Performance Comparison between Type-1 and Type-2 Fuzzy Logic Control Applied to Insulin Pump Injection in Real Time for Patients with Diabetes
Abstract
:1. Introduction
2. Background and Basic Concepts
2.1. Type 1 Diabetes
Diabetes and Stress
2.2. Fuzzy Logic and Applications
3. Problem Description
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Association, A.D. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2019, 43 (Suppl. 1), S14–S31. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.G.; Nagib, G. Embedded Control Design for Insulin Pump. In Advanced Manufacturing Systems, ICMSE 2011; Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 201, pp. 2399–2404. [Google Scholar] [CrossRef]
- Karges, B.; Schwandt, A.; Heidtmann, B.; Kordonouri, O.; Binder, E.; Schierloh, U.; Boettcher, C.; Kapellen, T.; Rosenbauer, J.; Holl, R.W. Association of Insulin Pump Therapy vs. Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. JAMA 2017, 318, 1358–1366. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Nimri, R.; Beck, R.W.; Criego, A.; Laffel, L.; Schatz, D.; Battelino, T.; Danne, T.; Weinzimer, S.A.; Sibayan, J.; et al. A Comparison of Two Hybrid Closed-Loop Systems in Adolescents and Young Adults with Type 1 Diabetes (FLAIR): A Multicentre, Randomised, Crossover Trial. Lancet 2021, 397, 208–219. [Google Scholar] [CrossRef]
- Álvarez Casaño, M.; del Mar Alonso Montejo, M.; Leiva Gea, I.; Jiménez Hinojosa, J.M.; Santos Mata, M.Á.; Macías, F.; del Mar Romero Pérez, M.; de Toro, M.; Martínez, G.; Munguira, P.; et al. Estudio de Calidad de Vida y Adherencia Al Tratamiento En Pacientes de 2 a 16 Años Con Diabetes Mellitus Tipo 1 En Andalucía. An. Pediatría 2021, 94, 75–81. [Google Scholar] [CrossRef] [PubMed]
- DeMarsilis, A.; Mantzoros, C.S. The Continuum of Insulin Development Viewed in the Context of a Collaborative Process toward Leveraging Science to Save Lives: Following the Trail of Publications and Patents One Century after Insulin’s First Use in Humans. Metabolism 2022, 135, 155251. [Google Scholar] [CrossRef] [PubMed]
- Díez Gutiérrez, B. Curso Básico Sobre Diabetes. Tema 1. Clasificación, Diagnóstico y Complicaciones. Farm. Prof. 2016, 30, 36–43. [Google Scholar] [CrossRef]
- Saldarriaga-Giraldo, C.; Navas, V.; Morales, C. De La Diabetes a La Insuficiencia Cardiaca ¿Existe La Miocardiopatía Diabética? Rev. Colomb. Cardiol. 2020, 27, 12–16. [Google Scholar] [CrossRef]
- Tittel, S.R.; Rosenbauer, J.; Kamrath, C.; Ziegler, J.; Reschke, F.; Hammersen, J.; Mönkemöller, K.; Pappa, A.; Kapellen, T.; Holl, R.W. Did the COVID-19 Lockdown Affect the Incidence of Pediatric Type 1 Diabetes in Germany? Diabetes Care 2020, 43, e172–e173. [Google Scholar] [CrossRef]
- Alonso, N.; Batule, S. COVID-19 y Diabetes Mellitus. Importancia Del Control Glucémico. Clínica E Investig. En Arterioscler. 2021, 33, 148–150. [Google Scholar] [CrossRef]
