Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example
Abstract
:1. Introduction
2. Evolution of Chaos in Electronic Systems
2.1. Canonical Realizations of Chaos Generators
2.2. Chaotic Steady-States Detected in Standard Signal Processing Systems
3. Applications of Chaotic Oscillators
4. Chaotic Oscillators, Design Approaches and Examples
4.1. Concept Based on Analog Computer
4.2. Fourth-Order Chaotic Oscillator, One Step toward Hyperchaos
4.3. Implementation of Chaotic Systems Using FPAA and FPGA
4.4. Integrated Designs of Chaotic Systems
4.5. Multi-Scroll and Multi-Grid Generators of Chaos
4.6. Chaotic Oscillators with Memelements
4.7. Fractional Order Chaotic Oscillators
4.8. New Example of Chaotic Oscillator
5. Recent Developments and Future Topics
6. Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Hasler, M.J. Electrical circuits with chaotic behavior. Proc. IEEE 1987, 75, 1009–1021. [Google Scholar] [CrossRef]
- Matsumoto, T. Chaos in electronic circuits. Proc. IEEE 1987, 75, 1033–1057. [Google Scholar] [CrossRef]
- Matsumoto, T. A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. 1984, 31, 1055–1058. [Google Scholar] [CrossRef]
- Kennedy, M.P. Robust op amp realization of Chua’s circuit. Frequenz 1992, 46, 66–80. [Google Scholar] [CrossRef]
- Chua, L.O.; Lin, G.N. Canonical realization of Chua’s circuit family. IEEE Trans. Circuits Syst. 1990, 37, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Elwakil, A.S.; Kennedy, M.P. Improved implementation of Chua’s oscillator using current feedback op amp. IEEE Trans. Circuits Syst. 2000, 47, 76–79. [Google Scholar] [CrossRef] [Green Version]
- Zhong, G.Q. Implementation of Chua’s circuit with a cubic nonlinearity. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994, 41, 934–941. [Google Scholar] [CrossRef] [Green Version]
- Spany, V.; Galajda, P.; Guzan, M.; Pivka, L.; Olejar, M. Chua’s singularities: Great miracle in circuit theory. Int. J. Bifurc. Chaos 2010, 20, 2993–3006. [Google Scholar] [CrossRef]
- Guzan, M. Variations of boundary surface in Chua’s circuit. Radioengineering 2015, 24, 814–823. [Google Scholar] [CrossRef]
- Ogorzalek, M.J. Order and chaos in a third-order RC ladder network with nonlinear feedback. IEEE Trans. Circuits Syst. 1989, 36, 1221–1232. [Google Scholar] [CrossRef]
- Itoh, M. Synthesis of electronic circuits for simulating nonlinear dynamics. Int. J. Bifurc. Chaos 2001, 11, 605–653. [Google Scholar] [CrossRef]
- Scanlan, S.O. Synthesis of piecewise-linear chaotic oscillators with prescribed eigenvalues. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 1057–1064. [Google Scholar] [CrossRef]
- Gotz, M.; Feldmann, U.; Schwarz, W. Synthesis of higher dimensional Chua circuits. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 854–860. [Google Scholar] [CrossRef]
- Petrzela, J.; Polak, L. Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters. IEEE Access 2019, 7, 17561–17577. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Kennedy, M.P. Chaotic oscillator configuration using a frequency dependent negative resistor. Int. J. Circuit Theory Appl. 2000, 28, 69–73. [Google Scholar] [CrossRef]
- Srisuchinwong, B.; Treetanakorn, R. Current-tunable chaotic jerk circuit based on only unity-gain amplifier. Electron. Lett. 2014, 50, 1815–1817. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Kennedy, M.P. Novel chaotic oscillator configuration using a diode-inductor composite. Int. J. Electron. 2000, 87, 397–406. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Kennedy, M.P. A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 582–590. [Google Scholar] [CrossRef]
- Kennedy, M.P. Chaos in the Colpitts oscillator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994, 41, 771–774. [Google Scholar] [CrossRef]
- Wafo Tekam, R.B.; Kengne, J.; Kenmoe, G.D. High frequency Colpitts oscillator: A simple configuration for chaos generation. Chaos Solitons Fractals 2019, 126, 351–360. [Google Scholar] [CrossRef]
