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finements, generalizations, and extensions. In the present article, we provide generalizations of
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Keywords: Sonin’s identity; Korkine’s identity; Ceby3ev functional; Griiss inequality; Jensen-Griiss
inequality

MSC: 26D15; 26D20; 26D99

1. Introduction

Integral inequalities have been widely implemented in different fields of sciences.
They are quite beneficial for developing and progressing the theory of functional analysis,
differential equations, and applied numerical analysis by estimating sharp quadrature
bounds. In the last two decades, various types of integral inequalities have been utilized
in approximation theory and numerical analysis, enabling us to obtain better estimates
by reducing the approximation of error involved. Integral inequalities provide explicit
bounds pertaining to unknown functions. Integral inequalities serve as a necessary tool in
the study of various classes of differential and integral equations (see [1-5] and references
therein).

Mathematicians have placed effort in the development of inequality theory to find
and explore a large variety of results that are fruitful and notable for applications. Now,
inequalities have evolved to attain magnificent theoretical and applied usage in the fields
of science and engineering. In inequality theory, the Ceby3ev inequality [6] (p. 197) or [7]
(p- 240) is renowned for synchronous functions that produce limit values and helps to
generate a variety of new inequalities. There exists a huge sequence of complements to the
Cebysev inequality which provides estimates for Ceby3ev quotients and differences in the
form of Griiss and Griiss-type inequalities [6] (p. 43). In diverse field of research, these
inequalities have an immense number of variants with several applications in statistical
problems, probability, fractional calculus, and numerical quadrature formulas (see [8-12]).

For two Lebesgue integrable functions h, g : [u,0] — R, the Cebysev functional is given by

! /uvh(é)g(é)dé —~ (u_lv)z </:h(§)d§) </uvg(g)d§>

C(hg)=_—
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In 1882, Cebysev proved in [13] that
eh, )| < — (1 —o)?||W||_||g
ethg)] < 5 - o).
where h, g : [, v] — R are such thatl’, g’ are continuous on [u, v] and |1/, = sup |W'(#)].
tefu,v)

In their 1934 remarkable paper [14], Griiss proved that

€(h, g)| < (M —m)(T' =),

N

provided that there exist the real numbers m, M, ¢, I such that
m<h(@) <M, y<g@)<T

for a.e. { € [u,v]. The constant 1/4 is the best possible.

In 1963, Sokolov in [15] proved that
M _ v 1 v
el < 5 [ (90~ gy [ atoe) oz

provided that there exist the real numbers m, M, such that

m<h() <M

for a.e. { € [u,v]. The constant 1/2 is the best possible.

These are the most demanding inequalities in computational and applied mathematics
due to their effective and immense applications in perturbed quadrature rules [16,17] and
approximation of integral transforms [18,19].

Throughout the paper, we use 1 < p,q < oo as conjugate exponents that are % + % =1

Consider the space of p-power integrable functions LFM . with norm

Ihl, = ([fuwé>Wd§);

© . with the norm

[u,0]

and the space L

[l = ess sup [h(Z)[.
gelu,v)

In [20], M. Niezgoda recently provided an extended Griiss theorem for certain classes
of bounding functions instead of bounding constants as follows:

Theorem 1. Consider the functions h, g,y,x,y, % € 12 o] such that

[u/
(i) 1+ xand v + O are constant functions.
(i) n(¢) <h(Q) <«(C)and v(¢) < g(¢) < &) forall { € [u,v] or more generally
J @) @)@ ~ (@5 20 and - ["(8(0) ~ 0(0))(6(0) — 7))L 2 0.
Then, we have the inequality

1
|€(h,g)| < m”" =718 =7,

In [9], M. Niezgoda also obtained generalization of the above result for LP-spaces.
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Theorem 2. Consider the functions h, 1, x € Lf

u,v

K and g € LT such that

[u,0]

(i) 1+ x is a constant function.
(i) 1(g) <h(C) < () forall { € [u,0].

Then, we have the inequality

M

1 4 J
R /H g(s)ds

It is interesting to note that as a special case of p = q = 2, Theorem 1 is the direct
consequence of Theorem 2.