- Hernández Herrero, M.; Terradas Mercader, P.; Latorre Martinez, E.; Feliu Rovira, A.; Rodríguez Zaragoza, N.; Parada Ricart, E. Nuevos Diagnósticos de Diabetes Mellitus Tipo 1 En Niños Durante La Pandemia COVID-19. Estudio Multicéntrico Regional En España. Endocrinol. Diabetes Y Nutr. 2022, 69, 709–714. [Google Scholar] [CrossRef]
- Dovc, K.; Battelino, T. Evolution of Diabetes Technology. Endocrinol. Metab. Clin. North Am. 2020, 49, 1–18. [Google Scholar] [CrossRef]
- Barrio Castellanos, R. Avances En El Tratamiento de La Diabetes Tipo 1 Pediátrica. An. Pediatría 2021, 94, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Huard, B.; Kirkham, G. Mathematical Modelling of Glucose Dynamics. Curr. Opin. Endocr. Metab. Res. 2022, 25, 100379. [Google Scholar] [CrossRef]
- Poddar, A.; Rangwani, N.; Palekar, S.; Kalambe, J. Glucose Monitoring System Using Machine Learning. Mater. Today Proc. 2022, 73, 100–107. [Google Scholar] [CrossRef]
- Haynes, E.; Ley, M.; Talbot, P.; Dunbar, M.; Cummings, E. Insulin Pump Therapy Improves Quality of Life of Young Patients With Type 1 Diabetes Enrolled in a Government-Funded Insulin Pump Program: A Qualitative Study. Can. J. Diabetes 2021, 45, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, A.; Padhi, R. Optimization Techniques for Online MPC in Android Smartphones for Artificial Pancreas: A Comparison Study. IFAC-PapersOnLine 2022, 55, 561–566. [Google Scholar] [CrossRef]
- Farman, M.; Saleem, M.U.; Ahmad, A.; Imtiaz, S.; Tabassum, M.F.; Akram, S.; Ahmad, M.O. A Control of Glucose Level in Insulin Therapies for the Development of Artificial Pancreas by Atangana Baleanu Derivative. Alexandria Eng. J. 2020, 59, 2639–2648. [Google Scholar] [CrossRef]
- Aguilar, M.E.B. El Estrés y Su Influencia En La Calidad de Vida. Multimed 2017, 21, 971–982. [Google Scholar]
- Alberto, R.S.C. Procesos Complejos Del Estrés: Dinámica No-Lineal; Universidad Nacional de Colombia: Bogotá, Colombia, 2012. [Google Scholar]
- Beléndez Vázquez, M.; Lorente Armendáriz, I.; Maderuelo Labrador, M. Estrés Emocional y Calidad de Vida En Personas Con Diabetes y Sus Familiares. Gac. Sanit. 2015, 29, 300–303. [Google Scholar] [CrossRef]
- Juárez Jiménez, M.V. Influencia Del Estrés En La Diabetes Mellitus. NPunto 2020, 3, 91–124. [Google Scholar]
- Storino, M.A.; Contreras, M.A.; Rojano, J.; Serrano, R.; Nouel, A. Complicaciones de La Diabetes y Su Asociación Con El Estrés Oxidativo: Un Viaje Hacia El Daño Endotelial. Rev. Colomb. Cardiol. 2014, 21, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Montes Delgado, R.; Oropeza Tena, R.; Pedroza Cabrera, F.J.; Verdugo Lucero, J.C.; Enríquez Bielma, J.F. Manejo Del Estrés Para El Control Metabólico de Personas Con Diabetes Mellitus Tipo 2. En-Claves Del Pensam. 2013, 7, 67–87. [Google Scholar]
- Simić, D.; Kovačević, I.; Svirčević, V.; Simić, S. 50 Years of Fuzzy Set Theory and Models for Supplier Assessment and Selection: A Literature Review. J. Appl. Log. 2017, 24, 85–96. [Google Scholar] [CrossRef]