- Kengne, J.; Chedjou, J.C.; Fono, V.A.; Kyamakya, K. On the analysis of bipolar transistor based chaotic circuits: Case of a two-stage Colpitts oscillator. Nonlinear Dyn. 2012, 67, 1247–1260. [Google Scholar] [CrossRef]
- Kvarda, P. Chaos in Hartley’s oscillator. Int. J. Bifurc. Chaos 2011, 12, 2229–2232. [Google Scholar]
- Tchitnga, R.; Fotsin, H.S.; Nana, B.; Fotso, P.H.L.; Woafo, P. Hartley’s oscillator: The simplest chaotic two-component circuit. Chaos Solitons Fractals 2012, 45, 306–313. [Google Scholar] [CrossRef]
- Petrzela, J. Chaotic and hyperchaotic dynamics of a Clapp oscillator. Mathematics 2022, 10, 1868. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Kennedy, M.P. A family of Wien-type oscillators modified for chaos. Int. J. Circuit Theory Appl. 1997, 25, 561–579. [Google Scholar] [CrossRef]
- Kilic, R.; Yildrim, F. A survey of Wien bridge-based chaotic oscillators: Design and experimental issues. Chaos Solitons Fractals 2008, 38, 1394–1410. [Google Scholar] [CrossRef]
- Tamasevicius, A.; Mykolaitis, G.; Cenys, A. Wien-bridge chaotic circuit with comparator. Electron. Lett. 1998, 34, 606–608. [Google Scholar] [CrossRef]
- Kushwaha, A.K.; Paul, S.K. Inductorless realization of Chua’s oscillator using DVCCTA. Analog. Integr. Circuits Signal Process. 2016, 88, 137–150. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Nishio, Y.; Ushida, A. Analysis of chaotic phenomena in two RC phase shift oscillators coupled by a diode. IEICE Trans. Fundam. 2001, E84-A, 2288–2295. [Google Scholar]
- Tamasevicius, A.; Mykolaitis, G.; Pyragas, V.; Pyragas, K. A simple chaotic oscillator for educational purposes. Eur. J. Phys. 2004, 26, 61. [Google Scholar]
- Sam-Um, W.; Suksiri, B.; Ketthong, P. A simple RLCC-Diode-Opamp chaotic oscillator. Int. J. Bifurc. Chaos 2014, 24, 1450155. [Google Scholar] [CrossRef]
- Petrzela, J. Chaotic behavior of state variable filters with saturation-type integrators. Electron. Lett. 2015, 51, 1159–1161. [Google Scholar] [CrossRef]
- Petrzela, J. On the existence of chaos in the electronically adjustable structures of the state variable filters. Int. J. Circuit Theory Appl. 2016, 44, 1779–1797. [Google Scholar] [CrossRef]
- Endo, T.; Chua, L.O. Chaos from phase-locked loops. IEEE Trans. Circuits Syst. 1988, 35, 987–1003. [Google Scholar] [CrossRef]
- Harb, B.A.; Harb, A.M. Chaos and bifurcation in a third-order phase locked loops. Chaos Solitons Fractals 2004, 19, 667–672. [Google Scholar] [CrossRef]
- Piqueira, J.R.C. Hopf bifurcation and chaos in a third-order phase-locked loop. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 178–186. [Google Scholar] [CrossRef]
- Endo, T. A review of chaos and nonlinear dynamics in phase-locked loops. J. Frankl. Inst. 1994, 331, 859–902. [Google Scholar] [CrossRef]
- Petrzela, J. Multi-valued static memory with resonant tunneling diodes as natural source of chaos. Nonlinear Dyn. 2018, 94, 1867–1887. [Google Scholar] [CrossRef]
- Petrzela, J. Strange attractors generated by multiple-valued static memory cell with polynomial approximation of resonant tunneling diodes. Entropy 2018, 20, 697. [Google Scholar] [CrossRef] [Green Version]
- Galajda, P.; Guzan, M.; Spany, V. The state space mystery with negative load in multiple-valued logic. Radioengineering 2008, 17, 19–24. [Google Scholar]
- Petrzela, J. Generalized single stage class C amplifier: Analysis from the viewpoint of chaotic behavior. Appl. Sci. 2020, 10, 5025. [Google Scholar] [CrossRef]
- Petrzela, J. Evidence of strange attractors in class C amplifier with single bipolar transistor: Polynomial and piecewise-linear case. Entropy 2021, 23, 175. [Google Scholar] [CrossRef] [PubMed]
- Petrzela, J. New chaotic oscillator derived from class C single transistor-based amplifier. Math. Probl. Eng. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Petrzela, J.; Rujzl, M. Chaotic oscillations in cascoded and Darlington-type amplifier having generalized transistors. Mathematics 2022, 10, 532. [Google Scholar] [CrossRef]
