Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain
Abstract
1. Introduction
2. Literature Review
3. Problem Description and Model Formulation
3.1. Problem Background
3.2. Model Formulation
- set of all power plants, .
- index of the storage location.
- set of all ship types, .
- set of all days in the planning horizon, .
- set of all non-negative integers.
- fuel consumption per unit distance traveled by ships of type (ton/n mile).
- unit fuel price (USD/ton).
- time-charter cost of renting a ship of type for days (USD).
- maximum number of ships of type that can be chartered in.
- total length of a trip from power plant () to the storage location and then back to the power plant (n mile).
- tank capacity of ships of type (ton).
- sailing speed of ships of type () (n mile/hour).
- storage capacity of power plant (ton).
- benefit of transporting a ton of from power plants to the storage location (i.e., 0) compared to emitting a ton of into the atmosphere (USD/ton).
- sailing time of ships of type to complete a trip from power plant () to the storage location and then back to the power plant, which is related to and (day).
- amount of produced by power plant in day (ton).
- integer, the number of charter-in ships of type , , allocated to power plant , .
- integer, the number of ships of type , , departing from power plant , , at the beginning of day , .
- continuous, the amount of emitted by power plant to the atmosphere at the beginning of day .
- continuous, the amount of transported by ships departing from power plant to the storage location in day .
- continuous, the amount of stored at power plant at the end of the day , , where, by convention, .
[M1] | (1) | ||
subject to: | (2) | ||
(3) | |||
(4) | |||
(5) | |||
(6) | |||
(7) | |||
(8) | |||
(9) | |||
(10) | |||
(11) | |||
(12) |
[M2] | Objective (1) |
subject to: | Constraints (2), (3), (5)–(12). |
4. Computational Experiments
4.1. Experimental Setting
4.2. Experimental Results
4.3. Sensitivity Analyses
4.3.1. Impact of the Fuel Price
4.3.2. Impact of the Time-Charter Cost
4.3.3. Impact of the Ship Sailing Speed
4.4. Summary of Test Results and Managerial Insights
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carvalho, M.G.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Xiao, J.; Zhen, Z.; Tian, L.; Su, B.; Chen, H.; Zhu, A.X. Green behavior towards low-carbon society: Theory, measurement and action. J. Clean. Prod. 2021, 278, 123765. [Google Scholar] [CrossRef]
- Gabrielli, P.; Campos, J.; Becattini, V.; Mazzotti, M.; Sansavini, G. Optimization and assessment of carbon capture, transport and storage supply chains for industrial sectors: The cost of resilience. Int. J. Greenh. Gas Control 2022, 121, 103797. [Google Scholar] [CrossRef]
- Ogland-Hand, J.D.; Cohen, S.M.; Kammer, R.M.; Ellett, K.M.; Saar, M.O.; Bennett, J.A.; Middleton, R.S. The importance of modeling carbon dioxide transportation and geologic storage in energy system planning tools. Front. Energy Res. 2022, 10, 275. [Google Scholar] [CrossRef]
- Chaudhari, U.; Bhadoriya, A.; Jani, M.Y.; Sarkar, B. A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations. Math. Comput. Simul. 2023, 207, 556–574. [Google Scholar] [CrossRef]
- Dey, B.K.; Datta, A.; Sarkar, B. Effectiveness of carbon policies and multi-period delay in payments in a global supply chain under remanufacturing consideration. J. Clean. Prod. 2023, 402, 136539. [Google Scholar] [CrossRef]
- Fact Sheet: President Biden Sets 2030 Greenhouse Gas Pollution Reduction Target Aimed at Creating Good-Paying Union Jobs and Securing U.S. Leadership on Clean Energy Technologies. Available online: https://www.whitehouse.gov/briefing-room/statements-releases/2021/04/22/fact-sheet-president-biden-sets-2030-greenhouse-gas-pollution-reduction-target-aimed-at-creating-good-paying-union-jobs-and-securing-u-s-leadership-on-clean-energy-technologies/ (accessed on 1 May 2023).
- A European Green Deal: Striving to Be the First Climate-Neutral Continent. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 1 May 2023).
- China’s Xi Targets Steeper Cut in Carbon Intensity by 2030. Available online: https://www.reuters.com/world/china/chinas-xi-targets-steeper-cut-carbon-intensity-by-2030-2020-12-12/ (accessed on 1 May 2023).