Recently, M. Niezgoda [21] investigated pre-Griiss-type inequalities pertaining to
continuous functions possessing only one point of non-differentiability. For xo € [u,v],
let D(gp) be the class of all continuous functions h : [1,v] — R differentiable on the set
(u, o) U (Lo, v) and such that

1
C(hg)| < 5——|x—
€, 0)] < 5oy k=l q

M;= sup |h'({)| <o and M, = sup |h'({)| < ce. ()
§€<u1€0> §€<§0,U>

In case o = u (resp. {o = v) we set M; = 0 (resp M, = 0).
For given function h € D({y) we define

| M(Z— o) +h(G) for ¢ € [u, o),
i (6) = { "M (Z ~ Zo) +h(Z0) for £ € [go,v) ®

and
_J —M(Z—%o) +h(go) for ¢ € [u, o],
g (8) = { My (Z — Zo) +h(o) for ¢ € [3o, 0] @)

where M; and M, are defined by (2).
In [21], M. Niezgoda established the following notable result:

Lemma 1. Let h € D({o) for some (o € [u,v]. Denote 11 = 1y, ¢, () and x = xy, g, (L), where M,
and M, are defined by (2). Then, we have that

(i) 1+ x is a constant function.

(i) 1(g) <h(Z) < () forall { € [u,0].
(iii) The Ly-norm of x — 1 is

+171/p
el = e (MG -0 M=) P or1<p <o
2max{M;(lop — u), M;(v — (o)} for p = co.

Later, in [22], Aljinovi¢ et al. provided new weighted estimates of the Griiss inequality
with the bounding functions in weighted LZ} [u,05] SPACES by considering uniform weight
functions. As a result, a new generalized variant of the Ostrwoski inequality and some
applications to weighted quadrature formulae were provided as well.

Motivated by the above literature review, the aim of this paper is to present general-
izations of Griiss- and Sokolov-type inequalities in weighted Lebesgue Ly (), A, i) spaces
by using the weighted Sonin’s identity. To begin, we need to introduce the basic notions.
Let (Q), A, 1) be a measurable space, and for the y-measurable function w : (3 — R, with

w(g) > 0 for p-a.e. { € O, consider the Lebesgue space

Lo(Q, A u) = {h : Q = R, his y — measurable and /w(§)|h(§)|d;¢(§) < oo}.
Q

Forh,g : O — R are y-measurable functions and h, g, hg € L, (Q, A, u); then, the
weighted Cebysev functional is
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- / w Ou(E) - (JV / w(é)h(é)d#(é)) (Vlv / W(C)g(@ﬂlu(é)) ©

where W = /w(@)d}i(g) >0
We wﬂlQapply Sonin’s identity (see [23])
ot = [ @@ @)~ (a0 - [ w@o(@at )antc)

where x is an arbitrary real number and w is the normalized weight function, that is,

= [Twdl=1.

Let us note that the following identity is a generalization of Sonin’s identity

Culhva) = 77 [@(@h(E) ~ 0)(6(0) - D)D) ©
Q
where .
5= 4y [ ©(@s()du(). )
Q

2. Griiss- and Sokolov-Type Inequalities for L., (Q, A, #) Spaces

Here and hereafter, L}, (0, A, ) denotes the function space L., (Q, A, i) equipped
with the norm

1/p
|, = (/w(é)(h(é))pdﬂ(é)) = |[hllw,0,p s [Mlle,o = ess sup[h(D)] = [, 00
QO

zeQ)
and g € (Q(R), u) indicates that g : Q3 — R is y-measurable function.
The following result is a simple consequence of Sonin’s identity (6).
Theorem 3. Leth,g € (Q(R), u) andh,g,hg € Ly, (Q, A, u). Then, we have
€albg)| < 5 [@@I0E) - V(@) - )ldu() ®
Q
where g is weighted average given in (7).
The following result is a direct consequence of Theorem 3.
Theorem 4. Leth,g,c € (Q(R), u) such thath, g, hg € Ly, (Q, A, u). If
h(8) = x| < ¢(§) forp —ae.§ € Q. ©)

