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1. Introduction

Pantograph equations were first proposed by Ockendona and Tayler [1] and used to
describe various phenomena like the economy, electrodynamics, control, neutral networks
and some other nonlinear dynamical systems [2—4]. Given the facts above, the existence,
uniqueness and stability of different kinds of pantograph equations have been extensively
investigated by many authors. In particular, the study of stochastic pantograph equations is
still one of the hot spots that interests scholars. Some excellent and important articles have
also emerged in this field. For example, Fan et al. [5] considered the existence and unique-
ness of the solutions of stochastic pantograph equations under the Lipschitz condition
and the linear growth condition. Fan et al. [6] investigated the ath moment asymp-
totical stability for the stochastic pantograph equation with the Razumikhin technique.
Zhang et al. [7] studied the convergence and stability of nonlinear stochastic pantograph
equations. Yang et al. [8] discussed mean-square stability analysis of nonlinear stochas-
tic pantograph equations using the transformation approach. They all considered the
following system:

{ dx(t) = f(t,x(t), x(6t))dt + g(t,x(t), x(6t))dB(t),t > 0,
Xp = XQ-

Mao et al. [9] considered a class of stochastic pantograph equations with Lévy jumps
as follows:

dx(t) = f(t,x(t), x(08))dt + g(t, x(t), x(04))dB(t), t € [to, T),

tx(
= ft; Ju h(x(s), x(0s), u)Np(ds, du),
= (P(t), te [Gto, to],
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By applying the Burkholder—Davis—-Gundy inequality and Kunita’s inequality, the
existence and uniqueness of solutions for the considered equation under the Lipschitz
conditions and the local Lipschitz conditions are obtained. Meantime, they also established
the pth exponential estimations and almost surely asymptotic estimations for the considered
system. Recently, Hu et al. [10] discussed the following stochastic pantograph differential
equations driven by G-Brownian motion:

{ dx(t) = f(t,x(t), x(0t))dt + h(t, x(t), x(6t))d[B](t) + o (t, x(t), x(6t))dB(t),t > 0,
x(0)=¢ € R,

They proved the existence, uniqueness, asymptotic boundedness and exponential
stability of the considered equations when the coefficients satisfy local Lipschitz and
generalized Lyapunov conditions.

On the other hand, there exist instantaneous perturbations and abrupt changes at a
certain time in different areas of the real world; we usually call these changes impulsive
effects. The duration of impulses is very short in comparison with the whole duration
and is negligible [11]. When the impulses exist at random, this affects the nature of the
differential system. For more work on the study of random impulsive differential equations,
we refer the reader to [12-18] and the references therein. In particular, Anguraj et al. [16]
considered the existence and stability results for a class of random impulsive fractional
pantograph equations, and Priyadharsini and Balasubramaniam [19] studied existence
and uniqueness results for fuzzy fractional stochastic pantograph differential equations.
Recently, Shu et al. [18] made the first step in that they investigated the existence and Hyers—
Ulam stability of a class of random impulsive stochastic functional differential equations
with infinite delays under Lipschitz conditions on a bounded and closed interval. Also,
Luo et al. [20-22] discussed the Hyers—Ulam stability for some kinds of corresponding
differential equations under some suitable conditions.

As far as we know, there are few papers that have discussed the existence, uniqueness
and Hyers-Ulam stability of stochastic pantograph equations with random impulses and
the Caputo fractional derivative. Based on this fact, we intend to study the existence,
uniqueness and Hyers-Ulam stability of a class of random impulsive fractional stochastic
pantograph equations as follows:

CDEx(E) = £(t x(1), (08)) + g (¢, x(t), x(06))dB(E), ¢ > to,
{ x(‘:k) :bk(Tk)x(‘:];)/ k=1,2,..., (1)