- Wu, B.; Liu, P.; Xu, X. An evolutionary analysis of low-carbon strategies based on the government–enterprise game in the complex network context. J. Clean. Prod. 2017, 141, 168–179. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, L.; Zhang, L.; Zhuang, Y.; Du, J. An optimization model for carbon capture utilization and storage supply chain: A case study in northeastern China. Appl. Energy 2018, 231, 194–206. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, M.; Wu, S.; Liu, F. A complex path model for low-carbon sustainable development of enterprise based on system dynamics. J. Clean. Prod. 2021, 321, 128934. [Google Scholar] [CrossRef]
- The Longship CCS Project. Available online: https://ccsnorway.com/the-project/ (accessed on 2 May 2023).
- CO2 Reduction through Storage under the North Sea. Available online: https://www.porthosco2.nl/en/ (accessed on 2 May 2023).
- Karlsson, S.; Normann, F.; Odenberger, M.; Johnsson, F. Modeling the development of a carbon capture and transportation infrastructure for Swedish industry. Int. J. Greenh. Gas Control 2023, 124, 103840. [Google Scholar] [CrossRef]
- Ostovari, H.; Müller, L.; Mayer, F.; Bardow, A. A climate-optimal supply chain for CO2 capture, utilization, and storage by mineralization. J. Clean. Prod. 2022, 360, 131750. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, B.; Pawar, R.J. Phase-based design of CO2 capture, transport, and storage infrastructure via SimCCS3.0. Sci. Rep. 2023, 13, 6527. [Google Scholar] [CrossRef] [PubMed]
- Carbon Capture, Utilisation and Storage. Available online: https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage (accessed on 3 May 2023).
- Is Carbon Capture too Expensive? Available online: https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed on 3 May 2023).
- Carbon Capture, Use, and Storage (CCUS) Report. Available online: https://dualchallenge.npc.org/downloads.php (accessed on 3 May 2023).
- Scaling the CCUS Industry to Achieve Net-Zero Emissions. Available online: https://www.mckinsey.com/industries/oil-and-gas/our-insights/scaling-the-ccus-industry-to-achieve-net-zero-emissions (accessed on 3 May 2023).
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Tapia, J.F.D.; Lee, J.Y.; Ooi, R.E.H.; Foo, D.C.Y.; Tan, R.R. A review of optimization and decision-making models for the planning of CO2 capture, utilization and storage (CCUS) systems. Sustain. Prod. Consum. 2018, 13, 1–15. [Google Scholar] [CrossRef]
- Al Baroudi, H.; Awoyomi, A.; Patchigolla, K.; Jonnalagadda, K.; Anthony, E.J. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Appl. Energy 2021, 287, 116510. [Google Scholar] [CrossRef]
- Middleton, R.S.; Keating, G.N.; Viswanathan, H.S.; Stauffer, P.H.; Pawar, R.J. Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure. Int. J. Greenh. Gas Control 2012, 8, 132–142. [Google Scholar] [CrossRef]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- da Silva, F.T.F.; Carvalho, F.M.; Corrêa, J.L.G.; Merschmann, P.R.D.; Tagomori, I.S.; Szklo, A.; Schaeffer, R. CO2 capture in ethanol distilleries in Brazil: Designing the optimum carbon transportation network by integrating hubs, pipelines and trucks. Int. J. Greenh. Gas Control 2018, 71, 168–183. [Google Scholar] [CrossRef]
- Becattini, V.; Gabrielli, P.; Antonini, C.; Campos, J.; Acquilino, A.; Sansavini, G.; Mazzotti, M. Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. Int. J. Greenh. Gas Control 2022, 117, 103635. [Google Scholar] [CrossRef]
- Weihs, G.A.F.; Kumar, K.; Wiley, D.E. Understanding the economic feasibility of ship transport of CO2 within the CCS Chain. Energy Procedia 2014, 63, 2630–2637. [Google Scholar] [CrossRef]