Then, we have the inequality

€ulh,g)] < /w 0) - Ddp(0) (10)
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Proof. We obtain (10) from(8) and (9). O

Theorem 5. Leth,g € (Q(R), u) such thath, g,hg € Ly, (Q, A, ) and —co <m < M < +o0
such that

m < h({) < Mforu—ae. €Q. (11)
Then, we have the inequality
M
Colhg)l < T [w(@)1(0(0) - 8)ldn(0). (12)
Q

Proof. If (11) is valid, then we have

m+ M M—-—m
‘h(é )= ) <
for p-a.e. { € Q. Thus, for x = "5 and ¢(¢) = Y7, we obtain (12) from (10). O
Remark 1. The above result was first proven by I. G. Sokolov [15] for the case of QO = [u, v], w({) =
1,u(C) = C. The same result was rediscovered by X. L. Cheng and ]. Sun [17] without weights.
Additionally, the above generalizations were proven by P. Cerone and S. S. Dragomir [16]; here,

however, we employ Sonin’s identity to obtain our results.

Remark 2. Let us note that Theorem 5 is an improvement of the well-known Griiss inequality

(M —m)(T =)

»l>\>—‘

|€w(h,g)| <

where (11) and
—00 <y <g(l) <T < +oofory—aed e (13)

is valid.

In fact, the followmg result frolm [24] is valid
€l o) <5 (M - m)w/w@mg( )~ )ldu(?)

<

N

(M- m% [ [o@w®l(e@) - a(t)dn(@dn(t)
(0N}

N—

< S (M—m)(€u(g,9))

BN =

< (M —m)(T =)

If (9) is valid, then for p > 1, 5+ £ =1, c € LG, (Q, A ) and g € L, (Q, A, pr)
€u(hg)] /w )Ie(@)1(6(0) ~ B ap(2)
v ) i
(W/w 2))du( )) (W!w(é)l(g(é) g)lqdu(ﬁ)) (14)
= WIICIIW,Q,pHg — llw,0g

If (11) is valid for x = M, we have the following result from [25]
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HK - 7/]Hw,p =

Culh,)] < M [w(@)](0(0) - 0)ldu(0)
Q

IN
=
N
3
=l
—
£
D
a
D
|
53/\
=
U
8
o
N————

M—-m _
S oW ||g_gHw,Q,q

n n
Corollary 1. Let h, g be as defined in Theorem 5. In addition, let O = |J Q;and N Q; = @ be
i=1 i=1
suchthatc; € (Q;(R), p),h. If

Ih() = xil < ci(Q) for p—ae ey

then we have the inequality

€uthe)] < o 3 [ @(@a(@)I(6(0) ~)ldp(E). B
Q

Theorem 6. Let the functions h,n,x € LE,(Q, A, 1) and g € LL,(Q, A, u) with1 < p,q < o0
be conjugate exponents such that

(i) n+x is a constant function.
(i) n(¢) <h(Q) <«(C) forall y—a.e.l € Q. Then, we have the inequality

1 _
[€u(h, g)| < WHK_UH(U,Q,pHg_gHw,Q,q‘ (16)

Proof. If (ii) is valid, we have

gor )y—a.e.@ € Q. Thus, for x = ”(C);K(O and ¢({) = M, we obtain (16) from (9) and
14). O

Lemma 2. Let Q = [u,0] and h € D({o) for some {y € [u,v]. Denote 5 = 11y, ({) and
K = K¢, (C), where Mj and M, are defined by (2). Then, we have that

(i) 1+ x is a constant function.
(ii) 1(§) <h(§) < x(C) forall§ & [u,v].
(iii) The LY,-norm of x — 1 is given by
%o v p
2| Mf [@(@)@ - 0 au(@) + Mf [0@) G-/ du@)|  fri<p<e,
u %o
2max{M;(lo — u), M;(v— (o)} for p = 0.

Proof. First, we take {y € (u,v). From (3) and (4), we find that () + x({) = 2h({o) which
proves (i).

