Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem
Abstract
1. Introduction
- An initial solution generation method that utilizes dual permutation-based encoding and a decoding technique with a novel perturbation strategy to broaden the search space.
- A graph knowledge-enhanced IG algorithm with a knowledge-based neighborhood structure and rapid evaluation method for solving the HFSP.
- The proposed graph knowledge-enhanced IG algorithm seeks new best solutions for 183 hard instances.
2. Related Work
3. The Enhanced IG Algorithm for the HFSP
3.1. The Encoding and Decoding Disruption Mechanism
3.2. Scheduling Scheme of HFSP Represented by a Disjunctive Graph
3.3. The Critical Path of HFSP and Its Neighborhood Structure
3.4. The Local Search Based on the Critical Path
Algorithm 1. The proposed local search |
Input: Current solution π Output: Improved solution π* 1: getCriticalPath(π*);// Get critical path of current solution 2: do { 3: switch (rand(1, 4)) { 4: case (1): //Randomly select one neighborhood operation 5: choose one of {N7, k-insertion, k-swap}; 6: update π*; // Apply selected neighborhood operation to update solution 7: break; 8: case (2): // Randomly select two neighborhood operations 9: choose two of {N7, k-insertion, k-swap}; 10: update π*; // Apply two neighborhood operations sequentially 11: break; 12: case (3): // Randomly select three neighborhood operations 13: choose three of {N7, k-insertion, k-swap}; 14: update π*; // Apply all three neighborhood operations sequentially 15: break; 16: } 17: } while (!terminationCondition); // Repeat until termination condition is met 18: return π*; |
3.5. The Two-Step Insertion Neighborhood Operation
3.6. The Destruction and Construction
Algorithm 2. Destruction and construction |
Input: Current solution π, destruction size x Output: Reconstructed solution π* 1: for i = 0 to x do // Destruction phase: remove x jobs 2: place = rand(0, length of Seq); // Randomly select removal position 3: Seq -> erase(Seq_place); // Remove job from current sequence 4: Del_Seq -> insert(Seq_place); // Add removed job to deletion list 5: End for 6: π*->Seq = Del_Seq; / Update current sequence to post-destruction sequence 7: for i = 0 to x do // Construction phase: reinsert deleted jobs 8: job = Del_Seq_i; //Get the i-th deleted job 9: π*1->Seq = insert job to the first of π*->Seq;// Insert job at beginning as baseline 10: for j = 1 to (length of π*->Seq) do // Try all possible insertion positions 11: π*2->Seq = insert job to the j-th place of π*->Seq; // Insert at j-th position 12: if (makespan(π*2) < makespan(π*1))// Compare makespan values 13: π*1 = π*2 // Update to better solution 14: end if 15: end for 16: π* = π*1// Confirm best insertion position for current job 17: end for 18: π = π*; // Update final solution 19: return π; // Return reconstructed solution |
3.7. The Update Mechanism of Poor-Quality Solutions
3.8. A Novel Rapid Evaluation Method
Algorithm 3. Rapid Evaluation Method |
Input: Solution π, changed stage a Output: Updated makespan 1: affected_ops = GetAffectedOperations(move, stage_a); // Identify operations in stage a 2: s_new = π->start_times; // Copy current start times 3: t_new = π->completion_times; // Copy current completion times 4: // Part 1: stages 0 to (a-1) remain unchanged (s = s−) 5: // Part 3: stages (a+1) to S remain unchanged (t = t−) 6: for each operation O[i,a] in affected_ops do // Part 2: update stage a only 7: job_pred_time = t_new[i][a − 1] + P[i][a − 1]; // Job predecessor constraint 8: machine_pred = GetMachinePredecessor(O[i,a], move); // Get machine predecessor 9: if (machine_pred ≠ NULL) 10: machine_pred_time = t_new[machine_pred] + P[machine_pred]; 11: else machine_pred_time = 0; 12: end if 13: s_new[i][a] = max(job_pred_time, machine_pred_time); // Equation (5) 14: t_new[i][a] = s_new[i][a] + P[i][a]; // Update completion time (6) 15: end for 16: new_makespan = 0; // Initialize makespan calculation 17: for each job j ∈ J do // Apply Equation (7) 18: path_length = s_new[j][a] + P[j][a] + max(t_new[j][a+1] + P[j][a+1], t_new[machine_successor]); 19: new_makespan = max(new_makespan, path_length); // Update maximum 20: end for 21: return new_makespan; |
3.9. Procedure of the Graph Knowledge-Enhanced IG Algorithm
4. Experimental Study
4.1. Evaluation of the Rapid Evaluation Methods
4.2. Experiment 1—Carlier Benchmark
4.3. Experiment 2—Liao Benchmark
4.4. Experiment 3—Jose Benchmark