- Lotfi, A.; Zadeh, R.A.A. Fuzzy Logic Theory and Applications: Part I and Part I; World Scientific Publishing: Singapore, 2018. [Google Scholar] [CrossRef]
- Höhle, U. On the Mathematical Foundations of Fuzzy Set Theory. Fuzzy Sets Syst. 2022, 444, 1–9. [Google Scholar] [CrossRef]
- Voskoglou, M. Fuzzy Sets, Fuzzy Logic and Their Applications; MDPI-Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Systems Introduction and New Directions, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Timothy, J.R. Fuzzy Logic with Engineering Applications, 3rd ed.; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Castillo, O.; Aguilar, L.T. Background on Type-1 and Type-2 Fuzzy Logic BT—Type-2 Fuzzy Logic in Control of Nonsmooth Systems: Theoretical Concepts and Applications; Castillo, O., Aguilar, L.T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 5–19. [Google Scholar] [CrossRef]
- Najariyan, M.; Mazandarani, M.; John, R. Type-2 Fuzzy Linear Systems. Granul. Comput. 2017, 2, 175–186. [Google Scholar] [CrossRef]
- Sharma, N.; Sampath Dakshina Murthy, A.; Karthikeyan, T.; Usha Kumari, C.; Omkar Lakshmi Jagan, B. Gait Diagnosis Using Fuzzy Logic with Wearable Tech for Prolonged Disorders of Diabetic Cardiomyopathy. Mater. Today Proc. 2020, online. [Google Scholar] [CrossRef]
- Oshita, S.; Nakakimura, K.; Sakabe, T. Hypertension Control during Anesthesia. Fuzzy Logic Regulation of Nicardipine Infusion. IEEE Eng. Med. Biol. Mag. 1994, 13, 667–670. [Google Scholar] [CrossRef]
- Kora, P.; Meenakshi, K.; Swaraja, K.; Rajani, A.; Kafiul Islam, M. Detection of Cardiac Arrhythmia Using Fuzzy Logic. Inform. Med. Unlocked 2019, 17, 100257. [Google Scholar] [CrossRef]
- Iancu, I. Heart Disease Diagnosis Based on Mediative Fuzzy Logic. Artif. Intell. Med. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Thukral, S.; Rana, V. Versatility of Fuzzy Logic in Chronic Diseases: A Review. Med. Hypotheses 2019, 122, 150–156. [Google Scholar] [CrossRef]
- Kumar, A.; Raj, R. Design of a Fractional Order Two Layer Fuzzy Logic Controller for Drug Delivery to Regulate Blood Pressure. Biomed. Signal Process. Control 2022, 78, 104024. [Google Scholar] [CrossRef]
- Thakkar, H.; Shah, V.; Yagnik, H.; Shah, M. Comparative Anatomization of Data Mining and Fuzzy Logic Techniques Used in Diabetes Prognosis. Clin. eHealth 2021, 4, 12–23. [Google Scholar] [CrossRef]
- Arji, G.; Ahmadi, H.; Nilashi, M.; Rashid, T.A.; Ahmed, O.H.; Aljojo, N.; Zainol, A. Fuzzy Logic Approach for Infectious Disease Diagnosis: A Methodical Evaluation, Literature and Classification. Biocybern. Biomed. Eng. 2019, 39, 937–955. [Google Scholar] [CrossRef]
- Sharma, R.; Deepak, K.K.; Gaur, P.; Joshi, D. An Optimal Interval Type-2 Fuzzy Logic Control Based Closed-Loop Drug Administration to Regulate the Mean Arterial Blood Pressure. Comput. Methods Programs Biomed. 2020, 185, 105167. [Google Scholar] [CrossRef] [PubMed]
