A Differential Relation of Metric Properties for Orientable Smooth Surfaces in ℝ3
Abstract
1. Introduction
2. Preliminaries and the Main Results
3. Real Analyticity of
4. Proofs
5. Concluding Remarks and Examples
Funding
Data Availability Statement
Conflicts of Interest
References
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces, 2nd ed.; Dover Publications: New York, NY, USA, 2016. [Google Scholar]
- O’Neill, B. Elementary Differential Geometry, 2nd ed.; Academic Press: New York, NY, USA, 2006. [Google Scholar]
- Arakida, H. Light deflection and Gauss-Bonnet theorem: Defintion of total deflection angle and its applications. Gen. Relativ. Gravit. 2018, 50, 48. [Google Scholar] [CrossRef]
- Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 2017, 95, 044017. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 2016, 94, 084015. [Google Scholar] [CrossRef]
- Jusufi, K.; Övguün, A. Gravitational lensing by rotating wormholes. Phys. Rev. D 2018, 97, 024042. [Google Scholar] [CrossRef]
- Jusufi, K.; Övguün, A.; Saavedra, J.; Va´squez, Y.; Gonza´lez, P.A. Deflection of light by rotating black holes using the Gauss-Bonnet theorem. Phys. Rev. D 2018, 97, 124024. [Google Scholar] [CrossRef]
- Jusufi, K.; Werner, M.C.; Banerjee, A.; Övguün, A. Light deflection by a rotating global monopole spacetime. Phys. Rev. D 2017, 95, 104012. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating wormhole. Phys. Rev. D 2018, 98, 044047. [Google Scholar] [CrossRef]
- Övguün, A. Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem. Phys. Rev. D 2018, 98, 044033. [Google Scholar] [CrossRef]
- Övguün, A. Weak field deflection angle by regular black holes with cosmic strings using the Gauss-Bonnet theorem. Phys. Rev. D 2019, 99, 104075. [Google Scholar] [CrossRef]
- Övguün, A. Deflection angle of photons through dark matter by black holes and wormholes using Gauss–Bonnet theorem. Universe 2019, 5, 115. [Google Scholar] [CrossRef]
- Övguün, A.; Gyulchev, G.; Jusufi, K. Weak gravitational lensing by phantom black holes and phantom wormholes using the Gauss–Bonnet theorem. Ann. Phys. 2019, 406, 152–172. [Google Scholar] [CrossRef]
- Övguün, A.; Sakalli, I.; Saavedra, J. Shadow cast and deflection angle of Kerr-Newman-Kasuya spacetime. J. Cosmol. Astropart. Phys. 2018, 10, 041. [Google Scholar] [CrossRef]
- Övguün, A.; Sakalli, I.; Saavedra, J. Weak gravitational lensing by Kerr-MOG black hole and Gauss–Bonnet theorem. Ann. Phys. 2019, 411, 167978. [Google Scholar] [CrossRef]
- Krantz, S.G.; Parks, H.R. A Primer of Real Analytic Functions, 2nd ed.; Birkha¨user Advanced Texts: Boston, MA, USA, 2002. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S. A Differential Relation of Metric Properties for Orientable Smooth Surfaces in ℝ3. Mathematics 2023, 11, 2337. https://doi.org/10.3390/math11102337
Ryu S. A Differential Relation of Metric Properties for Orientable Smooth Surfaces in ℝ3. Mathematics. 2023; 11(10):2337. https://doi.org/10.3390/math11102337
Chicago/Turabian StyleRyu, Sungmin. 2023. "A Differential Relation of Metric Properties for Orientable Smooth Surfaces in ℝ3" Mathematics 11, no. 10: 2337. https://doi.org/10.3390/math11102337
APA StyleRyu, S. (2023). A Differential Relation of Metric Properties for Orientable Smooth Surfaces in ℝ3. Mathematics, 11(10), 2337. https://doi.org/10.3390/math11102337