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Michaels, S. A Solution to a Special Class of Flow Shop Scheduling Problems. In Proceedings of the International Conference on Flow Shop Scheduling; Springer: Berlin/Heidelberg, Germany, 1973; pp. 83–91. [Google Scholar]
- Xu, J.Y.; Lin, W.C.; Chang, Y.W.; Chung, Y.H.; Chen, J.H.; Wu, C.C. A Two-Machine Learning Date Flow-Shop Scheduling Problem with Heuristics and Population-Based GA to Minimize the Makespan. Mathematics 2023, 11, 4060. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, L.L.; Lu, C.; Li, J.Q. Real-time data-driven automatic design of multi-objective evolutionary algorithm: A case study on production scheduling. Appl. Soft Comput. 2023, 138, 110187. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Company: New York, NY, USA, 1979. [Google Scholar]
- Fan, J.; Li, Y.L.; Xie, J.; Zhang, C.J.; Shen, W.M.; Gao, L. A hybrid evolutionary algorithm using two solution representations for hybrid flow-shop scheduling problem. IEEE Trans. Cybern. 2023, 53, 1752–1764. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Viagas, V.; Pérez-González, P.; Framinan, J.M. Efficiency of the Solution Representations for the Hybrid Flow Shop Scheduling Problem with Makespan Objective. Comput. Oper. Res. 2019, 109, 77–88. [Google Scholar] [CrossRef]
- Ruiz, R.; Vázquez-Rodríguez, J.A. The Hybrid Flow Shop Scheduling Problem. Eur. J. Oper. Res. 2010, 205, 1–18. [Google Scholar] [CrossRef]
- Victor, F.V.; Framinan, J.M. Design of a Testbed for Hybrid Flow Shop Scheduling with Identical Machines. Comput. Ind. Eng. 2020, 141, 106288. [Google Scholar] [CrossRef]
- Rubén, R.; Stützle, T. A Simple and Effective Iterated Greedy Algorithm for the Permutation Flowshop Scheduling Problem. Eur. J. Oper. Res. 2007, 177, 2033–2049. [Google Scholar] [CrossRef]
- Shao, W.S.; Shao, Z.S.; Pi, D.C. Modeling and Multi-Neighborhood Iterated Greedy Algorithm for Distributed Hybrid Flow Shop Scheduling Problem. Knowl.-Based Syst. 2020, 194, 105527. [Google Scholar] [CrossRef]
- He, L.M.; Sun, S.J.; Luo, R.Z. A Hybrid Two-Stage Flowshop Scheduling Problem. Asia-Pac. J. Oper. Res. 2007, 24, 45–56. [Google Scholar] [CrossRef]
- Sun, Z.W.; Lv, D.Y.; Wei, C.M.; Wang, J.B. Flow Shop Scheduling with Shortening Jobs for Makespan Minimization. Mathematics 2025, 13, 363. [Google Scholar] [CrossRef]
- Paternina, A.; Carlos, D.; Jairo, R.M.; Milton, J.; Maria, C.H. Scheduling Jobs on a K-Stage Flexible Flow-Shop. Ann. Oper. Res. 2007, 164, 29–40. [Google Scholar] [CrossRef]
- Lin, S.W.; Cheng, C.Y.; Pourya, P.; Ying, K.C.; Lee, C.H. New Benchmark Algorithm for Hybrid Flowshop Scheduling with Identical Machines. Expert Syst. Appl. 2021, 183, 115422. [Google Scholar] [CrossRef]
- Huang, Y.P.; Deng, L.B.; Wang, J.L.; Qiu, W.W.; Liu, J.F. Modelling and Solution for Hybrid Flow-Shop Scheduling Problem by Two-Stage Stochastic Programming. Expert Syst. Appl. 2023, 233, 120846. [Google Scholar] [CrossRef]
- Safari, G.; Ashkan, H.; Hiva, M.; Mohammad, K. Competitive Scheduling in a Hybrid Flow Shop Problem Using Multi-Leader-Multi-Follower Game: A Case Study from Iran. Expert Syst. Appl. 2022, 195, 116584. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, W.Y.; Chen, Y.H. Considering Stockers in Reentrant Hybrid Flow Shop Scheduling with Limited Buffer Capacity. Comput. Ind. Eng. 2020, 139, 106154. [Google Scholar] [CrossRef]
- Ozsoydan, F.B.; Müjgan, S. Iterated Greedy Algorithms Enhanced by Hyper-Heuristic Based Learning for Hybrid Flexible Flowshop Scheduling Problem with Sequence Dependent Setup Times: A Case Study at a Manufacturing Plant. Comput. Oper. Res. 2021, 125, 105044. [Google Scholar] [CrossRef]
- Luan, F.; Cai, Z.Y.; Wu, S.Q.; Liu, S.Q.; He, Y.X. Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm. Mathematics 2019, 7, 688. [Google Scholar] [CrossRef]
- Ying, K.C.; Lin, S.W. Minimizing Makespan for the Distributed Hybrid Flowshop Scheduling Problem with Multiprocessor Task. Expert Syst. Appl. 2018, 92, 132–141. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, L. An Iterated Greedy Algorithm for Distributed Hybrid Flowshop Scheduling Problem with Total Tardiness Minimization. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering, Vancouver, BC, Canada, 22–26 August 2019; pp. 350–355. [Google Scholar]
