On Some Error Bounds for Milne’s Formula in Fractional Calculus
Abstract
1. Introduction
2. Main Results
3. Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Chen, J.; Huang, X. Some new inequalities of Simpson’s type for s-convex functions via fractional integrals. Filomat 2017, 31, 4989–4997. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef]
- Dragomir, S.S. On Simpson’s quadrature formula for mappings of bounded variation and applications. Tamkang J. Math. 1999, 30, 53–58. [Google Scholar] [CrossRef]
- Du, T.; Li, Y.; Yang, Z. A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions. Appl. Math. Comput. 2017, 293, 358–369. [Google Scholar] [CrossRef]
- Luo, C.; Du, T. Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications. Filomat 2020, 34, 751–760. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Ozdemir, M.E. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Methods Appl. Sci. 2021, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Difference Equ. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Erden, S.; Iftikhar, S.; Delavar, M.R.; Kumam, P.; Thounthong, P.; Kumam, W. On generalizations of some inequalities for convex functions via quantum integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. 2020, 114, 110. [Google Scholar] [CrossRef]
- Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 28, 2050037. [Google Scholar] [CrossRef]
- Sitthiwirattham, T.; Nonlaopon, K.; Ali, M.A.; Budak, H. Riemann–Liouville Fractional Newton’s Type Inequalities for Differentiable Convex Functions. Fractal Fract 2022, 6, 175. [Google Scholar] [CrossRef]
- Soontharanon, J.; Ali, M.A.; Budak, H.; Kosem, P.; Nonlaopon, K.; Sitthiwirattham, T. Some New Generalized Fractional Newton’s Type Inequalities for Convex Functions. J. Funct. Spaces 2022, 2022, 6261970. [Google Scholar] [CrossRef]
- Li, Y.M.; Rashid, S.; Hammouch, Z.; Baleanu, D.; Chu, Y.-M. New Newton’s type estimates pertaining to local fractional integral via generalized p-convexity with applications. Fractals 2021, 29, 2140018. [Google Scholar] [CrossRef]
- Booth, A.D. Numerical Methods, 3rd ed.; Butterworths Scientific Publications: London, UK, 1966. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Rahman, R.U.; Al-Maaitah, A.F.; Qousini, M.; Az-Zo, E.A.; Eldin, S.M.; Abuzar, M. New soliton solutions and modulation instability analysis of fractional Huxley equation. Results Phys. 2022, 44, 106163. [Google Scholar] [CrossRef]
- Green, C.W.H.; Yan, Y. Detailed Error Analysis for a Fractional Adams Method on Caputo-Hadamard Fractional Differential Equations. Foundations 2022, 2, 839–861. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Bengochea, G. Bilateral tempered fractional derivatives. Symmetry 2021, 13, 823. [Google Scholar] [CrossRef]
- Batiha, I.M.; Obeidat, A.; Alshorm, S.; Alotaibi, A.; Alsubaie, H.; Momani, S.; Albdareen, M.; Zouidi, F.; Eldin, S.; Jahanshahi, H. A Numerical Confirmation of a Fractional-Order COVID-19 Model’s Efficiency. Symmetry 2022, 14, 2583. [Google Scholar] [CrossRef]
- Az-Zo, E.A.; Al-Khaled, K.; Darweesh, A. Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage decomposition method. Mathematics 2019, 7, 550. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and relatedfractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- İşcan, İ.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann—Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, C.; Du, T.S. Riemann-Liouville fractional Simpson’s inequalities through generalized (m,h1,h2)-preinvexity. Ital. J. Pure Appl. Math. 2017, 38, 345–367. [Google Scholar]
- Sarikaya, M.Z.; Yildrim, H. On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Tunc, M. On new inequalities for h-convex functions via Riemann-Liouville fractional integration. Filomat 2013, 27, 559–565. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Zhang, Z.; Fečkan, M. On Some Error Bounds for Milne’s Formula in Fractional Calculus. Mathematics 2023, 11, 146. https://doi.org/10.3390/math11010146
Ali MA, Zhang Z, Fečkan M. On Some Error Bounds for Milne’s Formula in Fractional Calculus. Mathematics. 2023; 11(1):146. https://doi.org/10.3390/math11010146
Chicago/Turabian StyleAli, Muhammad Aamir, Zhiyue Zhang, and Michal Fečkan. 2023. "On Some Error Bounds for Milne’s Formula in Fractional Calculus" Mathematics 11, no. 1: 146. https://doi.org/10.3390/math11010146
APA StyleAli, M. A., Zhang, Z., & Fečkan, M. (2023). On Some Error Bounds for Milne’s Formula in Fractional Calculus. Mathematics, 11(1), 146. https://doi.org/10.3390/math11010146