Inclusion Properties of p-Valent Functions Associated with Borel Distribution Functions
Abstract
:1. Introduction
2. Some Useful Lemmas
- (i)
- is continuous in domain ;
- (ii)
- and ;
- (iii)
- for all , and such that .
3. Inclusion Relations
- (i)
- is continuous in ;
- (ii)
- and ;
- (iii)
- for all such thatIt is clear that . Since , we obtain that . From the assertion (11) we obtain that . Thus, .
- (i)
- is continuous in ;
- (ii)
- and ;
- (iii)
- for all such that
4. Convolution
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bain, L.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Duxburry Press: Belmont, CA, USA, 1992; Volume 1. [Google Scholar]
- Blasten, E.; Liu, H. Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems. SIAM J. Math. Anal. 2021, 53, 3801–3837. [Google Scholar] [CrossRef]
- Sakar, F.M.; Hussain, S.; Ahmed, I. Application of Gegenbauer polynomials for bi-univalent functions defined by subordination. Turk. J. Math. 2022, 46, 1089–1098. [Google Scholar] [CrossRef]
- Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. Comput. Phys. 2020, 417, 109594. [Google Scholar] [CrossRef]
- Cao, X.; Diao, H.; Liu, H.; Zou, J. On nodal and generalized singular structures of Laplacian eigen functions and applications to inverse scattering problems. J. Math. Pures Appl. 2020, 143, 116–161. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer polynomials for subfamilies of bi-univalent functions involving a Borel distribution-type Mittag-Leffler function. Math. Jpn. 2023, 15, 785. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Aouf, M. A generalization of functions with real part bounded in the mean on the unit disc. Math. Jpn. 1988, 33, 175–182. [Google Scholar]
- Padmanabhan, K.S.; Parvatham, R. Properties of a class of functions with bounded boundary rotation. Ann. Pol. Math. 1976, 3, 311–323. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.S. Variational formulae for several classes of analytic functions. Math. Z. 1970, 118, 311–319. [Google Scholar] [CrossRef]
- Graham, I. Geometric Function Theory in One and Higher Dimensions; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company: Tampa, FL, USA, 1983; Volume 1. [Google Scholar]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Gaetan Morin Editeur Ltee: Boucherville, QC, Canada, 1982; Volume 83. [Google Scholar]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Duality for convolution on subclasses of analytic functions and weighted integral operators. Demonstr. Math. 2023, 56, 20220168. [Google Scholar] [CrossRef]
- Lashin, A.Y. Some convolution properties of analytic functions. Appl. Math. Lett. 2005, 18, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Mishra, A.K.; Srivastava, H.M. Classes of multivalent analytic functions involving the Dziok–Srivastava operator. Comput. Math. Appl. 2007, 54, 599–616. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Darus, M.; Ibrahim, R.W. Classes of analytic functions with fractional powers defined by means of a certain linear operator. Integral Transform. Spec. Funct. 2011, 22, 17–28. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kund, S.N. Certain families of multivalent analytic functions associated with iterations of the Owa-Srivastava fractional differintegral operator. J. Complex Anal. 2014, 2014, 915385. [Google Scholar] [CrossRef] [Green Version]
- Cang, Y.L.; Liu, J.L. Some subclasses of meromorphically multivalent functions associated with the Dziok-Srivastava operator. Filomat 2017, 31, 2449–2458. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck und Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Mocanu, S.M.P. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. Neighorhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Orhan, H. Coefficient inequalities and inclusion relations fore some families of analytic and multivalent functions. Appl. Math. Lett. 2007, 20, 686–691. [Google Scholar] [CrossRef] [Green Version]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on univalent functions defined by q-analogues of Salagean and Ruscheweh operators. Symmetry 2022, 14, 1725. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral operators associated with conic regions. J. Inequal. Appl. 2019, 2019, 59. [Google Scholar] [CrossRef]
- Lashin, A.M.Y.; Aouf, M.K.; Badghaish, A.O.; Bajamal, A.Z. Some Inclusion Relations of Certain Subclasses of Strongly Starlike, Convex and Close-to-Convex Functions Associated with a Pascal Operator. Symmetry 2022, 14, 1079. [Google Scholar] [CrossRef]
- Lashin, A.Y.; Badghaish, A.O.; Algethami, B.M. Inclusion relations for some classes of analytic functions involving Pascal distribution series. J. Inequal. Appl. 2022, 2022, 161. [Google Scholar] [CrossRef]
- Amini, E.; Al-Omari, S.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi-univalent functions associated with a Fractional q-Difference Operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Srivastava, H.; Wanas, A.K.; Güney, H.Ö. New Families of Bi-univalent Functions Associated with the Bazilevič Functions and the λλ-Pseudo-Starlike Functions. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Hamidi, S.G. Advances on the coefficients of bi-prestarlike functions. Comptes Rendus Math. 2016, 354, 980–985. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Saadeh, R. Certain differential subordination results for univalent functions associated with q-Salagean operators. AIMS Math. 2023, 8, 15892–15906. [Google Scholar] [CrossRef]
- Macgregor, T.H. Functions whose derivative has a positive real part. Trans. Am. Math. Soc. 1962, 104, 532–537. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amini, E.; Fardi, M.; Zaky, M.A.; Lopes, A.M.; Hendy, A.S. Inclusion Properties of p-Valent Functions Associated with Borel Distribution Functions. Mathematics 2023, 11, 3511. https://doi.org/10.3390/math11163511
Amini E, Fardi M, Zaky MA, Lopes AM, Hendy AS. Inclusion Properties of p-Valent Functions Associated with Borel Distribution Functions. Mathematics. 2023; 11(16):3511. https://doi.org/10.3390/math11163511
Chicago/Turabian StyleAmini, Ebrahim, Mojtaba Fardi, Mahmoud A. Zaky, António M. Lopes, and Ahmed S. Hendy. 2023. "Inclusion Properties of p-Valent Functions Associated with Borel Distribution Functions" Mathematics 11, no. 16: 3511. https://doi.org/10.3390/math11163511
APA StyleAmini, E., Fardi, M., Zaky, M. A., Lopes, A. M., & Hendy, A. S. (2023). Inclusion Properties of p-Valent Functions Associated with Borel Distribution Functions. Mathematics, 11(16), 3511. https://doi.org/10.3390/math11163511