- Cui, H.H.; Li, X.Y.; Gao, L. An Improved Multi-Population Genetic Algorithm with a Greedy Job Insertion Inter-Factory Neighborhood Structure for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem. Expert Syst. Appl. 2023, 222, 119805. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, X.Y.; Gao, L.; Zhang, B.; Pan, Q.K.; Tasgetiren, M.F. A Discrete Artificial Bee Colony Algorithm for Distributed Hybrid Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Int. J. Prod. Res. 2020, 59, 3880–3899. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.G.; Yu, H.L. Sorting-Based Discrete Artificial Bee Colony Algorithm for Solving Fuzzy Hybrid Flow Shop Green Scheduling Problem. Mathematics 2021, 9, 2250. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, C.; Meng, L.L.; Han, Y.Y.; Sang, H.Y.; Jiang, X.C. Reconfigurable distributed flowshop group scheduling with a nested variable neighborhood descent algorithm. Expert Syst. Appl. 2023, 217, 119548. [Google Scholar] [CrossRef]
- Jia, Y.H.; Qi, Y.; Wang, H.F. Q-Learning Driven Multi-Population Memetic Algorithm for Distributed Three-Stage Assembly Hybrid Flow Shop Scheduling with Flexible Preventive Maintenance. Expert Syst. Appl. 2023, 232, 120837. [Google Scholar] [CrossRef]
- Li, L.K.; Fu, X.J.; Zhen, H.L.; Yuan, M.X.; Wang, J.; Lu, J.W.; Tong, X.L.; Zeng, J.; Schnieders, D. Bilevel Learning for Large-Scale Flexible Flow Shop Scheduling. Comput. Ind. Eng. 2022, 168, 108140. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Li, H.; Li, J.; Gao, K.; Liu, Y. Theoretical Analysis and Implementation of Mandatory Operations-Based Accelerated Search in Graph Space for Hybrid Flow Shop Scheduling. Expert Syst. Appl. 2024, 257, 125026. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, J.; Shen, W. A Deep Reinforcement Learning Approach with Graph Attention Network and Multi-Signal Differential Reward for Dynamic Hybrid Flow Shop Scheduling Problem. J. Manuf. Syst. 2025, 80, 643–661. [Google Scholar] [CrossRef]
- Wan, L.; Fu, L.; Li, C.; Li, K. An Effective Multi-Agent-Based Graph Reinforcement Learning Method for Solving Flexible Job Shop Scheduling Problem. Eng. Appl. Artif. Intell. 2025, 139, 109557. [Google Scholar] [CrossRef]
- Huang, D.; Zhao, H.; Tian, W.; Chen, K. A Deep Reinforcement Learning Method Based on a Multiexpert Graph Neural Network for Flexible Job Shop Scheduling. Comput. Ind. Eng. 2025, 200, 110768. [Google Scholar] [CrossRef]
- Pan, Q.K.; Ruiz, R.; Pedro, A.F. Iterated Search Methods for Earliness and Tardiness Minimization in Hybrid Flowshops with Due Windows. Comput. Oper. Res. 2017, 80, 50–60. [Google Scholar] [CrossRef]
- Öztop, H.; Tasgetiren, M.F.; Deniz, T.E.; Pan, Q.K. Metaheuristic Algorithms for the Hybrid Flowshop Scheduling Problem. Comput. Oper. Res. 2019, 111, 177–196. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Li, P.G.; Guan, Z.L.; Rao, Y.Q. A Tabu Search Algorithm with a New Neighborhood Structure for the Job Shop Scheduling Problem. Comput. Oper. Res. 2007, 34, 3229–3242. [Google Scholar] [CrossRef]
- Mastrolilli, M.; Luca, M.G. Effective Neighbourhood Functions for the Flexible Job Shop Problem. J. Sched. 2000, 3, 3–20. [Google Scholar] [CrossRef]
- Carlier, J.; Néron, E. An Exact Method for Solving the Multi-Processor Flow-Shop. RAIRO-Oper. Res. 2000, 34, 1–25. [Google Scholar] [CrossRef]
- Liao, C.J.; Evi, T.; Chung, T.P. An Approach Using Particle Swarm Optimization and Bottleneck Heuristic to Solve Hybrid Flow Shop Scheduling Problem. Appl. Soft Comput. 2012, 12, 1755–1764. [Google Scholar] [CrossRef]
- Neron, E.; Baptiste, P.; Gupta, J.N.D. Solving hybrid flow shop problem using energetic reasoning and global operations. Omega-Int. J. Manag. Sci. 2001, 29, 501–511. [Google Scholar] [CrossRef]
- Engin, O.; Doyen, A. A new approach to solve hybrid flow shop scheduling problems by artificial immune system. Future Gener. Comput. Syst. 2004, 20, 1083–1095. [Google Scholar] [CrossRef]
- Li, J.Q.; Han, Y.Q. A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Clust. Comput.-J. Netw. Softw. Tools Appl. 2019, 23, 2483–2499. [Google Scholar] [CrossRef]
- Li, Z.P.; Gu, X.S. Improved Biogeography-based Optimization Algorithm used in Solving Hybrid Flow Shop Scheduling Problem. CIESC J. 2016, 67, 751–757. [Google Scholar]
Reference | Problem Type | Domain Knowledge | Memory Structure | Fast Evaluation | Main Algorithm |
---|---|---|---|---|---|
Sun et al. [12] | Two-machine flow shop | Dominance rules | None | None | Branch-and-bound |
Lin et al. [14] | HFSP | Chaos annealing | None | None | Improved simulated annealing |