Xty = X0,

where °Df is the Caputo fractional derivative of order « € (0,1); 0 < 6 < 1, is a
random variable defined from Q) to Dy = (0,dy) forallk = 1,2,... and 0 < dy < +oo;
and () is a nonempty set. Then, assume that 7; and 7; are independent of each other as
i#j=1,2,....Thefunction f : Rt X R" x R" - R", g: Rt x R" x R" = R", where
R:=[t,bland 7,b € R. by : Dy — R" x R", is a matrix-valued function. The impulsive
moments Gy satisfy tg = o < 1 <2 < -+ <Gy <oco,and Cy =Cr_1+ T fork=1,2,...,
x(8, ) = lim;_,z o x(t). It is easy to see that {¢; } is a process with independent increments.
Let {G(t),t > 0} be the simple counting process generated by {&;}, and B(t) be an n-
dimensional Wiener process. Suppose that (Q), §, P) is a probability space with a filtration
{B+t}>0 satisfying §; = S} V §2, where S},S% are the o-algebra generated by {G(t),t > 0}
and {B(s),s < t}, respectively. Also, suppose LP(Q), R") is the collection of all strongly
measurable, pth integrable, §;-measurable, R")-valued random variables ¢ with the norm

loll” = (sup Eflo(6)[7),
te[T,b]

where ¢(t) € LF(Q, R"), E(-) is the expectation with respect to the measure P, t € [T, b].
The highlights and main contributions of this paper are reflected in the subsequent
key aspects:
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e Weinvestigate the existence, uniqueness and Hyers—Ulam stability of a class of random
impulsive fractional stochastic pantograph equations under relaxed linear growth
conditions. Compared with the previous literature [5-9,14,16], the corresponding con-
ditions are required to satisfy the Lipschitz condition and the linear growth condition.
However, in practical cases, the linear growth condition is usually violated. Therefore,
the linear growth condition will be replaced by the relaxed linear growth conditions
in our paper.

*  We not only extend the stochastic pantograph equations to fractional order, but also
consider the random impulsive disturbance. Also, some sufficient conditions to ensure
the existence, uniqueness and Hyers—Ulam stability of the considered equations under
the relaxed linear growth conditions are established by Schaefer’s fixed point theorem,
the Banach fixed point theorem and inequality skills. In other words, the previous
models in [5-8,16] are special cases of our considered model. In fact, when o = 1, the
impulsive effects are eliminated and model (1) is reduced to the corresponding model
in [5-8]. When we do not consider stochastic disturbance, model (1) is reduced to
the corresponding model in [16]. Therefore, our results generalize the results of the
previous literature [5-8,14,16] to a certain extent.

The rest of the paper includes the following sections. In Section 2, some definitions
and lemmas will be provided. Section 3 aims to discuss the existence and uniqueness of
system (1). In Section 4, we will deal with the Hyers—-Ulam stability of the considered
system (1). An example is established to illustrate the theoretical results in Section 5. Finally,
we draw out the conclusion in Section 6.

2. Preliminaries

In this part, necessary definitions and lemmas are provided which will be used in
later parts.

Definition 1 ([23]). The fractional-order integral of order a for function f € L'([a,b], R") is
denoted by

wry— L [1_S0)
L=t ) 1 ds,

« t—s)l-«

where t € [a,b] and « € [0,1], T(+) is the gamma function.

Definition 2 ([24]). The Caputo derivative of order a for function f € L'([a,b], R"™) is denoted by

n—uo

e L )
Diuf () = =y |, Graper

where n = [a] + 1 and [«] is the integer part of «.

p

nxn

Lemma 1 ([25]). Forany p > 1and for an arbitrary L, [0, b]-valued predictable process (s),

r

sup || [“pas)|” < Ep-0)i( [ ®lge)P)ias)’, e o)

s€(0,t]

Definition 3. Fora given b € (T, +00), an R"-value x(t) on t € [t,b] is called a solution to (1)
in (Q,§, P) if {x(t)r<t<p} is Fr-adapted and satisfies

k k k &
w(t) = Y [TI0mno+ gy LIT0m) [ (=) f(s,x(s), x(05))ds

T
<}
I

—

" r(la)/;(t—s)”‘1f(s,x(s),x(65))ds
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1 &4 Gi o
+ m ;Ebl(lﬁ '/i—1 (t—s) 1g(s,x(5),x(65))dB(S)
+ r(la)/g:(t—s)alg(S,x( ) x(es))dB(S)]I[f;k,ém)(f), te[t,b],

where H;‘:i bi(7j) = bi(Ti)bi1(Tig1) - - b1 (Th—1)bx (Tic) and 14 () is the index function satisfying

_ 1, ifte A,
IA(t)_{ 0,ift ¢ A.

