Hurwitz Zeta Function Is Prime
Abstract
1. Introduction and Preliminaries
2. Proofs of Theorems
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenbloom, P.C. The fix-points of entire functions. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952, 186–192. [Google Scholar]
- Gross, F. On factorization of meromorphic functions. Trans. Am. Math. Soc. 1968, 131, 215–222. [Google Scholar] [CrossRef]
- Liao, L.; Yang, C.C. On some new properties of the gamma function and the Riemann zeta function. Math. Nachrichten 2003, 257, 59–66. [Google Scholar] [CrossRef]
- Hurwitz, A. Einige Eigenschaften der Dirichlet uschen Funktionen F(s)=∑() · , die bei der Bestimmung der Klassenanzahlen binärer quadratischer Formen auftreten. Z. Math. Phys. 1882, 27, 86–101. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Undergraduate Texts in Mathematics; Springer: New York, NY, USA; Heidelberg, Germany, 1976. [Google Scholar]
- Laurinčikas, A. On universality of the Riemann and Hurwitz zeta functions. Results Math. 2022, 77, 29. [Google Scholar] [CrossRef]
- Sourmelidis, A.; Steuding, J. On the value-distribution of Hurwitz zeta functions with algebraic parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Fejzullahu, B. On the Poincaré expansion of the Hurwitz zeta function. Lith. Math. J. 2021, 61, 460–470. [Google Scholar] [CrossRef]
- Nevanlinna, R. Zur theorie der meromorphen funktionen. Acta Math. 1925, 46, 1–99. [Google Scholar] [CrossRef]
- Chuang, C.T.; Yang, C.C. Fix-Points and Factorization of Meromorphic Functions; World Scientific Publishing Co., Inc.: Teaneck, NJ, USA, 1990; pp. x+227, (Translated from the Chinese). [Google Scholar]
- Saoudi, B.; Boutabaa, A.; Zerzaihi, T. On factorization of p-adic meromorphic functions. Indag. Math. (N. S.) 2020, 31, 921–933. [Google Scholar] [CrossRef]
- Ye, Z. The Nevanlinna functions of the Riemann Zeta-function. J. Math. Anal. Appl. 1999, 233, 425–435. [Google Scholar] [CrossRef]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2007; Volume 1877, pp. xiv+317. [Google Scholar]
- Garunkštis, R.; Steuding, J. On primeness of the Selberg zeta function. Hokkaido Math. J. 2020, 49, 451–462. [Google Scholar] [CrossRef]
- Garunkštis, R. Selberg zeta function associated with compact Riemann surface is prime. Rev. Union Matemahica Argent. 2021, 62, 213–218. [Google Scholar] [CrossRef]
- Chuang, C. Several Topics in Theory of One Complex Variable; Science Press: Beijing, China, 1995. [Google Scholar]
- Lerch, M. Note on the fonction K(w,x,s) = . Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Garunkštis, R. Approximation of the Lerch zeta function. Lith. Math. J. 2004, 44, 140–144. [Google Scholar] [CrossRef]
- Titchmarsh, E.C. The Theory of the Riemann Zeta-Function, 2nd ed.; The Clarendon Press, Oxford University Press: New York, NY, USA, 1986; pp. x+412. [Google Scholar]
- Hayman, W.K. Meromorphic Functions; Oxford Mathematical Monographs, Clarendon Press: Oxford, UK, 1975. [Google Scholar]
- Spira, R. Zeros of Hurwitz zeta functions. Math. Comp. 1976, 30, 863–866. [Google Scholar] [CrossRef]
- Garunkštis, R.; Steuding, J. On the distribution of zeros of the Hurwitz zeta function. Math. Comp. 2007, 76, 323–337. [Google Scholar] [CrossRef]
- Conway, J. Functions of One Complex Variable; Springer: New York, NY, USA, 1973. [Google Scholar]
- Milnor, J. Dynamics in One Complex Variable, 3rd ed.; Annals of Mathematics Studies; Princeton University Press: Princeton, NJ, USA, 2006; Volume 160, pp. viii+304. [Google Scholar]
- Kratsios, A.; Papon, L. Universal approximation theorems for differentiable geometric deep learning. J. Mach. Learn. Res. 2022, 23, 1–73. [Google Scholar]
- Fong, B.; Spivak, D.I. An Invitation to Applied Category Theory; Seven Sketches in Compositionality; Cambridge University Press: Cambridge, UK, 2019; pp. xii+338. [Google Scholar]
- Katz, J.; Lindell, Y. Introduction to Modern Cryptography, 3rd ed.; Chapman & Hall/CRC Cryptography and Network Security, CRC Press: Boca Raton, FL, USA, 2021; pp. xx+626. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dundulis, M.; Garunkštis, R.; Karikovas, E.; Šimėnas, R. Hurwitz Zeta Function Is Prime. Mathematics 2023, 11, 1150. https://doi.org/10.3390/math11051150
Dundulis M, Garunkštis R, Karikovas E, Šimėnas R. Hurwitz Zeta Function Is Prime. Mathematics. 2023; 11(5):1150. https://doi.org/10.3390/math11051150
Chicago/Turabian StyleDundulis, Marius, Ramūnas Garunkštis, Erikas Karikovas, and Raivydas Šimėnas. 2023. "Hurwitz Zeta Function Is Prime" Mathematics 11, no. 5: 1150. https://doi.org/10.3390/math11051150
APA StyleDundulis, M., Garunkštis, R., Karikovas, E., & Šimėnas, R. (2023). Hurwitz Zeta Function Is Prime. Mathematics, 11(5), 1150. https://doi.org/10.3390/math11051150