Huang et al. [15] | HFSP-TSP | Scenario tree | None | None | Pointer-based discrete DE |
Safari et al. [16] | Competitive HFSP | Game theory | None | None | Co-evolutionary genetic algorithm |
Lin et al. [17] | Reentrant HFSP | None | Centralized buffer | None | Hybrid harmony search GA |
Luan et al. [19] | Low-carbon FJSP | None | None | None | Discrete whale optimization |
Ying et al. [20] | Distributed HFSP | Cocktail decoding | None | None | Self-tuning iterated greedy |
Cui et al. [22] | Distributed heterogeneous HFSP | Greedy insertion neighborhood | Multi-population | None | Improved multi-population GA |
Li et al. [23] | Distributed HFSP | Two-level encoding | None | None | Discrete artificial bee colony |
Jia et al. [26] | Distributed assembly HFSP | None | Q-learning memory | None | Q-learning multi-population memetic |
Li et al. [27] | Large-scale FFSP | Sliding window sampling | Bilevel learning | None | Double DQN + Graph pointer network |
Wang et al. [28] | HFSP | Critical path | None | Yes | Mandatory operations accelerated IG |
Liu et al. [29] | Dynamic HFSP | Graph attention | Graph memory | None | PPO-GAT algorithm |
Wan et al. [30] | FJSP | Graph attention | Multi-agent memory | None | Multi-agent graph RL |
Huang et al. [31] | FJSP | Mixture of experts | Multiexpert structure | None | Multiexpert graph neural network |
Pan et al. [32] | HFSP | Idle time insertion | None | None | Iterated greedy + local search |
Öztop et al. [33] | HFSP | NEH heuristic | None | None | Iterated greedy variants |
This paper | HFSP | Critical path, disjunctive graph, dual decoding | Graph knowledge | Yes | Graph knowledge-enhanced IG |
Stage | Machines | Processing Time | ||||
---|---|---|---|---|---|---|
Job1 | Job2 | Job3 | Job4 | Job5 | ||
1 | 3 | 2 | 4 | 5 | 1 | 6 |
2 | 2 | 7 | 8 | 3 | 6 | 3 |
3 | 3 | 5 | 9 | 4 | 7 | 2 |
Instance | LB | B&B | AIS | PSO | LABC | Enhanced IG | %Deviation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MINC | MINT | MINC | MINT | MINC | MINT | MINC | MINT | MINC | MINT | B&B | AIS | PSO | LABC | EIG | ||
j10c5a2 | 88 | 88 | 13 | 88 | 1 | 88 | 0.002 | 88 | 0 | 88 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5a3 | 117 | 117 | 7 | 117 | 1 | 117 | 0.002 | 117 | 0.02 | 117 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5a4 | 121 | 121 | 6 | 121 | 1 | 121 | 0.003 | 121 | 0 | 121 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5a5 | 122 | 122 | 11 | 122 | 1 | 122 | 0.013 | 122 | 0.02 | 122 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5a6 | 110 | 110 | 6 | 110 | 4 | 110 | 0.174 | 110 | 0.12 | 110 | 0.001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b1 | 130 | 130 | 13 | 130 | 1 | 130 | 0.003 | 130 | 0 | 130 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b2 | 107 | 107 | 6 | 107 | 1 | 107 | 0.003 | 107 | 0 | 107 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b3 | 109 | 109 | 9 | 109 | 1 | 109 | 0.012 | 109 | 0 | 109 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b4 | 122 | 122 | 6 | 122 | 2 | 122 | 0.025 | 122 | 0 | 122 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b5 | 153 | 153 | 6 | 153 | 1 | 153 | 0.001 | 153 | 0 | 153 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5b6 | 115 | 115 | 11 | 115 | 1 | 115 | 0.001 | 115 | 0 | 115 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5c1 | 68 | 68 | 28 | 68 | 32 | 68 | 0.332 | 68 | 0.08 | 68 | 0.031 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5c2 | 74 | 74 | 19 | 74 | 4 | 74 | 0.535 | 74 | 2.8 | 74 | 0.045 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5c3 | 71 | 71 | 240 | 72 | - | 71 | 36.997 | 72 | - | 71 | 0.182 | 0.00 | 1.41 | 0.00 | 1.41 | 0.00 |
j10c5c4 | 66 | 66 | 1017 | 66 | 3 | 66 | 0.215 | 66 | 0.15 | 66 | 0.022 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5c5 | 78 | 78 | 42 | 78 | 14 | 78 | 0.122 | 78 | 0.08 | 78 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5c6 | 69 | 69 | 4865 | 69 | 12 | 69 | 0.405 | 69 | 0.37 | 69 | 0.016 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d1 | 66 | 66 | 6490 | 66 | 5 | 66 | 0.185 | 66 | 0.1 | 66 | 0.001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d2 | 73 | 73 | 2617 | 73 | 31 | 73 | 1.158 | 73 | 0.13 | 73 | 0.017 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d3 | 64 | 64 | 481 | 64 | 15 | 64 | 0.098 | 64 | 0.02 | 64 | 0.033 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d4 | 70 | 70 | 493 | 70 | 5 | 70 | 0.337 | 70 | 0.1 | 70 | 0.005 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d5 | 66 | 66 | 393 | 66 | 1446 | 66 | 0.515 | 66 | 0.44 | 66 | 0.867 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c5d6 | 62 | 62 | 1627 | 62 | 8 | 62 | 0.383 | 62 | 0.07 | 62 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a1 | 139 | 139 | 6861 | 139 | 1 | 139 | 0.055 | 139 | 0.02 | 139 | 0.007 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a2 | 158 | 158 | 41 | 158 | 18 | 158 | 0.87 | 158 | 0.22 | 158 | 0.009 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a3 | 148 | 148 | 21 | 148 | 1 | 148 | 0.017 | 148 | 0.05 | 148 | 0.004 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a4 | 149 | 149 | 58 | 149 | 2 | 149 | 0.085 | 149 | 0 | 149 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a5 | 148 | 148 | 21 | 148 | 1 | 148 | 0.102 | 148 | 0 | 148 | 0.004 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10a6 | 146 | 146 | 36 | 146 | 4 | 146 | 0.239 | 146 | 0.03 | 146 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b1 | 163 | 163 | 20 | 163 | 1 | 163 | 0.013 | 163 | 0 | 163 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b2 | 157 | 157 | 36 | 157 | 1 | 157 | 0.221 | 157 | 0 | 157 | 0.004 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b3 | 169 | 169 | 66 | 169 | 1 | 169 | 0.014 | 169 | 0 | 169 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b4 | 159 | 159 | 19 | 159 | 1 | 159 | 0.021 | 159 | 0 | 159 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b5 | 165 | 165 | 20 | 165 | 1 | 165 | 0.037 | 165 | 0 | 165 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10b6 | 165 | 165 | 33 | 165 | 1 | 165 | 0.056 | 165 | 0 | 165 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j10c10c1 | 113 | 127 | 34 | 115 | - | 115 | - | 115 | - | 114 | - | 12.39 | 1.77 | 1.77 | 1.77 | 0.88 |
j10c10c2 | 116 | 116 | - | 119 | - | 117 | - | 119 | - | 116 | 0.997 | 0.00 | 2.59 | 0.86 | 2.59 | 0.00 |
j10c10c3 | 98 | 133 | 1100 | 116 | - | 116 | - | 116 | - | 116 | - | 35.71 | 18.37 | 18.37 | 18.37 | 18.37 |
j10c10c4 | 103 | 135 | - | 120 | - | 120 | - | 120 | - | 119 | - | 31.07 | 16.50 | 16.50 | 16.50 | 15.53 |
j10c10c5 | 121 | 145 | - | 126 | - | 125 | - | 125 | - | 125 | - | 19.83 | 4.13 | 3.31 | 3.31 | 3.31 |
j10c10c6 | 97 | 112 | - | 106 | - | 106 | - | 106 | - | 105 | - | 15.46 | 9.28 | 9.28 | 9.28 | 8.25 |
j15c5a1 | 178 | 178 | 18 | 178 | 1 | 178 | 0.06 | 178 | 0 | 178 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5a2 | 165 | 165 | 35 | 165 | 1 | 165 | 0.005 | 165 | 0.03 | 165 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5a3 | 130 | 130 | 34 | 130 | 1 | 130 | 0.006 | 130 | 0.02 | 130 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5a4 | 156 | 156 | 21 | 156 | 2 | 156 | 0.013 | 156 | 0.02 | 156 | 0.002 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5a5 | 164 | 164 | 34 | 164 | 1 | 164 | 0.004 | 164 | 0 | 164 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5a6 | 178 | 178 | 38 | 178 | 1 | 178 | 0.006 | 178 | 0 | 178 | 0.002 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b1 | 170 | 170 | 16 | 170 | 1 | 170 | 0.003 | 170 | 0 | 170 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b2 | 152 | 152 | 25 | 152 | 1 | 152 | 0.005 | 152 | 0 | 152 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b3 | 157 | 157 | 15 | 157 | 1 | 157 | 0.03 | 157 | 0 | 157 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b4 | 147 | 147 | 37 | 147 | 1 | 147 | 0 | 147 | 0 | 147 | 0.001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b5 | 166 | 166 | 20 | 166 | 2 | 166 | 0.086 | 166 | 0 | 166 | 0.002 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5b6 | 175 | 175 | 23 | 175 | 1 | 175 | 0.016 | 175 | 0 | 175 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5c1 | 85 | 85 | 2131 | 85 | 774 | 85 | 4.205 | 85 | 4.47 | 85 | 2.264 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5c2 | 90 | 90 | 184 | 91 | - | 90 | 1198 | 90 | 3.24 | 90 | 0.308 | 0.00 | 1.11 | 0.00 | 0.00 | 0.00 |
j15c5c3 | 87 | 87 | 202 | 87 | 16 | 87 | 2.398 | 87 | 1.16 | 87 | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5c4 | 89 | 90 | - | 89 | 317 | 89 | 2.208 | 89 | 6.85 | 89 | 0.133 | 1.12 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5c5 | 73 | 84 | - | 74 | - | 74 | - | 74 | - | 74 | - | 15.07 | 1.37 | 1.37 | 1.37 | 1.37 |