To prove (ii), we will assume first that x € [u, (p). By Lagrange’s mean value theorem,
for all x € [u,{p), exists 1 € ({, o) such that

h(Z) =h(go) =h'(&1)(Z = Co)-
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It is clear that
—M; < =W (&) <H (&) < |W(&)] < M
and { — (o < 0 which gives

—M;(Z — o) +h(Zo) >N (81)(Z — Zo) +h(Zo) > Mi(Z — o) +h(Zo). (18)

Equation (18) is also valid for { = {p. Then, from (3)—(4) we have

1(¢) <h(Z) < x(g) forall ¢ € [u, ol. (19)

Similarly, for { € (o, v] we have

h(Z) —h(go) =N (&2)(¢ — o)

for some ¢ € (o, (). Then, for { € ({p, v] we have

—M, (¢ — o) +h(Zo) <W(&2)(C — o) +h(Zo) < M( — o) +h(Zo) (20)

Equation (20) is also valid for { = {y. From that, we have

1(¢) <h(Z) < x(¢) forall ¢ € [Zo, v]. (21)
From (19) and (21), we obtain (ii).

(iii) Simple calculation for 1 < p < oo gives

1/p
—Mllwap = (/w (kn,go (€ Uh,go(@)pdﬂ(é))

1/p
_2{1\4"/@; 0)(Co —0)Pdu () +M”/w (C— éo)”dﬂ(é)]
o

and for p = o
=l =ess sup |[kng,(Q) = g (2)]|
o €[]
= 2max{M;(CO — U)/ Mr(v - go)}
Here (i), (ii), and (iii) can be determined with similar steps to the cases {y = 1 (when

M; =0and M, = sup |[W({)|)and {p = v (when M, = 0and M; = sup |h'()]). O
fe(uo) ge(u,v)

Remark 3. From Lemma 2 we obtain Lemma 1 for w({) = 1 and u(g) = C.

Corollary 2. With the same assumptions as in Lemma 2 we obtain
1/p
Culb,0)| <3 | M] / w(@)(G0 ~ &) dn(e) + M} / w(@)( - o) dn(?)
%o
X Hg _gHw,qf fOTl < p <oo

and
1

|€wlh, g)] = 3 max{M;(Go — u), Mr(v = Co) g — Gl forg =1.
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Proof. Because h € D({), his continuous on [u, 0], it is implied thath € L” (0] NOW, we

simply employ Lemma 2 to Theorem 6. O

Theorem 7. Let h,g € (Q(R), u) and g € LL,(Q, A, u). If Q = [u,v] and x = h(Qo). Then,
we have the inequalities

1/p

o v
Cullug)] <gp | Mf (@)@ -0 d(6) + M! (@)~ Lo)du()
u o
% llg =0l for 15 p<co

and
1 _
|€w (b, g)| < 77 max{Mi(Go — u), Mr(v = o)} g — 8l for p = co.

Proof. Inserting Q) = [u,v] and x = h({p) in (6) for 1 < p < oo, we obtain

Cullg) = 31 [@(@)(h(Z) ~ h(G0))(6(0) ~ T)An(E). @)

By Lagrange’s mean value theorem we have

((hE) = hico))] = { ﬁﬁ%”__g?)j Zogsgéégggf 23)

From (22), we can obtain

%o
1
Culb,g) = 35 (O (h(E) = h(E)(a(0) ~Ddn(?)
s vw(é)(h(é) —h(C0))(a(8) —®)du(Z) (24)
W
%o
Then, by taking absolute value with the triangular and Holder’s inequalities, we obtain

%o
[€u(h, g)| < ‘

[ ©@OBE) ~ @) (6(@) - Dan(@)

TeEs [ @@h(@) ~ho))6() —g)dmc)‘
Co

1 _
< wh(@) —h@o)ll ol 18 =l eg,1u0]

[

1 _
+ 3 h@) = h@ = Tl 25)

w,p,
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Now, employing the bounds of (23) in (25) and considering the discrete Holder’s
inequality leads us to:

1

_ 1 _
wlh@ =R@)I_ 8= lgug) * 3y IO 0@, 18~ Ty

o i
S W (/w(é)(éo - C)pdﬂ(é)) I8 = 8llw,q,u.20]

p

+w< w(C)(C—Co)pdﬂ(€)> 18 = 8lle,g,(20.0
G

o v P
- (Mf [w@@o—raun@) +M! [ w(@)@ - @)”dy(@))
u o
(8 =Tl 0] + 18 = Tl 2001
%
(M’”/W §)(&o —&)Fdu(0) +MP/W (CCo)”dMC)) 18 =8l
o

Similarly, for p = co we obtain
M %o
Colhg)] < 3 [@(@)Co —)I(8() —9)ldn(0)

+ 57 [0@)@ - @)6(0) - 9)ldn(2)
o

Corollary 3. Let Q) = U Q;, ﬂ Q; = @ and the functions n;,x; € LE,(Q, A, u)h, e Lk,
i=1 i=1

(Q, A, pu)and g € LL(OQ, A, 1) with 1 < p,q < oo be conjugate exponents such that

(i) u; + x; are a constant functions, i =1,...,n
(i) ;) <h(Q) <x;(Q) forall y —a.e.l € Q;, i =1,...,n. Then, we have the inequality

1

P
zwmwhg|<<2nm mwg,p) o~ 8l (26)

Proof. This theorem is a simple consequence of Theorem 7. Specifically, from Theorem 7
and the application of the discrete Holder’s inequality, we obtain
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2W|€w(h, g)|

IN

IN

IN

[ @@ (@) + @)@ -9)ldn(@) +

0

[ €@ m(@) +xa(0)1(0(0) = 8)lan(@)

Oy

Hﬂl - Kl”w,ﬂl,pHg _§‘|w,01,q +oot Hﬂn - K'ﬂHwOn pHg _guw,ﬂn,q

(I = w1l 4 =l ,) (8 = @+ 5~ Tlr,,) "

n % n q %
ZH’?z Kszle ZHQ—@HMQM
i=1 i=1
1

P
1“’71’ - Kl'HZ),Qi,p) g — ﬁ”w,o,q .
O

Remark 4. Let M be a positive number such that My, > max{M;, M, }. Then , from Theorem 7,
we have

u

o 1/p
€l g)] <" l/ ()60 — )P du(z) + /w 0§~ 20)'du(@)

X Hg_gHw,q fOTl < p <o

and

Colhg)] < T max{(Go — u), (0~ &)} g Bl for p=co.

Let us consider (6) for x = h. By Cauchy’s inequality, we can obtain the following
inequality.
Theorem 8. Leth,g: Q) € (Q(R), u) andh, g, hg € L,(Q), A, u). Then, we have
(€w(h,9))* < €u(h,h)Cu (g 0). (27)

Proof. Applying Cauchy’s inequality, we have

2
(Cu(hg))’ ( Jo@)( )(g@)—g)du@))
< (W J (@) (n@) —h)zdm) (Vlv @) —g)zdmc))

@)
= Qﬁw(h,h)Ew(g,g).
O

In contrast, a simple consequence of a Cauchy-type inequality and Sonin’s identity (6)
gives the following inequality.
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Theorem 9. Leth,g: Q € (Q(R), u) and h,g,hg € Ly, (Q, A, ). Then, we have

(€lh0))? < €o(.8)77 [@(O0(D) — x)dp(2). @

Proof. We obtain this inequality by employing Theorem 8 and Sonin’s identity (6). [

The next theorem is also valid.