- Nogueira, T.; Rochedo, P.R.R.; Szklo, A. Evaluation of offshore CO2 transport alternatives in Brazil. Int. J. Greenh. Gas Control 2022, 116, 103629. [Google Scholar] [CrossRef]
- Weihs, G.A.F.; Ho, M.; Kambanis, J.; Wiley, D.E. Scoping study of the economics of CO2 transport and storage options for steel manufacturing emissions in eastern Australia. Int. J. Greenh. Gas Control 2022, 114, 103592. [Google Scholar] [CrossRef]
- Aspelund, A.; Mølnvik, M.J.; de Koeijer, G. Ship transport of CO2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Chem. Eng. Res. Des. 2006, 84, 847–855. [Google Scholar] [CrossRef]
- Calvillo, C.; Race, J.; Chang, E.; Turner, K.; Katris, A. Characterisation of UK industrial clusters and techno-economic cost assessment for carbon dioxide transport and storage implementation. Int. J. Greenh. Gas Control. 2022, 119, 103695. [Google Scholar] [CrossRef]
- Yoo, B.Y.; Choi, D.K.; Kim, H.J.; Moon, Y.S.; Na, H.S.; Lee, S.G. Development of CO2 terminal and CO2 carrier for future commercialized CCS market. Int. J. Greenh. Gas Control 2013, 12, 323–332. [Google Scholar] [CrossRef]
- Gola, S.; Noussia, K. From CO2 sources to sinks: Regulatory challenges for trans-boundary trade, shipment and storage. Resour. Conserv. Recycl. 2022, 179, 106039. [Google Scholar] [CrossRef]
- Scott, V.; Gilfillan, S.; Markusson, N.; Chalmers, H.; Haszeldine, R.S. Last chance for carbon capture and storage. Nat. Clim. Change 2013, 3, 105–111. [Google Scholar] [CrossRef]
- International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC Code). Available online: http://www.imo.org/en/OurWork/Safety/Cargoes/CargoesInBulk/Pages/IGC-Code.aspx (accessed on 27 February 2022).
- Msakni, M.K.; Haouari, M. Short-term planning of liquefied natural gas deliveries. Transp. Res. Part C Emerg. Technol. 2018, 90, 393–410. [Google Scholar] [CrossRef]
- Budiyanto, M.A.; Riadi, A.; Buana, I.G.N.S.; Kurnia, G. Study on the LNG distribution to mobile power plants utilizing small-scale LNG carriers. Heliyon 2020, 6, e04538. [Google Scholar] [CrossRef]
- Datta, A.; de Leon, R.; Krishnamoorti, R. Advancing carbon management through the global commoditization of CO2: The case for dual-use LNG-CO2 shipping. Carbon Manag. 2020, 11, 611–630. [Google Scholar] [CrossRef]
- Hardisty, P.E.; Sivapalan, M.; Brooks, P. The environmental and economic sustainability of carbon capture and storage. Int. J. Environ. Res. Public Health 2011, 8, 1460–1477. [Google Scholar] [CrossRef]
- Technical Support Document: Social Cost of Carbon, Methane, and Nitrous Oxide–Interim Estimates under Executive Order 13990. Available online: https://www.whitehouse.gov/wp-content/uploads/2021/02/TechnicalSupportDocument_SocialCostofCarbonMethaneNitrousOxide.pdf (accessed on 20 September 2022).
- Wen, M.; Pacino, D.; Kontovas, C.A.; Psaraftis, H.N. A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transp. Res. Part D Transp. Environ. 2017, 52, 303–321. [Google Scholar] [CrossRef]
- World Bunker Prices. Available online: https://shipandbunker.com/prices/av/global/av-g20-global-20-ports-average (accessed on 19 September 2022).
- Fagerholt, K.; Psaraftis, H.N. On two speed optimization problems for ships that sail in and out of emission control areas. Transp. Res. Part D Transp. Environ. 2015, 39, 56–64. [Google Scholar] [CrossRef]
- Fuel Consumption by Containership Size and Speed. Available online: https://transportgeography.org/contents/chapter4/transportation-and-energy/fuel-consumption-containerships/ (accessed on 8 March 2023).