- Doctor, F.; Syue, C.-H.; Liu, Y.-X.; Shieh, J.-S.; Iqbal, R. Type-2 Fuzzy Sets Applied to Multivariable Self-Organizing Fuzzy Logic Controllers for Regulating Anesthesia. Appl. Soft Comput. 2016, 38, 872–889. [Google Scholar] [CrossRef]
- Bressan, G.M.; Azevedo, B.F.; de Souza, R.M. A Fuzzy Approach for Diabetes Mellitus Type 2 Classification. Brazilian Arch. Biol. Technol. 2020, 63. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Liu, W.D.; Xiao, Y. Application of Fuzzy Logic Control for Regulation of Glucose Level of Diabetic Patient BT-Machine Learning in Healthcare Informatics; Dua, S., Acharya, U.R., Dua, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 47–64. [Google Scholar] [CrossRef]
- Asadi, S.; Nekoukar, V. Adaptive Fuzzy Integral Sliding Mode Control of Blood Glucose Level in Patients with Type 1 Diabetes: In Silico Studies. Math. Biosci. 2018, 305, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Nilam; Singh, H.P. Computer-Controlled Diabetes Disease Diagnosis Technique Based on Fuzzy Inference Structure for Insulin-Dependent Patients. Appl. Intell. 2023, 53, 1945–1958. [Google Scholar] [CrossRef]
- Sohrabi, M.; Zandieh, M.; Shokouhifar, M. Sustainable Inventory Management in Blood Banks Considering Health Equity Using a Combined Metaheuristic-Based Robust Fuzzy Stochastic Programming. Socioecon. Plann. Sci. 2022, 101462. [Google Scholar] [CrossRef]
- Ghorbani, A.; Davoodi, F.; Zamanifar, K. Using Type-2 Fuzzy Ontology to Improve Semantic Interoperability for Healthcare and Diagnosis of Depression. Artif. Intell. Med. 2023, 135, 102452. [Google Scholar] [CrossRef]
- Xiao, G.; Xiao, Y.; Ni, A.; Zhang, C.; Zong, F. Exploring influence mechanism of bikesharing on the use of public transportation—A case of Shanghai. Transp. Lett. 2022, 1–9. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Shi, C.; Huang, Y.; Yang, Y.; Ke, R.; Zhao, J. Sensing data supported traffic flow prediction via denoising schemes and ANN: A comparison. IEEE Sens. J. 2020, 20, 14317–14328. [Google Scholar] [CrossRef]
Controller | RMSE Error | MAE Error | MSE Error |
---|---|---|---|
PID | 21.0947 | 17.8862 | 444.9858 |
Type-1 Fuzzy controller | RMSE error | MAE error | MSE error |
fis 1 | 28.810 | 27.560 | 830.003 |
fis 2 | 20.347 | 15.710 | 413.990 |
fis 3 | 26.973 | 21.559 | 727.514 |
fis 4 | 19.149 | 14.562 | 366.694 |
fis 5 | 18.271 | 13.746 | 333.821 |
fis 6 | 17.640 | 13.150 | 311.176 |
fis 7 | 19.318 | 14.750 | 373.199 |
fis 8 | 19.745 | 15.144 | 389.882 |
fis 9 | 16.783 | 15.180 | 281.679 |
fis 10 | 11.883 | 8.950 | 141.201 |
fis 11 | 11.874 | 8.879 | 140.979 |
fis 12 | 11.912 | 8.960 | 141.892 |
fis 13 | 11.871 | 8.908 | 140.911 |
fis 14 | 11.955 | 8.975 | 142.929 |
fis 15 | 15.655 | 11.375 | 245.088 |
Average | 17.479 | 13.827 | 332.064 |
Input | Output |
---|---|
VL | L |
VL | H |
VL | M |
M | L |
M | H |
M | M |
VH | L |
VH | H |
VH | M |
L | L |
L | H |
L | M |
H | L |
H | H |
H | M |
Linguistic Variable | Membership Function Type | Values | |
---|---|---|---|
Input | VL | Gaussian | 3.382 1.01 × 10−15 |