Theorem 10. Leth,g € (Q(R), p) and h, g, hg € L, (Q, A, ). Then, we have

Culh,h) < o [w(@)(h(@) ~ 1) du(2). 29)

Proof. If we set g = hin (28) we have a new inequality. [J

Remark 5. For x = h, where x is an arbitrary real number and

b= [ @@o@du)
Q

We have equality in (29). It is obvious that

— inf— / w X)2du(Z) (30)

acRW

and we have this infimum for x = h.
Theorem 11. Leth,g € (Q(R), p) and h, g, hg € L, (Q, A, i), and assume that
[h(&) = x| < c(§) forp—ae. T €. (31)

Then, we have the inequality

Colhvh) < 15 [@(@) () ?du (D)
(@)

Proof. If (31) is valid from (29), we obtain the required inequality. [

Theorem 12. With the same assumptions as in Theorem 11 and

9(0) —v| <d({) foru—aelcQ (32)

is valid, where v is a real number, we have the inequality

€ (h, g)| < Vlv( ! w(é)(c(é)fdu(é)) ( z w(C)(d(é))zdﬂ(é)) : (33)

Proof. If (32) and (31) are valid, from (27) and (30) we obtain (33). O

Theorem 13. Consider the functions h,g,1,%,7,9 € L2,(Q, A, i) such that

(i) 1+ xand v + © are constant functions.
(i) 1() <h(Z) < x(g) and 7({) < 9(7) < 8(C) forall p— aed € Q.
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Then, we have the inequality

1
|€¢U(hlg)| < MHK_UHw,Q,ZHﬂ_’)/Hw,Q,Z' (34)

Proof. If (ii) is valid, we have

so forv = M ,A(0) = M and p,q = 2 we obtain (34) from (32) and (16). O

Corollary 4. Let h,g € (Q(R), ) and h,g,hg € L, (Q, A, u). From (28) and (29), we can
obtain

(€alh,)) < 57z [©(@)0(E) =0 dn(e / w(©)(a(0) —v’dn(@). 69
Q
Remark 6. Substituting QO = [u,v], x = h({o) and v = g({o) in (35), we obtain
(€ah,0)? < 71 / w h(co)d(¢ / w(@)(6(0) - 8(0) (@) ©6)

whereh, g : [u,v] — R are differentiable on the set (u, (o) U ({o, v) and such that (2) is valid and

[y = sup |g/(¢)] <coand I; = sup [¢'({)| < co.

g€ (u,co) celcod)
Let
@) e = { ) N
and

Then, we have

J@@ @) —ndu(@) = [ (@)@ —h(@0) du(@) @7)

= [w@)(h(@) ~h(0) du(c) + / w(@)(B(@) ~h(0))dp(0)

<M2/a; (2o — 2)%du(2) +M2/w (Zo—0)*du(2).
o

Similarly, we obtain
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Jw@)(6@) = 0dn(@) = [€(@)(a) - 8(c0)dp(@) 8)

— [@(©)(6(2) - a(@)du(c) + / w(@)(8(2) — 8(20))2u(2)

u

<F2/w (Zo— 0)%du(Z +F2/w (Zo = 0)*du(Q).
o

Substituting (37) and (38) in (36), we have

(Cw(h, g)) <W<M2/w (Zo—0)*du( +M2/w éo—é)du(é))

%o
I} [w(©) (@0 — (@) + 17 / w(@)(o - a)zdu(o) .
u o

Theorem 14. Leth € (Q(R), p) andh € L, (Q, A, ), —oo < m < M < o0 such that
m < h({) < Mforu—ae.{ €Q. (39)

Then, we have the inequality

Proof. Follows from (29) and (39). O

Remark 7. If (13) is also valid then we have the Griiss inequality

(M — m)(T — 7).

»Mr—\

|€w(h, g)] <

Finally, we state the last result of our paper, which provides an extension of Theorem 13
with more relaxed conditions.

Theorem 15. Let h,g,1,%,7,98 € L2,(Q, A, i) be functions such that
(i) 1+ xand v + O are constant functions.

(i) / w(@)(x(§) ~h(2))(h(@) = 1(2))dp(¢) > 0 and

& / w 0)(8(2) — 1(©)du(Z) > 0
for all y —a.e.l € Q. Then, the following inequality holds.