Lemma 2 ([11] Schaefer’s Fixed Point Theorem). Let X be a Banach space and ® : X — X bea
completely continuous map. If the set

P ={xeX:x=ADx forsome A € (0,1)}
is bounded, then ® has a fixed point.

3. Existence and Uniqueness

This section aims to discuss the existence and uniqueness of solutions for system (1).
The following assumptions are also needed.

Hypothesis 1 (H1). The function f : Rt x R" x R" — R" satisfies the following: f is
continuous with respect to t € [t,b] and measurable with respect to x(t) € R". There exists a

1
constant iy € (0, ) such that real-valued continuous functions my (t) € L7 and there exists an LV
integrable and nondecreasing function ¥ : [0,00) — [0, 00) such that

E|lf(t61,02) [P < my(6)¥ (E[[01][P + E[[62]7)- (2)

Hypothesis 2 (H2). The function g : Rt x R" x R" — R" satisfies the following: g is
continuous with respect to t € [t,b] and measurable with respect to x(t) € R™". There exists a

1
constant iy € (0, «) such that the real-valued continuous functions my(t) € L and there exists an
LP integrable and nondecreasing function ¥ : [0,00) — [0, 00) such that

Ellg(t,61,02)[|7 < ma () (E[|61[|7 + E[|62]7)- (3)

Hypothesis 3 (H3). There exists a positive constant M, for all 7; € D;(j = 1,2,...), such that
k p
E(max{[ ] lloj(r)II})" < M. (4)
/ j:i

Theorem 1. Assume that conditions (H1)—(H3) hold, then system (1) has a solution x(t), which is
defined on [to, b], provided that the following inequality holds

M* /b[ml(s) + my(s)]ds < /l:o T?;s), (5)

to

* —1max —)pla=1)+1 —1)\ 2 _
where M* = 37~ mUMIU St (D) (pa — 1) 41 4 0), p = 37~ ME] x|

Proof. Define the operator ® : C({[to, b], LP(Q0, R")) — C([to, b], LP(Q, R")) as follows:

+oo o k k k &
@) = L [T+ oy LIT0) [ (=97 (s x(s), x(6s)ds
L] |

i=1j=1 i-1
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* F(loc) /gi(f—s)“ 1f(s, x(s), x(6s))ds
1 s Gi a—1
+ M;JH}M;)/& 1(t—s> (s, x(s), x(6s))dB(s)
+ r(la)/ (t—s)*Tg(s,x(s), x(6s))dB(s )}I[gkgkﬂ)( ), t € [1,b],

where b € (to, +00) satisfies (5). Naturally, it is easy to see that finding the solution of (1) is
equivalent to getting the fixed point for the operator .

Firstly, consider a bounded operator ®.

Let A € (0,1). It follows that

+oo _ k 1 k k ;
x(t) = Ako[l‘{blnxo g L1 / — 51 (s, x(s), x(6s))ds
= 1= i=1j 171
+1"(1¢x) g:(t s)“‘lf(s,x(s),x(és))ds
1 k k
iy LIT0 () / (£~ )" 'g(s,x(s), x(65))dB(s)
i=1j
oy /@i(t $)* g (s, x(s), 1(65))dB(5) | Iy g,., (1), £ € [, 0],
which yields
+o0 k
I lP < (A% [ITTo G ol + = znr[ )l / — ) £(s,x(s), x(0s)) s
k=0 i=1 i=1 j=1
oy é:<t—s>“-1||f<s,x<s>,x< 5)) lds
k k
e l_zlnjnlbzr,n/ (£ — )" g(s, x(5), x(65)) [ dB(s)
1 t o p
iy o (6905, (5), 20D (5) T g, (6}
0o k 0o t
< 1{:2||qb,n Pllal?] 31 5 [y =0 17 x6), (0 s
0 i= =0 k
k k ;
i; Iﬂbl il /é i(t—s)"‘_lﬂ £(5,%(5), x(05)) 5] Ty (0}
400 1 k k &
Y [rm ITTs)] Jo (=9 lgts, x(s), x(65)) |Bs)
1 t
iy o () (5, (5), xO)IABE) T g )}
<

3P- 1max{\|1_[b T HpHxOHp}

+37 max {1, llﬁbi<ri>|}]’7 [r(lm) /tot(t =5 (s, x(5), x(65) s]
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1 p