j15c5c6 | 91 | 91 | 57 | 91 | 19 | 91 | 0.191 | 91 | 0.16 | 91 | 0.015 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5d1 | 167 | 167 | 24 | 167 | 1 | 167 | 0 | 167 | 0 | 167 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c5d2 | 82 | 85 | - | 84 | - | 84 | - | 84 | - | 84 | - | 3.66 | 2.44 | 2.44 | 2.44 | 2.44 |
j15c5d3 | 77 | 96 | - | 83 | - | 82 | - | 82 | - | 82 | - | 24.68 | 7.79 | 6.49 | 6.49 | 6.49 |
j15c5d4 | 61 | 101 | - | 84 | - | 84 | - | 84 | - | 84 | - | 65.57 | 37.70 | 37.70 | 37.70 | 37.70 |
j15c5d5 | 67 | 97 | - | 80 | - | 79 | - | 79 | - | 79 | - | 44.78 | 19.40 | 17.91 | 17.91 | 17.91 |
j15c5d6 | 79 | 87 | - | 81 | - | 81 | - | 81 | - | 81 | - | 10.13 | 2.53 | 2.53 | 2.53 | 2.53 |
j15c10a1 | 236 | 236 | 40 | 236 | 1 | 236 | 0.018 | 236 | 0 | 236 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10a2 | 200 | 200 | 154 | 200 | 30 | 200 | 0.214 | 200 | 0 | 200 | 0.008 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10a3 | 198 | 198 | 45 | 198 | 4 | 198 | 0.171 | 198 | 0 | 198 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10a4 | 225 | 225 | 78 | 225 | 12 | 225 | 0.072 | 225 | 0 | 225 | 0.004 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10a5 | 182 | 183 | - | 182 | 2 | 182 | 0.509 | 182 | 0 | 182 | 0 | 0.55 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10a6 | 200 | 200 | 44 | 200 | 2 | 200 | 0.468 | 200 | 0 | 200 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b1 | 222 | 222 | 70 | 222 | 3 | 222 | 0.017 | 222 | 0 | 222 | 0.001 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b2 | 187 | 187 | 80 | 187 | 1 | 187 | 0.012 | 187 | 0.09 | 187 | 0.003 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b3 | 222 | 222 | 80 | 222 | 1 | 222 | 0.007 | 222 | 0 | 222 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b4 | 221 | 221 | 84 | 221 | 1 | 221 | 0.007 | 221 | 0 | 221 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b5 | 200 | 200 | 84 | 200 | 1 | 200 | 0.135 | 200 | 0.1 | 200 | 0.002 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j15c10b6 | 219 | 219 | 67 | 219 | 1 | 219 | 0.006 | 219 | 0 | 219 | 0.005 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
mean value | 469.42 | 44.81 | 19.26 | 0.33 | 0.08 | 3.64 | 1.64 | 1.54 | 1.58 | 1.49 |
Instance | PSO | IBBO | LABC | IGT | Enhanced IG | %Deviation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MINC | MINT | MINC | MINT | MINC | MINT | MINC | MINT | MINC | MINT | PSO | IBBO | LABC | IGT | EIG | |
j30c5e1 | 471 | 96.16 | 474 | 152.3 | 467 | 58.54 | 462 | 14.94 | 462 | 252.58 | 1.95 | 2.60 | 1.08 | 0.00 | 0.00 |
j30c5e2 | 616 | 55.28 | 616 | 146.8 | 616 | 19.66 | 616 | 0.21 | 616 | 2.51 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
j30c5e3 | 602 | 64.56 | 610 | 170.1 | 596 | 64.04 | 593 | 22.69 | 593 | 370.65 | 1.52 | 2.87 | 0.51 | 0.00 | 0.00 |
j30c5e4 | 575 | 86.98 | 577 | 149.4 | 571 | 54.75 | 563 | 19.4 | 564 | 100.62 | 2.13 | 2.49 | 1.42 | 0.00 | 0.18 |
j30c5e5 | 605 | 79.84 | 609 | 168.3 | 603 | 42.93 | 600 | 22.6 | 600 | 121.38 | 0.83 | 1.50 | 0.50 | 0.00 | 0.00 |
j30c5e6 | 605 | 0.996 | 615 | 144.2 | 607 | 47.38 | 600 | 12.45 | 600 | 126.65 | 0.83 | 2.50 | 1.17 | 0.00 | 0.00 |
j30c5e7 | 629 | 87.18 | 629 | 150.6 | 626 | 37.17 | 626 | 1.58 | 626 | 3.18 | 0.48 | 0.48 | 0.00 | 0.00 | 0.00 |
j30c5e8 | 678 | 97.67 | 685 | 186.9 | 678 | 88.02 | 674 | 7.07 | 674 | 5.05 | 0.59 | 1.63 | 0.59 | 0.00 | 0.00 |
j30c5e9 | 651 | 83.8 | 654 | 177.3 | 646 | 82 | 642 | 15.9 | 642 | 88.44 | 1.40 | 1.87 | 0.62 | 0.00 | 0.00 |
j30c5e10 | 594 | 77.46 | 596 | 189.5 | 580 | 88.57 | 573 | 23.92 | 571 | 113.81 | 4.03 | 4.38 | 1.58 | 0.35 | 0.00 |
mean value | 602.60 | 72.99 | 606.50 | 163.54 | 599.00 | 58.31 | 594.90 | 14.08 | 594.80 | 118.49 | 1.38 | 2.03 | 0.75 | 0.04 | 0.02 |
Instance | Enhanced IG | Instance | Enhanced IG | Instance | Enhanced IG | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
UB | MINC | MINT | UB | MINC | MINT | UB | MINC | MINT | |||
10 × 5 × 1 | 410 | 408 | 0.02 | 20 × 5 × 1 | 660 | 660 | 1.796 | 30 × 5 × 1 | 649 | 649 | 49.432 |
10 × 5 × 2 | 394 | 384 | 0.51 | 20 × 5 × 2 | 587 | 584 | 3.626 | 30 × 5 × 2 | 789 | 789 | 0.108 |
10 × 5 × 3 | 453 | 453 | 0.012 | 20 × 5 × 3 | 559 | 558 | 11.774 | 30 × 5 × 3 | 793 | 792 | 114.571 |
10 × 5 × 4 | 452 | 452 | 0.015 | 20 × 5 × 4 | 552 | 550 | 18.525 | 30 × 5 × 4 | 680 | 680 | 131.298 |
10 × 5 × 5 | 389 | 389 | 0.02 | 20 × 5 × 5 | 526 | 526 | 1.559 | 30 × 5 × 5 | 698 | 695 | 40.53 |
10 × 5 × 6 | 360 | 357 | 0.022 | 20 × 5 × 6 | 513 | 511 | 76.458 | 30 × 5 × 6 | 661 | 660 | 105.725 |