Cw(hg) < m”’( Mw,a2ll® = 7llwas (40)
Proof. From Theorem 8, we obtain

(ij(h,g))2 < Qw(h/h)cw(grg)- (41)
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and

2
Culhih) = 7 [@@R@)dn() - (JV / W(é)h(é)du(é)) . @)
Q

Now, by assumed conditions we have

1

o @@ —h(@) (h(E) ~ 1(0)dn()

(43)
Now, using (43), we obtain

Culb ) < o z (@) + X OREAR(E) ~ 75 ([ 0@n@@)u()

2
1 1 1
- (W/w(é)h(é)dy(é)) - m”" - ’7||i;,0,2 + m”" - '7||i;,0,2-
o)

Now, using the fact that () + x({) = x = h, we can obtain

2
X ([ w()h(@)dn() - (Vlv J w(C)h(é)du(C)) -0.

(44)

(45)
and

(46)
Thus, (44) becomes

1 2 X
Q:w(hzh) < mHK - 17||a),0,2 - Z

1 2
< WHK_UHM,Q,Z' (47)

In the similar passion, one can obtain

1 2
Cw(g,9) < MHF_'YHW,Q,Z' (48)

Substituting bounds (47) and (48) into (41), we establish (40), which completes the
proof. O
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3. Applications to new Jensen—Griiss Bounds
We start with the weighted version of Korkine’s identity [7] (p. 242) (see also [26]) :

1
CalY,h) = 505 [ [0(@wv) (Y©) = YW) (h(Q) ~ hiy) )dn@duty) @)
Q0
which holds for all y-measurable functions w, Y, h, with w({) > 0 for y — a.e. { € (), such

that Y,h € Ly, (Q, A, ).

Theorem 16. Let Y : I C R — R be a differentiable mapping with a continuous first derivative.
Leth : Q — I such that h,n,x,Y oh,Y oh € L2(Q, A, u) and h,n,« satisfy the following
conditions:

(i) 1+ x is a constant function.

(i) [ () (() = h() (1(E) = 7(0))An(2) > 0forall j — e € Q.
Q
Furthermore, suppose that there exists m, M € R satisfying
m<Y() <M,  forall €L (50)

Then, we have the following inequalities

W/w 0)(Y oh)(Q)du(C ( /w )‘ (51)

2\
—m) (I}V/w(g)hz(g)dy(g) - <V1V/w(§)h(é)dﬂ(€)> )
Q Q

(M —m)
4\/W ||K - 77”«1,0,2'

Proof. As a consequence of the mean value theorem, for the points {,y € I, we can write
that there exists 3, ¢ <3 < y such that

Y()=Y(y) =Y~y (52)

IN

IN

Using (52) for { = h = %/w(@)h(g)d‘u(g) and y = h, we conclude that there exists
0

¢ (h < g <h) such that
Y(H) —Y(h) = Y'(g) (H - h) (53)

Now, multiplying (53) by w({) and integrating over ) yields
— [€@Y(©)du(@) = b [w(@)Y'(g(0)dn(0) — [w(@)Y'(5()h(@)dn(?).
o} Q o}
Dividing by W, we obtain
W/w O)(Yoh)(0)du(C (I}V/w )
o}

W ({ (@)Y (RED(EN(E) ~ 1 ! W(@RQAH(E) gy [@(@Y (&E)A(E). 69
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Now, taking the modulus on both sides and using the weighted Krokine’s identity (49)

gives
1 1
’W ! w(@)(Y e h)()dp(Z) - Y<w Z w(@)h(@)dy(@)) |
= | [ @Y QOO — 35 [@@h@dn(@) gy [ (@) (g(é))dﬂ(é)‘
(@) Q
Culb,Y'(9))| < 503 [ [ 1Y (8(6) = Y (g)ldn(@)dp(y)
(ON0]

Now, applying a Cauchy-Schwartz inequality, we can state that the last expression is

@@ oW @dn(c) - Y(Vlv / w(@)h(@)du(@)) ‘
Q Q

< ei(hh) €(Y(3),Y'(g)).

less than

(55)
Now, utilizing weighted Griiss inequality on second term, we obtain

< ¢2(hh) =(M—m)

(w/” @ ( /“’ )2)%(1\42@

Now, utilizing Theorem 15 for Y = h on first term, we obtain

(=m)

N —

2\/>HK 77“0,;02
O]

Now, we provide refinements of Jensen—Griiss inequality for functions h,#,x €
L2 (Q, A, ) satisfying the conditions assumed in Theorem 13.