9 e (11T [y 9" st w00, s anco]

0

1_
Next, taking the mathematical expectation of the above inequality and letting M > 37 !

together with (H1)-(H3) and Lemma 1, we have
E|lx(t)||F < 3P~ ME||xo||?
1max t
W. (=9 (*1ds x ./to E||f (s, x(s), x(6s))||Pds
~1 max t t
W to(t—s)p("‘_l)ds></toE||g(s,x(s),x(Gs))H”dB(s)
_ pypla-1)
3P IME| x0 |7 4 37! max{1, M}(p(ib o )11:;1));: /t:E|f(s,x(s),x(9s))||Pds
(b— )(uc 1)+1 (p—l) bt
D TEET ), Ells(sx(s),x(os) s
_ pypla-1)
37~ IME| x| + 37" max{1, M}(P(z(xb ?’7 )(1;(1));7 /ttml(s)‘I’(ZEHx(S)Hp)dS

— )rla=1) _
+3r a1, My O (PPN [ syv @Bt s

- T (a—1)+1 N g
3 MEfxo]? + 3" max{1, M) (b 1){1)(;( ))p(P(PZ 1))

x / (1 (s) + ma(s)| ¥ (2| x(5) s,

IN

+37 ! max{1, M}

IN

IN

Thus,
_ _ b— r)pla-1)+1 p(p—1)\2
sup E|x o< 3PTIME|xo|P 4+ 37 max{1, M (
Sup B < o] {1,M} (p(“_l)ﬂ)(r(a))p( —)
t
% [ [m(s)+ma(s) | €@ sup E|lx(s)]")ds.
to tg<T<s
Let
O(t) = sup E[x(0)|?, t € [to, 1], (6)
to<{<t
We obtain

max — 7)pla-1)+1 —1)\%

For convenience, let

4

max — g)pla=1)+1 — 1)\ 5
Y(0) =3 [ME g P + PRI G (P DY [ (5 4 ma(s)] ¥ 20(6)) 4]

which impiles @(t) < Y(t), t € [to,b] and Y(ty) = 3P I ME||xo||? = B.
Taking the derivative of function Y(t) with regard to t, we derive

(1) N
V() = 3p_1max{1,M}<(PEb ;p ;r?))p(”(”z 1)) [ma(5) + ma ()] ¥ 20()
< 3P 'max{1, M} (b=1) :

pla—) (P(P—l))

a1+ T@P [+ ma(0)] 72Y(0),

2
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which yields

L0 - (b—pe U p(p—1)\ %
¥(2Y(1) <37 1max{1’M}(p(a—1)+1)(F(o¢))l’( > ) [ml(t)+m2(t)}. (7)

Integrating (7) from £ to t and combining with (5), we have

Y ds - (b—Pe VL p(p—1)\t
/Y(to) o < ¥ Tmax(l My _1)+1)(r(a))p( —) /to [1m1(5) + ma(s)| s
(b—oPe D p(p—DNE P
< 3/ max{1, M}( (“_1)_1_1)@( E ( 5 ) /to |:m1(5)+m2(5)}ds

/,3 T‘Z;S), t € [to,b],

which implies that there exists a constant p such that Y(¢) < p. Thatis, ©(t) < p. Thus,
sup; <;<1 E[|x(Z)[|P < p, where p only depends on T and the functions m; (t), m»(t) and
Y (t). ® is bounded is proved.

Next, we prove @ is completely continuous. We will divide the proof into the follow-
ing steps.
e  @is continuous.

Let {x"} € C([to, b], LP(Q), R")) such that x — x asn — co. Forany t € [t, b], we get

Bl (®x,)(£) — (Px) (1)

4 +00 1 k Kk & .
- W {E[F—;QEHMWH /§H<t—s>“ E||£(5, % (5), % (65)) — £(5, %(5), x(65)) | ds

k=0

11 f a—
F s |9 Bl xn(s), 20(69)) — (5, x(5), x(69)) s
k k
s VTR [ (=) Ellg(s 005 65)) = (5, (5), +(65) |45
[e) Fi4

