|---|---|---|
MFLED | ||||||
Burr XII | − | |||||
Models-Accelerated Conditions | Parameters | k-s | p-Value | |||
MFLED | ||||||
Burr XII | − |
Normal Condition with SCH1 : When | Stress Condition with SCH2 : When | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
− | − | − | − | ||||||||||||||||
− | − | ||||||||||||||||||
− | − | − | − | ||||||||||||||||
− | − | ||||||||||||||||||
− | − | − | − | ||||||||||||||||
− | − | − | − | − | − | − | − |
P | MLEs | Boot | Bayes | ||||
---|---|---|---|---|---|---|---|
B-pEs | B-tEs | SQE | LINX:(c1 = −0.1 | c2 = 0.0001 | c3 = 0.3) | ||
0.623107 | 0.716861 | 0.695938 | 0.771067 | 0.771072 | 0.771067 | 0.771052 | |
0.311321 | 0.553852 | 0.492496 | 3.1207 | 3.12201 | 3.1207 | 3.11679 | |
3.49591 | 3.60927 | 3.31868 | 5.65999 | 5.66134 | 5.65999 | 5.65595 | |
1.58853 | 1.68104 | 1.63806 | 1.5555 | 1.55553 | 1.5555 | 1.55543 |
P | ML | B-p | B-t | Bayesian Using MCMC | ||||
---|---|---|---|---|---|---|---|---|
ACIs | Length | B-pCIs | Length | B-tCIs | Length | CRIs | Length | |
[0.410769, 0.83545] | 0.424676 | [0.516085, 0.989804] | 0.473719 | [0.505498, 0.960961] | 0.455463 | [0.751087, 0.789291] | 0.0382039 | |
[−0.71532, 1.33796] | 1.33796 | [0.109814, 1.7711] | 1.66129 | [0.0839664, 1.62445] | 1.54049 | [2.84085, 3.39173] | 0.550879 | |
[−2.58854, 9.58036] | 9.58036 | [1.65534, 6.97376] | 5.31842 | [1.60264, 6.40268] | 4.80003 | [5.36744, 5.95096] | 0.583517 | |
[0.948355, 2.2287] | 1.28035 | [1.02693, 2.7308] | 1.70386 | [1.00262, 2.66101] | 1.65839 | [1.51285, 1.59805] | 0.0851937 |
Models-Normal Conditions | Parameters | k-s | p-Value | |||
---|---|---|---|---|---|---|
MFLED | ||||||
Burr XII | − | |||||
Models-Accelerated Conditions | Parameters | k-s | p-Value | |||
MFLED | ||||||
Burr XII | − |
Models-Normal Conditions | Parameters | k-s | p-Value | |||
---|---|---|---|---|---|---|
MFLED | 0.619046 | 0.330938 | 3.259749 | 0.0911931 | 0.723681 | |
Burr XII | 2.20281 | 1.06128 | − | 0.100941 | 0.599429 | |
Models-Accelerated Conditions | Parameters | k-s | p-Value | |||
MFLED | 0.619046 | 0.330938 | 3.259749 | 1.557418. | 0.107221 | 0.521204 |
Burr XII | 2.20281 | 1.06128 | 1.5159 | − | 0.117621 | 0.402207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farhat, A.T.; Ramadan, D.A.; Haj Ahmad, H.; El-Desouky, B.S. Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring. Mathematics 2025, 13, 2585. https://doi.org/10.3390/math13162585
Farhat AT, Ramadan DA, Haj Ahmad H, El-Desouky BS. Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring. Mathematics. 2025; 13(16):2585. https://doi.org/10.3390/math13162585
Chicago/Turabian StyleFarhat, Ahmed T., Dina A. Ramadan, Hanan Haj Ahmad, and Beih S. El-Desouky. 2025. "Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring" Mathematics 13, no. 16: 2585. https://doi.org/10.3390/math13162585
APA StyleFarhat, A. T., Ramadan, D. A., Haj Ahmad, H., & El-Desouky, B. S. (2025). Statistical Inference for the Modified Fréchet-Lomax Exponential Distribution Under Constant-Stress PALT with Progressive First-Failure Censoring. Mathematics, 13(16), 2585. https://doi.org/10.3390/math13162585