10 × 5 × 7 | 443 | 437 | 0.283 | 20 × 5 × 7 | 678 | 676 | 44.786 | 30 × 5 × 7 | 575 | 572 | 117.615 |
10 × 5 × 8 | 436 | 433 | 0.081 | 20 × 5 × 8 | 517 | 515 | 63.985 | 30 × 5 × 8 | 805 | 803 | 135.638 |
10 × 5 × 9 | 409 | 406 | 0.017 | 20 × 5 × 9 | 681 | 679 | 13.472 | 30 × 5 × 9 | 821 | 820 | 83.351 |
10 × 5 × 10 | 373 | 373 | 0.004 | 20 × 5 × 10 | 525 | 524 | 37.494 | 30 × 5 × 10 | 762 | 759 | 78.509 |
10 × 10 × 1 | 806 | 799 | 0.47 | 20 × 10 × 1 | 797 | 794 | 15.753 | 30 × 10 × 1 | 1057 | 1057 | 99.627 |
10 × 10 × 2 | 785 | 785 | 0.011 | 20 × 10 × 2 | 844 | 839 | 118.236 | 30 × 10 × 2 | 930 | 931 | 50.322 |
10 × 10 × 3 | 755 | 755 | 0.058 | 20 × 10 × 3 | 858 | 852 | 81.621 | 30 × 10 × 3 | 1126 | 1126 | 146.122 |
10 × 10 × 4 | 922 | 917 | 0.021 | 20 × 10 × 4 | 1015 | 1013 | 50.054 | 30 × 10 × 4 | 1095 | 1090 | 433.476 |
10 × 10 × 5 | 969 | 957 | 0.025 | 20 × 10 × 5 | 973 | 973 | 144.35 | 30 × 10 × 5 | 944 | 942 | 267.769 |
10 × 10 × 6 | 1001 | 1001 | 0.014 | 20 × 10 × 6 | 796 | 793 | 118.739 | 30 × 10 × 6 | 972 | 976 | 233.728 |
10 × 10 × 7 | 947 | 942 | 0.058 | 20 × 10 × 7 | 771 | 768 | 8.953 | 30 × 10 × 7 | 977 | 980 | 150.051 |
10 × 10 × 8 | 545 | 543 | 0.139 | 20 × 10 × 8 | 950 | 948 | 49.658 | 30 × 10 × 8 | 1010 | 1006 | 320.229 |
10 × 10 × 9 | 516 | 511 | 7.534 | 20 × 10 × 9 | 953 | 951 | 9.715 | 30 × 10 × 9 | 909 | 902 | 83.447 |
10 × 10 × 10 | 684 | 684 | 0.026 | 20 × 10 × 10 | 866 | 865 | 53.697 | 30 × 10 × 10 | 1098 | 1099 | 43.633 |
10 × 15 × 1 | 959 | 959 | 0.008 | 20 × 15 × 1 | 1067 | 1064 | 40.746 | 30 × 15 × 1 | 1205 | 1202 | 296.344 |
10 × 15 × 2 | 1290 | 1290 | 0.085 | 20 × 15 × 2 | 1333 | 1324 | 112.894 | 30 × 15 × 2 | 1271 | 1277 | 291.569 |
10 × 15 × 3 | 1091 | 1091 | 0.029 | 20 × 15 × 3 | 1295 | 1293 | 31.654 | 30 × 15 × 3 | 1209 | 1208 | 503.331 |
10 × 15 × 4 | 875 | 866 | 0.577 | 20 × 15 × 4 | 1031 | 1026 | 62.144 | 30 × 15 × 4 | 1530 | 1526 | 449.351 |
10 × 15 × 5 | 883 | 879 | 12.384 | 20 × 15 × 5 | 1015 | 1015 | 81.662 | 30 × 15 × 5 | 1138 | 1142 | 778.377 |
10 × 15 × 6 | 843 | 836 | 0.011 | 20 × 15 × 6 | 1277 | 1277 | 8.435 | 30 × 15 × 6 | 1436 | 1437 | 397.775 |
10 × 15 × 7 | 912 | 904 | 6.45 | 20 × 15 × 7 | 1274 | 1272 | 118.414 | 30 × 15 × 7 | 1455 | 1449 | 750.599 |
10 × 15 × 8 | 770 | 765 | 0.041 | 20 × 15 × 8 | 1261 | 1259 | 50.641 | 30 × 15 × 8 | 1438 | 1430 | 542.952 |
10 × 15 × 9 | 764 | 751 | 1.167 | 20 × 15 × 9 | 1748 | 1732 | 34.746 | 30 × 15 × 9 | 2019 | 2019 | 46.02 |
10 × 15 × 10 | 866 | 849 | 5.537 | 20 × 15 × 10 | 967 | 966 | 50.644 | 30 × 15 × 10 | 1258 | 1262 | 796.534 |
10 × 20 × 1 | 1353 | 1345 | 0.393 | 20 × 20 × 1 | 1332 | 1329 | 41.898 | 30 × 20 × 1 | 1488 | 1489 | 910.785 |
10 × 20 × 2 | 1156 | 1155 | 0.064 | 20 × 20 × 2 | 1325 | 1323 | 76.604 | 30 × 20 × 2 | 1598 | 1602 | 135.08 |
10 × 20 × 3 | 1503 | 1503 | 0.007 | 20 × 20 × 3 | 1324 | 1316 | 281.628 | 30 × 20 × 3 | 1572 | 1563 | 624.561 |
10 × 20 × 4 | 1483 | 1459 | 0.299 | 20 × 20 × 4 | 1580 | 1576 | 260.773 | 30 × 20 × 4 | 1544 | 1545 | 539.408 |
10 × 20 × 5 | 1505 | 1494 | 21.595 | 20 × 20 × 5 | 1320 | 1317 | 301.935 | 30 × 20 × 5 | 1626 | 1626 | 419.98 |
10 × 20 × 6 | 1309 | 1302 | 5.347 | 20 × 20 × 6 | 1284 | 1282 | 17.335 | 30 × 20 × 6 | 1499 | 1499 | 528.826 |
10 × 20 × 7 | 1420 | 1412 | 0.867 | 20 × 20 × 7 | 1632 | 1630 | 79.079 | 30 × 20 × 7 | 1531 | 1530 | 1009.76 |
10 × 20 × 8 | 1522 | 1517 | 14.298 | 20 × 20 × 8 | 1847 | 1846 | 312.697 | 30 × 20 × 8 | 1823 | 1838 | 177.356 |
10 × 20 × 9 | 902 | 884 | 2.336 | 20 × 20 × 9 | 1302 | 1300 | 162.103 | 30 × 20 × 9 | 2362 | 2367 | 423.745 |
10 × 20 × 10 | 1099 | 1088 | 8.649 | 20 × 20 × 10 | 1202 | 1200 | 73.632 | 30 × 20 × 10 | 2391 | 2402 | 987.849 |
15 × 5 × 1 | 486 | 482 | 2.007 | 25 × 5 × 1 | 774 | 774 | 0.068 | 35 × 5 × 1 | 1080 | 1080 | 0.24 |
15 × 5 × 2 | 423 | 422 | 2.852 | 25 × 5 × 2 | 696 | 696 | 0.132 | 35 × 5 × 2 | 1074 | 1074 | 0.088 |
15 × 5 × 3 | 504 | 503 | 0.274 | 25 × 5 × 3 | 707 | 706 | 52.723 | 35 × 5 × 3 | 888 | 888 | 7.724 |
15 × 5 × 4 | 440 | 436 | 24.745 | 25 × 5 × 4 | 790 | 790 | 56.863 | 35 × 5 × 4 | 863 | 862 | 96.401 |
15 × 5 × 5 | 420 | 418 | 1.749 | 25 × 5 × 5 | 603 | 599 | 63.693 | 35 × 5 × 5 | 887 | 884 | 180.531 |
15 × 5 × 6 | 414 | 411 | 0.204 | 25 × 5 × 6 | 704 | 703 | 122.766 | 35 × 5 × 6 | 895 | 889 | 249.473 |
15 × 5 × 7 | 484 | 484 | 0.665 | 25 × 5 × 7 | 692 | 691 | 19.286 | 35 × 5 × 7 | 669 | 666 | 133.477 |
