New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy
Abstract
1. Introduction and Statement of Main Results
2. Results
3. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Cobeli, C.; Zaharescu, A. The Haros-Farey sequence at two hundred years. A survey. Acta Univ. Apulensis. Math. Inform. 2003, 5, 1–38. [Google Scholar]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Oxford Science Publications: Docklands, Australia, 1996. [Google Scholar]
- Kanemitsu, S.; Yoshimoto, M. Farey series and the Riemann hypothesis. Acta Arith. 1996, 75, 351–374. [Google Scholar] [CrossRef]
- Matveev, A.O. Farey Sequences: Duality and Maps Between Subsequences, 1st ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2017; ISBN 978-3110546620. [Google Scholar]
- Khoshnoudirad, D. Farey lines defining Farey dia-grams and application to some discrete structures. Appl. Anal. Discrete Math. 2015, 9, 73–84. [Google Scholar] [CrossRef]
- Tomás, R. From Farey sequences to resonance dia-grams. Phys. Rev. ST Accel. Beams 2014, 17, 014001. [Google Scholar] [CrossRef]
- Niederreiter, H. The Distribution of Farey Points. Math. Ann. 1973, 201, 341–345. [Google Scholar] [CrossRef]
- Codecà, P. Alcune Proprietà della Discrepanza Locale delle Sequenze di Farey; Atti della Accademia delle Scienze dell’Istituto di Bologna. Classe di Scienze Fisiche. Anno 269 rendiconti serie XIII, tomo VIII, 1980–1981, fasc.I/II; Tipografia Compositori: Bologna, Italy, 1980. [Google Scholar]
- Franel, J. Les suites de Farey et le problème des nom-bres premiers. Göttinger Nachrichten 1924, 1924, 198–201. [Google Scholar]
- Landau, E. Bemerkungen zu der vorstehenden Abhandlung von Herrn Franel. Göttinger Nachrichten 1924, 1924, 202–206. [Google Scholar]
- Dress, F. Discrépance des suites de Farey. J. Théorie Des Nr. Bordx. 1999, 11, 345–367. [Google Scholar] [CrossRef]
- Ledoan, A.H. The discrepancy of Farey series. Acta Math. Hung. 2018, 156, 465–480. [Google Scholar] [CrossRef]
- Tomás, R. Partial Franel Sums. J. Integer Seq. 2022, 25, 22.1.5. [Google Scholar]
- Tomás, R. Number of Farey fractions with equal numerators and the rank of unit fractions. Integers 2024, 26, 014001. [Google Scholar]
- Pawlewicz, J.; Pătraşcu, M. Order Statistics in the Farey Sequences in Sublinear Time and Counting Primitive Lattice Points in Polygons. Algorithmica 2009, 55, 271–282. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Kuzumaki, T.; Yoshimoto, M. Some sums involving Farey fractions II. J. Math. Soc. Jpn. 2000, 52, 125–142. [Google Scholar] [CrossRef]
- Walfisz, A. Weylsche Exponentialsummen in der Neueren Zahlentheorie, Mathematische Foschungsberichte; VEB Deutscher Verlag der Wissenschaften: Berlin, Germany, 1963; Volume 15, p. 191. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomás García, R. New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy. Mathematics 2025, 13, 140. https://doi.org/10.3390/math13010140
Tomás García R. New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy. Mathematics. 2025; 13(1):140. https://doi.org/10.3390/math13010140
Chicago/Turabian StyleTomás García, Rogelio. 2025. "New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy" Mathematics 13, no. 1: 140. https://doi.org/10.3390/math13010140
APA StyleTomás García, R. (2025). New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy. Mathematics, 13(1), 140. https://doi.org/10.3390/math13010140