—~

*‘”Hﬁ ék(t = )80, 2a(s), % (65)) — g5, x(5), 1(65)) [ 4B(5) | Ty gy, ()}
t
47" max{1, M} {r({x) (= 5B 00 (5), 30 (05)) = £, (), 2(05) s

4P max{1, M} [ﬁ /t:(t — ) Eg(5, 1 (s), 14(05)) — (s, x(5), x(65)) [dB(s)] -

IN

IN

- (b= pp =Nyt
. 1max{l,M}(p(a_1)+1)(r(“))p( . )[/tO]EHf(s,xn(s),xn(Gs))

s, x(08)) s + [ (¢ =5)* (s, 30 (5), 00 (65)) — (5,305, (69)) ]

—0asn — oo,

which implies that ® is continuous.
Let x = C([to, b], LP(Q,R"™)) and ||x||} = Sup;crp) Ell@(t)[|P. We denote

Br={xexllxly<r}

e  ® maps B, into an equicontinuous set.
Suppose that x € By, t1,t, € [to,b] N (Ex_1, Ck). From (H1)-(H3), we obtain
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IR i P Gi a—1
< 4P EH kZ%) {W Z%l—{bi(’rj) /r: (tp — )" ' f(s,x(s), x(6s))ds
= i=1j= i—1
+T(10¢) /g:z(tz - s)“_lf(s,x(s),x(Gs))ds (I[ﬁk/ékﬂ)(h) - I[ékr§k+l)(t1)):| Hp
+4P—1]EH];) [r(“) gqbi(g) /é (k2 — 8)* 1 — (1 — 8)* 1 f (s, x(s), x(65))ds
= i=1j= v 6i-1

T /c (82 =) = (5 =) 1) F5,2(5), x(0))ds] (T (8)] |
B 3 [ S T [ 90 Yg(s,x(6), (09)B ()
oo M) S e T
+r(1“) /‘:(m —5)*7g(s,x(s), x(0))dB(s) (g, g, (B2) — Tig ) (1)) Hp
3 +00 1 k k i . e
4P 1]EHI(§)[F(“) i_lgbi(q)/&l[(tz—s) U (t — )% Yg(s, x(s), x(8s))dB(s)

(= gl x(0), (09)B ()

+ /6:1 ((fz - S)a—l — (- S)a_l)g(s,X(S)/X(GS))dB(S)](I[éklékﬂ)(tl)} Hp
_ wEY G
i=1

Next, we estimate each term of the above inequality,

E|G P = EHkZO {F(a) le_{bl(T])/g (ta —8)* 1 f(s,x(s), x(s))ds
— i=1j= i—1

p

+1“(10c) /gtz(tz —5)* (s, x(s), x(0s))ds (I[ﬁk,§k+1)(t2) g (tl))} H
max(1,M) (ks [ (02 PRI x5, 090 1 s

X]EH (I[ékr§k+1)(t2) — g0 (tl)) Hp

gy [ (2= (o) ¥ 2

XEH (I[gk,§k+1)(t2) gz (tl)) Hp
— 0, asty — 14,

IN

IN

max{1, M}

—+o0 1 k k Ci
B1G:I" = [ X [y BITam) [ (=9 = (1= 9" 1 x(5), (05)s
i=1j= -1
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)P

+ /(; (b2 =9)" 1 = (01 = 9)* 1) Fls, x(5), x(69))ds] (T ., (1)

< [ max(n My [0 = 9t = 9P VB x(0), x(609) s
ty
427 s (6 =) VB 5 x(5), x(08)) 17 (1 g, (1)) |
< [2p—1 max{l,M}(F(i»p /t:[(t2 —5)* 1 — (# — )P D]y (s) ¥ (2r)ds

— 0, asty) — 1y,

E|GsllF = Eug [l@iﬁbz(ﬁ)/jl(tz—s)“ 'g(5,%(s), x(8s))dB(s)
+F(10c) /éliz(tZS)a 1g(s x(s), x(6s))dB( )( [§k§k+1)( ) [HEADIG )}H
< max{1,M} mi»p (P2 [ =57 VB lg(s,x(5), w69 P
XEH(I[@,@H lig g ( )H
< max{1, M} (T(i))l’ (P(P; 1)) /tol(tz — S)p(a_l)M2(S)‘I’(2r)ds