15 × 5 × 8 | 525 | 520 | 2.391 | 25 × 5 × 8 | 694 | 692 | 75.448 | 35 × 5 × 8 | 716 | 714 | 241.015 |
15 × 5 × 9 | 557 | 554 | 4.278 | 25 × 5 × 9 | 668 | 668 | 51.303 | 35 × 5 × 9 | 845 | 843 | 130.4 |
15 × 5 × 10 | 443 | 442 | 0.287 | 25 × 5 × 10 | 646 | 646 | 0.239 | 35 × 5 × 10 | 948 | 946 | 164.397 |
15 × 10 × 1 | 757 | 752 | 14.896 | 25 × 10 × 1 | 862 | 861 | 183.72 | 35 × 10 × 1 | 1085 | 1085 | 0.624 |
15 × 10 × 2 | 704 | 699 | 7.313 | 25 × 10 × 2 | 974 | 974 | 0.475 | 35 × 10 × 2 | 1247 | 1247 | 1.735 |
15 × 10 × 3 | 853 | 853 | 0.071 | 25 × 10 × 3 | 911 | 911 | 128.314 | 35 × 10 × 3 | 1061 | 1061 | 0.774 |
15 × 10 × 4 | 886 | 884 | 2.197 | 25 × 10 × 4 | 994 | 994 | 3.078 | 35 × 10 × 4 | 1092 | 1092 | 9.347 |
15 × 10 × 5 | 1087 | 1084 | 0.12 | 25 × 10 × 5 | 942 | 940 | 63.494 | 35 × 10 × 5 | 1268 | 1270 | 676.615 |
15 × 10 × 6 | 1042 | 1038 | 5.431 | 25 × 10 × 6 | 995 | 995 | 158.132 | 35 × 10 × 6 | 1165 | 1163 | 810.119 |
15 × 10 × 7 | 1020 | 1020 | 0.017 | 25 × 10 × 7 | 879 | 875 | 73.173 | 35 × 10 × 7 | 1015 | 1013 | 602.434 |
15 × 10 × 8 | 1011 | 1011 | 27.019 | 25 × 10 × 8 | 836 | 837 | 79.193 | 35 × 10 × 8 | 991 | 995 | 327.622 |
15 × 10 × 9 | 659 | 646 | 56.824 | 25 × 10 × 9 | 1061 | 1060 | 49.376 | 35 × 10 × 9 | 1143 | 1147 | 611.077 |
15 × 10 × 10 | 736 | 734 | 9.91 | 25 × 10 × 10 | 919 | 922 | 195.629 | 35 × 10 × 10 | 2115 | 2105 | 16.263 |
15 × 15 × 1 | 1029 | 1027 | 9.018 | 25 × 15 × 1 | 1205 | 1213 | 209.358 | 35 × 15 × 1 | 1372 | 1378 | 155.04 |
15 × 15 × 2 | 1059 | 1058 | 47.473 | 25 × 15 × 2 | 1143 | 1141 | 34.116 | 35 × 15 × 2 | 1352 | 1350 | 825.419 |
15 × 15 × 3 | 1151 | 1144 | 65.998 | 25 × 15 × 3 | 1222 | 1222 | 203.434 | 35 × 15 × 3 | 1599 | 1605 | 509.558 |
15 × 15 × 4 | 1173 | 1166 | 10.886 | 25 × 15 × 4 | 1354 | 1354 | 279.457 | 35 × 15 × 4 | 1539 | 1537 | 1153.27 |
15 × 15 × 5 | 1190 | 1186 | 43.112 | 25 × 15 × 5 | 1350 | 1353 | 121.543 | 35 × 15 × 5 | 1247 | 1249 | 537.357 |
15 × 15 × 6 | 1168 | 1165 | 9.207 | 25 × 15 × 6 | 1153 | 1156 | 186.795 | 35 × 15 × 6 | 1337 | 1337 | 389.042 |
15 × 15 × 7 | 1570 | 1556 | 12.315 | 25 × 15 × 7 | 1059 | 1062 | 235.406 | 35 × 15 × 7 | 1532 | 1534 | 789.701 |
15 × 15 × 8 | 943 | 940 | 5.885 | 25 × 15 × 8 | 1110 | 1113 | 352.432 | 35 × 15 × 8 | 1494 | 1494 | 830.902 |
15 × 15 × 9 | 909 | 897 | 42.96 | 25 × 15 × 9 | 1148 | 1152 | 206.269 | 35 × 15 × 9 | 2236 | 2236 | 0.927 |
15 × 15 × 10 | 876 | 875 | 44.792 | 25 × 15 × 10 | 1165 | 1164 | 170.259 | 35 × 15 × 10 | 1312 | 1314 | 367.28 |
15 × 20 × 1 | 1264 | 1262 | 23.558 | 25 × 20 × 1 | 1449 | 1448 | 153.373 | 35 × 20 × 1 | 1569 | 1567 | 1085.53 |
15 × 20 × 2 | 1564 | 1564 | 0.114 | 25 × 20 × 2 | 1353 | 1353 | 208.027 | 35 × 20 × 2 | 1701 | 1699 | 675.721 |
15 × 20 × 3 | 1213 | 1206 | 9.085 | 25 × 20 × 3 | 1430 | 1433 | 99.779 | 35 × 20 × 3 | 1572 | 1569 | 682.232 |
15 × 20 × 4 | 1557 | 1557 | 0.101 | 25 × 20 × 4 | 1410 | 1410 | 441.399 | 35 × 20 × 4 | 1912 | 1914 | 1667.38 |
15 × 20 × 5 | 1558 | 1539 | 40.22 | 25 × 20 × 5 | 1407 | 1405 | 277.592 | 35 × 20 × 5 | 1856 | 1857 | 1610.45 |
15 × 20 × 6 | 1692 | 1686 | 38.849 | 25 × 20 × 6 | 1371 | 1372 | 553.79 | 35 × 20 × 6 | 1415 | 1414 | 1123.51 |
15 × 20 × 7 | 1731 | 1700 | 48.66 | 25 × 20 × 7 | 1680 | 1681 | 544.107 | 35 × 20 × 7 | 1592 | 1592 | 1070.21 |
15 × 20 × 8 | 1712 | 1699 | 13.147 | 25 × 20 × 8 | 1310 | 1320 | 192.063 | 35 × 20 × 8 | 1938 | 1930 | 657.221 |
15 × 20 × 9 | 1003 | 995 | 6.065 | 25 × 20 × 9 | 1338 | 1343 | 274.523 | 35 × 20 × 9 | 1981 | 1982 | 561.683 |
15 × 20 × 10 | 1098 | 1089 | 24.84 | 25 × 20 × 10 | 1228 | 1231 | 517.145 | 35 × 20 × 10 | 1834 | 1845 | 168.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, B.; Wang, K.; Zhang, L.; Zhang, Z.; Wang, Y. Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem. Mathematics 2025, 13, 2401. https://doi.org/10.3390/math13152401
Li Y, Zhang B, Wang K, Zhang L, Zhang Z, Wang Y. Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem. Mathematics. 2025; 13(15):2401. https://doi.org/10.3390/math13152401
Chicago/Turabian StyleLi, Yingli, Biao Zhang, Kaipu Wang, Liping Zhang, Zikai Zhang, and Yong Wang. 2025. "Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem" Mathematics 13, no. 15: 2401. https://doi.org/10.3390/math13152401
APA StyleLi, Y., Zhang, B., Wang, K., Zhang, L., Zhang, Z., & Wang, Y. (2025). Graph Knowledge-Enhanced Iterated Greedy Algorithm for Hybrid Flowshop Scheduling Problem. Mathematics, 13(15), 2401. https://doi.org/10.3390/math13152401