- Qi, J.; Wang, S.; Psaraftis, H. Bi-level optimization model applications in managing air emissions from ships: A review. Commun. Transp. Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Y. Is uncertainty always bad for the performance of transportation systems? Commun. Transp. Res. 2021, 1, 100021. [Google Scholar] [CrossRef]
- Hassan, L.A.H.; Hewitt, M.; Mahmassani, H.S. Daily load planning under different autonomous truck deployment scenarios. Transp. Res. Part E Logist. Transp. Rev. 2022, 166, 102885. [Google Scholar] [CrossRef]
- Huang, D.; Wang, S. A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme. Multimodal Transp. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Liu, B.; Li, Z.C.; Wang, Y. A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times. Transp. Res. Part E Logist. Transp. Rev. 2022, 167, 102919. [Google Scholar] [CrossRef]
- Lashgari, M.; Akbari, A.A.; Nasersarraf, S. A new model for simultaneously optimizing ship route, sailing speed, and fuel consumption in a shipping problem under different price scenarios. Appl. Ocean. Res. 2021, 113, 102725. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Zhang, Q.; Liu, Y.; Yuan, Y.; Li, Z. Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors. Ocean Eng. 2021, 221, 108530. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.; Ai, H.; Guo, X.; Luo, F. The impact of gis/gps network information systems on the logistics distribution cost of tobacco enterprises. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102299. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S.; Zhen, L.; Laporte, G. Emerging approaches applied to maritime transport research: Past and future. Commun. Transp. Res. 2021, 1, 100011. [Google Scholar] [CrossRef]
- Demissie, M.G.; Kattan, L. Estimation of truck origin-destination flows using GPS data. Transp. Res. Part E Logist. Transp. Rev. 2022, 159, 102621. [Google Scholar] [CrossRef]
- Lyu, N.; Wang, Y.; Wu, C.; Peng, L.; Thomas, A.F. Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions. J. Intell. Connect. Veh. 2022, 5, 17–35. [Google Scholar] [CrossRef]
- Wang, S.; Tian, X.; Yan, R.; Liu, Y. A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists. Electron. Res. Arch. 2022, 30, 3586–3594. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. A global method from predictive to prescriptive analytics considering prediction error for “predict, then optimize” with an example of low-carbon logistics. Clean. Logist. Supply Chain 2022, 4, 100062. [Google Scholar] [CrossRef]
- Wang, S.; Yan, R. “Predict, then optimize” with quantile regression: A global method from predictive to prescriptive analytics and applications to multimodal transportation. Multimodal Transp. 2022, 1, 100035. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S. Integrating prediction with optimization: Models and applications in transportation management. Multimodal Transp. 2022, 1, 100018. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, B.; Yan, X.Y.; Li, J.; Yang, Z.; Gao, Z. Identifying intercity freight trip ends of heavy trucks from GPS data. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102590. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.E.; Jia, X.; Zeng, S.; Wang, Y. FPGA accelerated model predictive control for autonomous driving. J. Intell. Connect. Veh. 2022, 5, 63–71. [Google Scholar] [CrossRef]
- Yalcin, H.; Daim, T.U. Logistics, supply chain management and technology research: An analysis on the axis of technology mining. Transp. Res. Part E Logist. Transp. Rev. 2022, 168, 102943. [Google Scholar] [CrossRef]
- Niu, B.; Mu, Z.; Cao, B.; Gao, J. Should multinational firms implement blockchain to provide quality verification? Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102121. [Google Scholar] [CrossRef]
- Choi, T.M.; Siqin, T. Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework. Transp. Res. Part E Logist. Transp. Rev. 2022, 160, 102653. [Google Scholar] [CrossRef]
- Liu, S.; Hua, G.; Kang, Y.; Cheng, T.E.; Xu, Y. What value does blockchain bring to the imported fresh food supply chain? Transp. Res. Part E Logist. Transp. Rev. 2022, 165, 102859. [Google Scholar] [CrossRef]