IN

IN

_>

XEH (I[ékr§k+1)(t2) - I[Ckr§k+1)<t1)) Hp
— 0,ast) = 1y,

+L[/tt2(tz —5)*""g(s, x(s), x(65))dB(s)

. /( | t;_s — (11— 5)" 1) 805, x(5), x(05))dB() (T gy, (1) |
T ()" [ - ettt o e
#2071 e (PP e g0, x(0) s (1 5,01 |
[2p_1m?;é;5;:]4}(v( . 1))5[0 (s — 51 — (11 — )P @Dy (s)¥ (2r)d

#2071 e (PN 2 — D20 5] (1, 8)|

0, as tp — t1.

Thus, E||(®x)(t2) — (Px)(t1)]|P — O, as t, — t1, which implies that ® maps B, into an

equicontinuous set.
e ®(B,) is uniformly bounded.
From (H1)-(H3) and (5), we have
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1
I'(a)

+oo -k
El@0 O = E| ¥ [Tt -+

+1,(1“)/§:(t s)“*lf(s,x(s),x(ﬂs))ds
1 £k i a—1
ngl_[bl // (t—s)*""g(s,x(s),x(0s))dB(s)
oy 5 (=9 (s, (), 2(09)B(5) g g, ()]

(b _ T) pla—1)+1
(pla=1) +1)(T(a
(b ) pla—1)+1

+3p_1max{1,M}(( DT (*’(”2‘1)) /t:E||g(s,x(s),x(95))||pds

IN

3P ME||xo||P 4 37! max{1, M}

57 | Bl x(s) x(05) P

(b _ T)p(zx 1)+1

(pa 1) + (@
. (b—oPe U+ p(p—1)
+3r Tman1,my EE (PE AN sy o) s

_ p)pla—1)+2 —1)\ %
3P~ ME||xo | + 37~ max{1, M} (p(o((b— 1;)i (T (a))? <p(p2 1))

(2] ) (I ()|L7 + [[ma(8)|L7),

IN

3P~ ME||xo|P 4 37 max{1, M}

55 | ¥ 2BLx(s) 1)

IN

which yields that ®(B,) is uniformly bounded.
e  ® maps B; into a precompact set.

For a given fixed t € [t, b], let € be a positive constant satisfying 0 < ¢ < t — t;. For
any x € B;, we define

k
(@x)(t) = Y [[Tbilm)xo+

+

k Gi
g BT [ 0ttt
+ r<1a>/g:€<t—s>“ 95, x(s), x(8)AB(5) | g gy, (1), € (b, = ).

Then, the set Q,(t) = {(Pex)(t) : x € B, } is relatively compact in x for each e € (0, — tg).
By (H1)-(H3), we obtain

Ell(®x) — (®ex) [P < 2F7 1IEHZ HP

. Sf s, x(s ),x(@s))dsl[gk@kﬂ)(t)

tor- 11EH+°° 1 /t;g(s,x(s),x(()s))dB(s)I[gk,ng)(t)Hp

IN

op—1 gpla—1)+1 t s
(p(a—1) + 1)(T())? /Hml(S) (2r)ds
e Gy

1
2 e DT\ 2
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IN

IN

— 0,ase—0,

which implies that & maps B, into a precompact set. That is to say, for any precompact set
which is closed to set Q(t) = {(®x)(t) : x € B,}, Q(¢) is relatively compact in x. Then, ®
is compact by the Arzela—Ascoli theorem. Thus, ® is completely continuous. Therefore,
system (1) must have a solution which is the fixed point of ® by Lemma 2. O

Next, we intend to verify the uniqueness of the solutions for system (1) by using the
Banach fixed point theorem.

Hypothesis 4 (H4). For any continuous functions f : Rt Xx R" x R" — R"and g : R+ X
R" x R" — R", there exist two positive constants L1, Ly such that

E|f(t,61,02) — f(t, 614, 02:) P < L1[E|61 — 01|V + E|62 — 624 [|"],

and
E|g(t,01,602) — g(t, 614, 62:)||P < Lo [E||01 — 614 ||P + E||62 — b24]|7],

where 81,062,814, 02« € R" and t € [, b].

Theorem 2. Assume that conditions (H3) and (H4) hold; then, system (1) has a unique solution
x(t), which is defined on [to, b].

