Strong Sandwich-Type Results for Fractional Integral of the Extended q-Analogue of Multiplier Transformation
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, H.M. Univalent functions, fractional calculus and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A new subclass of analytic functions defined by using Sălăgean q-differential operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef]
- El-Deeb, S.M. Quasi-Hadamard product of certain classes with respect to symmetric points connected with q- Sălăgean operator. Montes Taurus J. Pure Appl. Math. 2022, 4, 77–84. [Google Scholar]
- Alb Lupaş, A. Subordination Results on the q-Analogue of the Sălăgean Differential Operator. Symmetry 2022, 14, 1744. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 6, 958563. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Cătaş, A. Differential Subordination and Superordination Results for q-Analogue of Multiplier Transformation. Fractal Fract. 2023, 7, 199. [Google Scholar] [CrossRef]
- Zhou, H.; Selvakumaran, K.A.; Sivasubramanian, S.; Purohit, S.D.; Tang, H. Subordination problems for a new class of Bazilevic functions associated with k-symmetric points and fractional q-calculus operators. AIMS Math. 2021, 6, 8642–8653. [Google Scholar] [CrossRef]
- Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Differ. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Strong differential subordination. Turk.J. Math. 2009, 33, 249–257. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Oros, G.I. Strong differential superordination. Acta Univ. Apulensis 2009, 19, 101–106. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
- Oros, G.; Tăut, A.O. Best Subordinants of the Strong Differential Superordination. Hacet. J. Math. Stat. 2009, 38, 293–298. [Google Scholar]
- Jeyaraman, M.P.; Suresh, T.K. Strong differential subordination and superordination of analytic functions. J. Math. Anal. Appl. 2012, 385, 854–864. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Strong differential subordination and superordination for multivalently meromorphic functions involving the Liu–Srivastava operator. Integral Transform. Spec. Funct. 2010, 21, 589–601. [Google Scholar]
- Tăut, A.O. Some strong differential subordinations obtained by Sălăgean differential operator. Stud. Univ. Babeş-Bolyai Math. 2010, 55, 221–228. [Google Scholar]
- Şendruţiu, R. Strong differential subordinations obtained by Ruscheweyh operator. J. Comput. Anal. Appl. 2012, 14, 328–340. [Google Scholar]
- Alb Lupaş, A. On special strong differential subordinations using multiplier transformation. Appl. Math. Lett. 2012, 25, 624–630. [Google Scholar] [CrossRef]
- Swamy, S.R. Some strong differential subordinations using a new generalized multiplier transformation. Acta Univ. Apulensis 2013, 34, 285–291. [Google Scholar]
- Alb Lupaş, A. Certain strong differential subordinations using Sălăgean and Ruscheweyh operators. Adv. Appl. Math. Anal. 2011, 6, 27–34. [Google Scholar]
- Cho, N.E. Strong differential subordination properties for analytic functions involving the Komatu integral operator. Bound. Value Probl. 2013, 2013, 44. [Google Scholar] [CrossRef]
- Jeyaramana, M.P.; Suresh, T.K.; Keshava Reddy, E. Strong differential subordination and superordination of analytic functions associated with Komatu operator. Int. J. Nonlinear Anal. Appl. 2013, 4, 26–44. [Google Scholar]
- Andrei, L.; Choban, M. Some strong differential subordinations using a differential operator. Carpathian J. Math. 2015, 31, 143–156. [Google Scholar] [CrossRef]
- Oshah, A.; Darus, M. Strong differential subordination and superordination of new generalized derivative operator. Korean J. Math. 2015, 23, 503–519. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Wanas, A.K. Strong Differential Sandwich Results of λ-Pseudo-Starlike Functions with Respect to Symmetrical Points. Math. Morav. 2019, 23, 45–58. [Google Scholar] [CrossRef]
- Wanas, A.K.; Majeed, A.H. New strong differential subordination and superordination of meromorphic multivalent quasi-convex functions. Kragujev. J. Math. 2020, 44, 27–39. [Google Scholar] [CrossRef]
- Abd, E.H.; Atshan, W.G. Strong subordination for p-valent functions involving a linear operator. J. Phys. Conf. Ser. 2021, 1818, 012113. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar]
- Srivastava, H.M.; Alshammari, K.; Darus, M. A new q -fractional integral operator and its applications to the coefficient problem involving the second Hankel determinant for q-starlike and q-convex functions. Nonlinear Var. Anal. 2023, 7, 985–994. [Google Scholar]
- Kota, W.Y.; El-Ashwah, R.M. Some applications of subordination theorems associated with fractional q-calculus operator. Math. Bohem. 2023, 148, 131–148. [Google Scholar] [CrossRef]
- Khan, M.F.; AbaOud, M. New Applications of Fractional q-Calculus Operator for a New Subclass of q-Starlike Functions Related with the Cardioid Domain. Fractal Fract. 2024, 8, 71. [Google Scholar] [CrossRef]
- Jia, Z.; Alb Lupaş, A.; Bin Jebreen, H.; Oros, G.I.; Bulboacă, T.; Ahmad, Q.Z. Fractional Differential Operator Based on Quantum Calculus and Bi-Close-to-Convex Functions. Mathematics 2024, 12, 2026. [Google Scholar] [CrossRef]
- Oros, G.I. On a new strong differential subordination. Acta Univ. Apulensis 2012, 32, 243–250. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Briot-Bouquet differential superordinations and sandwich theorems. J. Math. Anal. Appl. 2007, 329, 237–335. [Google Scholar] [CrossRef]
- Alb Lupaş, A. On special strong differential superordinations using Sălăgean and Ruscheweyh operators. J. Adv. Appl. Comput. Math. 2014, 1, 1–7. [Google Scholar] [CrossRef]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Amsheri, S.M.; Zharkova, V. Some Strong Differential Subordinations Obtained by Fractional Derivative Operator. Int. J. Math.Anal. 2012, 6, 2159–2172. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A. Strong Sandwich-Type Results for Fractional Integral of the Extended q-Analogue of Multiplier Transformation. Mathematics 2024, 12, 2830. https://doi.org/10.3390/math12182830
Alb Lupaş A. Strong Sandwich-Type Results for Fractional Integral of the Extended q-Analogue of Multiplier Transformation. Mathematics. 2024; 12(18):2830. https://doi.org/10.3390/math12182830
Chicago/Turabian StyleAlb Lupaş, Alina. 2024. "Strong Sandwich-Type Results for Fractional Integral of the Extended q-Analogue of Multiplier Transformation" Mathematics 12, no. 18: 2830. https://doi.org/10.3390/math12182830
APA StyleAlb Lupaş, A. (2024). Strong Sandwich-Type Results for Fractional Integral of the Extended q-Analogue of Multiplier Transformation. Mathematics, 12(18), 2830. https://doi.org/10.3390/math12182830