- Yi, W.; Wu, S.; Zhen, L.; Chawynski, G. Bi-level programming subsidy design for promoting sustainable prefabricated product logistics. Clean. Logist. Supply Chain 2021, 2021, 100005. [Google Scholar] [CrossRef]
- Yi, W.; Zhen, L.; Jin, Y. Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics. Clean. Logist. Supply Chain 2021, 2021, 100013. [Google Scholar] [CrossRef]
- Zhang, L.; Guan, L.; Long, D.Z.; Shen, H.; Tang, H. Who is better off by selling extended warranties in the supply chain: The manufacturer, the retailer, or both? Ann. Oper. Res. 2020, 1–27. [Google Scholar] [CrossRef]
- Zhang, J.; Long, D.Z.; Wang, R.; Xie, C. Impact of penalty cost on customers’ booking decisions. Prod. Oper. Manag. 2021, 30, 1603–1614. [Google Scholar] [CrossRef]
Literature | Advantages of Shipping |
---|---|
[24] | Ships with low sunk costs can replace pipelines for transport, especially in areas where the geology is unsuitable for pipeline construction. |
[32] | Shipping is cost-effective in areas where sources are decentralized. |
[33] | Shipping is flexible to satisfy the need of each region. |
Literature | CO2 Capture | CO2 Transport | CO2 Storage | LNG Transport |
---|---|---|---|---|
[34] | √ | √ | ||
[35] | √ | √ | ||
[36] | √ | √ | ||
[38] | √ | |||
[39] | √ | |||
[40] | √ | √ |
Ship Type | 1 | 2 | 3 |
---|---|---|---|
Ship size | small | medium | large |
(n mile/hour) | 13 | 14 | 16 |
(ton/n mile) | 0.0641 | 0.0893 | 0.1172 |
(ton) | 9400 | 11,000 | 15,000 |
(USD) | 46,900 | 54,600 | 74,550 |
20 | 20 | 20 |
Scale Type | Number of Power Plants | No. | Objective Value (USD) | Time (s) | Gap (%) |
---|---|---|---|---|---|
Small | 10 | 1 | 18,488,070 | 3.51 | – |
2 | 18,685,312 | 0.61 | – | ||
3 | 18,718,096 | 0.50 | – | ||
4 | 18,932,070 | 0.48 | – | ||
5 | 18,680,620 | 0.58 | – | ||
6 | 18,610,402 | 3.56 | – | ||
7 | 18,609,668 | 0.64 | – | ||
8 | 18,637,785 | 0.53 | – | ||
9 | 18,896,223 | 0.62 | – | ||
10 | 18,737,553 | 0.53 | – | ||
Medium | 30 | 1 | 56,453,748 | 6.27 | – |
2 | 56,661,330 | 6.62 | – | ||
3 | 56,404,237 | 7.23 | – | ||
4 | 56,200,587 | 6.83 | – | ||
5 | 55,932,114 | 11.45 | – | ||
6 | 56,180,227 | 14.33 | – | ||
7 | 56,141,059 | 7.58 | – | ||
8 | 55,905,737 | 11.47 | – | ||
9 | 56,315,341 | 12.51 | – | ||
10 | 56,223,681 | 9.03 | – | ||
Large | 60 | 1 | 112,083,178 | 3600.50 | 0.04 |
2 | 111,322,988 | 3605.51 | 0.08 | ||
3 | 111,676,064 | 3603.92 | 0.05 | ||
4 | 111,193,998 | 3605.55 | 0.05 | ||
5 | 111,616,979 | 3605.57 | 0.07 | ||
65 | 1 | 111,943,020 | 3600.73 | 7.03 | |
2 | 112,109,654 | 3603.69 | 6.85 | ||
3 | 112,178,272 | 3604.25 | 6.94 | ||
4 | 111,723,484 | 3606.13 | 6.98 | ||
5 | 112,352,265 | 3603.52 | 6.83 |
(USD/Ton) | Objective Value (USD) |
---|---|
450 | 18,864,030 |
550 | 18,816,661 |
650 | 18,769,291 |
750 | 18,721,921 |
850 | 18,674,552 |
950 | 18,627,182 |
1050 | 18,579,813 |
Relative Change of Charter Cost | Objective Value (USD) | Relative Change of Charter Cost | Objective Value (USD) |
---|---|---|---|
−60% | 19,018,953 | 10% | 18,690,653 |
−50% | 18,972,053 | 20% | 18,643,753 |
−40% | 18,925,153 | 30% | 18,596,853 |
−30% | 18,878,253 | 40% | 18,549,953 |
−20% | 18,831,353 | 50% | 18,503,053 |
−10% | 18,784,453 | 60% | 18,456,153 |
No. | (n Mile/Hour) | (n Mile/Hour) | (n Mile/Hour) | Objective Value (USD) |
---|---|---|---|---|
1 | 6 | 7 | 8 | 18,549,953 |
2 | 8 | 9 | 10 | 18,724,714 |
3 | 10 | 11 | 12 | 18,737,553 |
4 | 12 | 14 | 15 | 18,737,553 |
5 | 14 | 16 | 17 | 18,737,553 |
6 | 16 | 18 | 19 | 18,737,553 |
7 | 18 | 20 | 21 | 18,737,553 |
8 | 20 | 22 | 23 | 18,737,553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, H.; Wang, S.; Zhen, L. Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics 2023, 11, 2765. https://doi.org/10.3390/math11122765
Wu Y, Zhang H, Wang S, Zhen L. Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics. 2023; 11(12):2765. https://doi.org/10.3390/math11122765
Chicago/Turabian StyleWu, Yiwei, Hongyu Zhang, Shuaian Wang, and Lu Zhen. 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain" Mathematics 11, no. 12: 2765. https://doi.org/10.3390/math11122765
APA StyleWu, Y., Zhang, H., Wang, S., & Zhen, L. (2023). Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain. Mathematics, 11(12), 2765. https://doi.org/10.3390/math11122765