Proof. Let b € (1, +c0) define the following operator N : x — x,

Nt—+ookb 1kkb g’t a—1 0s))d
(Nx)(t) = P [E Z(Tl)xo—'_mlzzlg 1('@)/171( —5) f(s,x(s),x( s))ds
1 K.k b Gi 1 Ry
e BT [ 0= s sonne
+ 1"(104)/(-;;(t s)® 1g(s,x(s),x(95))dB(s)}I[gklgkﬂ)(t), te[t,b]
Then,
E (N (6) - (v (0|
w1 & Gi
B 2 [y L IT05) [ (6= 90" G x(6), x(05)) £ y(s) w05 s
=0 i=1j= i-1
T 1 (690 x(5), (69)) — £, (), w(es) s
k k ;
i L1 * (= 9305, 1(5), 1(05)) — 8(5,4(5), y(65))B(s)
i=1j= i-1

ey =9 (s, 8),x69) = 56 w0 B ()| e )
_ymax{1, M}(b — T)P@ D+ p(p — 1)\ 5t
T ) L Bl x(s) x(05) — (5, y(s), y(05)) Pds

" /t:Eng(s,x(s),x(es)) ~ 8(s,y(s),y(65)) ds]

- (b= p(p—1)\E
4r—1 max{1, M} e -1 +1)(T@)? ( 5 ) (L1 + Ly)
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t
></t Eff|x(s) —y(s)|IP + [|x(6s) — y(0s)|"]ds.
0
Taking the supremum over t, we have

INx — Ny|[} < A®)||x—yll},

_ 4
where A(b) = 4P~ max{1, M} (p%g(b—_lglfi)(;)(;)v (p(p{l)) ’ (L1 + Lyp). If we choose a suitable

by with 0 < by < b such that A(by) < 1, we immediately obtain that N is a contraction map.
That is, the uniqueness of the solutions of system (1) is proven by using the Banach fixed
point theorem. [

Remark 1. The existence and uniqueness of the random impulsive fractional stochastic pantograph
equations in our paper under relaxed linear growth conditions have been obtained, which will be
generalized in the context of the previous literature [5-9,14,16].

4. Hyers—Ulam Stability

This section is devoted to proving the Hyers—Ulam stability of the solutions of system
(1). We recall the following definition of Hyers-Ulam stability.

Definition 4 ([26]). System (1) is said to be Hyers—Ulam stable if there exists a real number A > 0
such that Ye > 0, if each R"-value stochastic process y(t) satisfies

E YT Loyr7s " w1 6s))d
Jvt6) = & [TTwtwm+ 5 L ITnc) Jo (=) s y(s) y(6s))ds

* ey 9 (o) yos)ds + i [ (-9 a(s,v(5),v(05))aB(e)

k Gi a1 P
[Teim) [ (6= 55, 0(),y(0)dBE) L (] <&, vt € 7,0,
i=1j=1 Gi-1

and if there exists a solution x(t) of system (1) with initial value xy = yo satisfying E||y(t) —
x()||P < Ag, ¥t € [1,1].

Theorem 3. Assume that conditions (H1)—(H4) hold; then, system (1) is Hyers—Ulam stable.

Proof. From Definition 3, the solution of system (1) has the following form:

k ko k &
x(0) = L [TTmm+ o LITa) [ (=9 (s x(s) x(0s))ds

i=1 ]':] i-1
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Assume that there exists another solution y(t) of system (1) with the initial value yy = x.
Then, we have

k 1 Kk Gi 1
EHy(t) L [gbi(n)yw o) ;Hbl(rj)/al(ts) F(s,y(s),y(6s))ds
i = (), yOs) s+ s [ - 9 gl (), w(05)B ()
1 k & . .
* g R 1IA) S (=) (s, (5), y(09)aB () I g, O <
Therefore,
E[lyt) — x|
gL 1 Kk Gi
< 27|y - ¥ [TTemvo+ s LTT0() [ (= 9)"Flsy(s), y(6s))ds
k=0 ~i=1 F(D() i=1j=1 i1

g = o)y + s [ 6= g(s,y(s) vos)a(s)