L | Gaussian | 3.85 14.45 | |
M | Triangular | 24.56 30.58 35.1 | |
H | Gaussian | 3.542 42.97 | |
VH | Gaussian | 5.586 64.81 | |
Output | L | Gaussian | 0.5763 0.9286 |
M | Triangular | 2.726 3.276 3.926 | |
H | Gaussian | 0.5174 5.761 |
Type-2 Fuzzy Controller | RMSE Error | MAE Error | MSE Error |
---|---|---|---|
fis1 | 10.948 | 12.592 | 119.853 |
fis2 | 6.638 | 8.282 | 44.064 |
fis3 | 7.655 | 9.265 | 58.605 |
fis4 | 6.319 | 8.601 | 39.935 |
fis5 | 7.143 | 9.425 | 51.028 |
fis6 | 6.834 | 9.116 | 46.709 |
fis7 | 7.391 | 9.673 | 54.633 |
fis8 | 5.621 | 11.235 | 31.592 |
fis9 | 8.293 | 14.543 | 68.767 |
fis10 | 5.060 | 16.941 | 25.606 |
fis11 | 2.318 | 10.199 | 5.374 |
fis12 | 4.854 | 6.498 | 23.564 |
fis13 | 5.854 | 7.498 | 34.272 |
fis14 | 6.081 | 7.725 | 36.977 |
fis15 | 4.274 | 5.918 | 18.267 |
Average | 6.352 | 9.834 | 43.950 |
Linguistic Variable | Membership Function Type | Values | |
---|---|---|---|
Input | VL | Gaussian | 7.43 −10.1 7.114 −4.21 |
L | Gaussian | 7.43 14.8 6.649 20.7 | |
M | Triangular | 14.6 31.2 35.1 24.7 36.2 39.722 | |
H | Gaussian | 5.6 38.529 4.99 44.429 | |
VH | Gaussian | 7.43 64.887 7.43 70.787 | |
Output | L | Gaussian | 0.862 −0.542 0.759 0.731 |
M | Triangular | 1.791 3.258 3.841 2.621 3.931 4.941 | |
H | Gaussian | 1.408 7.29 1.02 8.03 |
Controller | N | Mean | Deviation Std. | Mean of Std. Error |
---|---|---|---|---|
Type-1 | 15 | 17.48 | 5.33 | 1.4 |
Type-2 | 15 | 6.35 | 1.96 | 0.51 |
T value = 7.58; p-value = 0.000; DF = 28 |
Controller | N | Mean | Deviation Std. | Mean of Std. Error |
---|---|---|---|---|
Type-1 | 15 | 13.83 | 5.23 | 1.4 |
Type-2 | 15 | 9.83 | 2.97 | 0.77 |
T value = 2.57; p-value = 0.016; DF = 28 |
Controller | N | Mean | Deviation std. | Mean of Std. Error |
---|---|---|---|---|
Type-1 | 15 | 332 | 209 | 54 |
Type-2 | 15 | 43.9 | 26.7 | 6.9 |
T value = 5.31; p-value = 0.000; DF = 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes, L.; Caraveo, C.; Castillo, O. Performance Comparison between Type-1 and Type-2 Fuzzy Logic Control Applied to Insulin Pump Injection in Real Time for Patients with Diabetes. Mathematics 2023, 11, 730. https://doi.org/10.3390/math11030730
Cervantes L, Caraveo C, Castillo O. Performance Comparison between Type-1 and Type-2 Fuzzy Logic Control Applied to Insulin Pump Injection in Real Time for Patients with Diabetes. Mathematics. 2023; 11(3):730. https://doi.org/10.3390/math11030730
Chicago/Turabian StyleCervantes, Leticia, Camilo Caraveo, and Oscar Castillo. 2023. "Performance Comparison between Type-1 and Type-2 Fuzzy Logic Control Applied to Insulin Pump Injection in Real Time for Patients with Diabetes" Mathematics 11, no. 3: 730. https://doi.org/10.3390/math11030730
APA StyleCervantes, L., Caraveo, C., & Castillo, O. (2023). Performance Comparison between Type-1 and Type-2 Fuzzy Logic Control Applied to Insulin Pump Injection in Real Time for Patients with Diabetes. Mathematics, 11(3), 730. https://doi.org/10.3390/math11030730