Corollary 5. Under the assumptions of Theorem 16, if h, 4, k satisfy the conditions

(i) 1+ x is a constant function.

(i) n(¢) <h(Q) <«(C)forally —a.e.g € Q.
then, there exist m, M € R such that (50) is valid, we again obtain inequalities given in (51).

Proof. Similar to that of Theorem 16. [

Now, we use other results of the paper to provide new Jensen-Griiss inequalities.
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Theorem 17. Let Y be as defined in Theorem 16 and h : Q) — I be a function such that h,Y o
h,Y oh € L,(Q, A, ) for, u—a.e.l € Q. Furthermore, there exist m, M € R satisfying (50).
Then, we have the following inequalities

/w (Y o h)(Q)du(C (/w )‘ (56)
2\ 2
S(M;m(w/“’ O (E)dp(g <w/“’ ) )

< W-m (Vlv @) —x)2du(é)> -
Q

Proof. We have already established in the proof of Theorem 16 that

‘W/w (Yoh)(0)du(g ( /w )‘

Nl—

< el (hh) €2 (Y(9),Y(g))
< el(hh) 3 (M- m)

2\ 2
(W/w Yh2(0)du (g (W/w )) M (57)

Now, utilizing Theorem 10 on the first term, we obtain the required results. [J

The next result is the direct consequence of Theorem 11.

Corollary 6. Under the assumptions of Theorem 17, if
h(¢) = x| < ¢(f) forp —ae.§ €. (58)

Then, we have the following inequalities

W/w 0)(Y o h)(Q)du(C ( /w )‘ (59)

2
< M (Vl\//w(g)hz(g)dy(é) - <V1v_/w(€>h<5)dﬂ(€)> )
Q

< <M2’“<W/w (0)) du(C)>2-

The next result is an important consequence of Corollary 4 and Remark 6.

Corollary 7. Let Y : I C R — R be a differentiable mapping with a continuous first derivative.
Furthermore, let h : [u, v] — I be differentiable on the set (u, (o) U (o, v) such that (1.7) is valid

and
@) —n@op| < { e b=zt
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Furthermore, suppose thath,Y oh,Y' oh, € Lw/[u/v] and there exists an m, M € R such that
(50) holds. Then, we have the following inequalities

@@ on) @dn(@) —Y(Vlv / w(é)h(é)dﬂ(€)> ‘ (60)

u

v v 2
< W(;v/w(g)h%g)dy(g) - (vlv/w(é)h(é)dﬂ(é)> )

u

2

o v
SWZ;’”) % M,Z/w(g)(go—g)zdy(z;)+M$/w(€)(€o—§)2dy(é)

o

Proof. Using Corollary 4 and employing Remark 6 by substituting Q) = [u, v] ,x = h(xp), we
obtain

%o v
Culbih) < o | M [w(@)Go— 0%u(@) + M2 [@(@)(@ - 0Pdu(?)
u %o

Now, considering this bound for €, (h, h) in the first term of (57), we will obtain the
required results. [

4. Conclusions

In the present article, we introduced generalizations of pre-Griiss- and Griiss-type
inequalities in weighted Lebesgue L, ((2, A, i) spaces by utilizing the weighted Sonin’s
identity. In the newly generalized inequalities, the bounding constants are improved with
bounded functions in weighted Lebesgue L2 (0, A, 1) spaces. Weighted bounds for the
Cebysev functional as well as the weighted Sokolov’s inequality are established. Several
special and interested cases are presented as well. We also proved the above generalizations
by employing weaker assumptions. Finally, we use our obtained results to construct new
refinements and bounds for Jensen—Griiss type inequalities. It is pertinent to mention that
such results can be discussed for weighted sequence spaces using the discrete Cebysev-
and Griiss-type inequalities. In the future, it is possible to expand on the results of this
study by considering isotonic linear functionals or inner product spaces.
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