1 Kk .k ) 4 , 1 61148 ; t .
i S 1) [ =9 5y(5), y(@)B() Tz, 0

r—1Rg g kb . ¢ a—1 0 0 i
+ Hkg[wgg () [, (=50 ((5,y(6), (05)) = f(5,x(6), x(05)) ) ds
by =9 (5 v(5)v(05) = f(sx(5),x(05) s
ey =9 (s(5.0(5),4(689) =506, x(5), (69)) ) aB)

1 Kk Gi N »
P ;ﬂw’) /é_l(t—s) (35, y(5), y(65)) — g5, x(s) (‘)S)))dB(S)}1[@,@“)(0\\

< 2P leq2PTln,
where
400 1 k k z -
A = EH’(;)[W) ;Hbz(q)/g”(t—s) (£(5,9(), y(85)) — (s, x(s), x(65)) ) ds

g =9 (£, 009) £ x(9),x(05) ) s
+1_,(1“) /@i(t S)thl (g(s y(s),y(0s)) —g(s,x(s) X(QS)))dB(s)

p

IN

N

=

L
el
™5 |
o}
B

+2 8] © [ 1 ]ﬁbm [ =57 (60 v(69)) — 5309, x09) )5t
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IN

IN

+

1 t
@

2P~ max{1, M} (b — 7)P(e-1D+1

p

(£ =) (205,y(5),y(05)) — 85, x(5), x(65)) )dB(s) | I, (1)

(p(a = 1) +1)(T'(a))?

(YA [ IG5, 005 — s, x(5),w(05) P

+ [ Blg(s,y(5),166) = (s, (5) (66| s

2°P=

A [ Elys) -

D max{

20— TPV p(p—1)3h f
LMY e T ma ) (it L) [ Elly(s) — x(s)lPds

x(s)||Pds,

/2
where A* = 2P~ max{1, M} Zib f}f;;(l)( 777 (p(p{l)) ’ (L1 + Lp). Thus,

t
IEHy(t) - x(t)Hp < 2”’1£+2”’1A*/ E|ly(s) — x(s)||ds.
to
By applying Gronwall’s inequality, we obtain
Bl - x| <2te- 2,

2P—1A

which implies that there exists a constant M = 2P~ .¢ " such that

EHy(t) - x(t)Hp < Me.

Therefore, we deduce that system (1) is Hyers—Ulam stabile via Definition 4. The proof
is complete. O

5. Example

In this section, an abstract example is given in the following to explain the obtained results.

Example 1. Consider the following abstract system:

Dix( U (0 thg}dH[f (6 (et)de}dB(t),tzto,t#ék,

(ﬁk) =b(k)nx(g ), k=1,2,..., (8)
x0="Cc={Cp:—T7<0<0},

where “Df is the Caputo fractional derivative of order « € (0,1). x is an R-valued stochastic
process and 0 < 0 < 1. 1 is a random variable defined from Q) to Dy = (0, dy) forallk =1,2,. ..
and 0 < dy < o0, and () is a nonempty set. Assume that T; and T; are independent of each other
asi #j=1,2,....bisa function of k and 7, 7 : [—7,0] — R are continuous functions. The
impulsive moments Gy satisfy tg = o < ¢1 < Ga < -+ < G < 00, and Gy = Cr_1 + T for
k=1,2,...,x(, ) = lim;_,¢, o x(t). B(t) is an n-dimensional Wiener process.

Assume the following conditions hold:
@ maxlk{Hf 1B ()2 < oo;
(ii) f 2 ( d9<oof 2(0)do < oo.

In view of assumptions (i) and (ii), we easily obtain that the assumptions (H1)-(H4)
hold. Thus, system (8) has a unique solution x(t), which is Hyers—Ulam stable.
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6. Conclusions

In this article, the existence, uniqueness and Hyers—Ulam stability of a class of frac-
tional stochastic pantograph equations with random impulses are considered. Utilizing
Schaefer’s fixed point theorem and the Banach fixed point theorem, we obtain the criteria
of existence and uniqueness for a solution of the considered system under relaxed linear
growth conditions. Then, Hyers—-Ulam stability is also derived for the considered equation
using Gronwall’s inequality. Moreover, some known existing equations are significantly
generalized in our paper. In future work, we intend to study the corresponding exponen-
tial stability results for a class of fractional neutral stochastic pantograph equations with
random impulses.
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