- Hamill, D.C.; Jeffries, D.J. Subharmonics and chaos in a controlled switched-mode power converter. IEEE Trans. Circuits Syst. 1988, 35, 1059–1061. [Google Scholar] [CrossRef]
- Deane, J.H.B.; Hamill, D.C. Chaotic behaviour in current-mode controlled DC-DC converter. Electron. Lett. 1991, 27, 1172–1173. [Google Scholar] [CrossRef]
- Di Bernardo, M.; Garofalo, F.; Glielmo, L.; Vasca, F. Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 133–141. [Google Scholar] [CrossRef]
- Tse, C.K. Flip bifurcation and chaos in three-state boost switching regulators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1994, 41, 16–23. [Google Scholar] [CrossRef]
- Zhusubaliyev, Z.T.; Mosekilde, E. Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems; World Scientific: Singapore, 2003; 376p. [Google Scholar]
- Di Bernardo, M.; Budd, C.J.; Champneys, A.R.; Kowalczyk, P. Piecewise-Smooth Dynamical Systems; Springer: New York, NY, USA, 2008; 481p. [Google Scholar]
- Banerjee, S.; Verghese, G.C. Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications; Wiley: Hoboken, NJ, USA, 2001; 480p. [Google Scholar]
- Niu, Q. Study of bifurcation and chaos in boost converter based on energy balance model. Energy Power Eng. 2009, 1, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Tse, C.K.; Chan, W.C.Y. Chaos from a current-programmed cuk converter. Int. J. Circuit Theory Appl. 1995, 23, 217–225. [Google Scholar] [CrossRef]
- Wong, S.C.; Tse, C.K.; Tam, K.C. Intermittent chaotic operation in switching power converters. Int. J. Bifurc. Chaos 2011, 14, 2971–2978. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Youjie, M. Chaos phenomena in dc-dc converter and chaos control. Proceedia Eng. 2012, 29, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Fossas, E.; Olivar, G. Study of chaos in the buck converter. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1996, 43, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Natsheh, A.; Kettleborough, J.; Janson, N. Experimental study of controlling chaos in a DC-DC boost converter. Chaos Solitons Fractals 2009, 40, 2500–2508. [Google Scholar] [CrossRef]
- El Aroudi, A.; Debbat, M.; Giral, R.; Olivar, G.; Benadero, L.; Toribo, E. Bifurcations in DC-DC switching converters: Review of methods and applications. Int. J. Bifurc. Chaos 2005, 15, 1549–1578. [Google Scholar] [CrossRef]
- Rodriguez-Vazquez, A.; Huertas, J.; Chua, L.O. Chaos in switched-capacitor circuit. IEEE Trans. Circuits Syst. 1985, 32, 1083–1085. [Google Scholar] [CrossRef]
- Nagy, I. Nonlinear phenomena in power electronics. Automatika 2001, 42, 117–132. [Google Scholar]
- Galajda, P.; Kocur, D. Chua’s circuit in spread spectrum communication systems. Radioengineering 2002, 11, 6–10. [Google Scholar]
- Itoh, M. Spread spectrum communication via chaos. Int. J. Bifurc. Chaos 1999, 9, 155–213. [Google Scholar] [CrossRef]
- Corron, N.J.; Hahs, D.W. A new approach to communications using chaotic signals. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1997, 44, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Cruz-Hernandez, C.; Sanchez-Lopez, C. Chaotic communication system using Chua’s oscillators realized with CCII+s. Int. J. Bifurc. Chaos 2009, 19, 4217–4226. [Google Scholar] [CrossRef]
- Chien, T.-I.; Liao, T.-L. Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization. Chaos Solitons Fractals 2005, 24, 241–255. [Google Scholar] [CrossRef]
- Kaddoum, G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
- Yang, T. A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2004, 2, 81–130. [Google Scholar]
- Stojanovski, T.; Kocarev, L. Chaos-based random number generators. Part I: Analysis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 281–288. [Google Scholar] [CrossRef]
- Stojanovski, T.; Pihl, J.; Kocarev, L. Chaos-based random number generators. Part II: Practical realization. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Drutarovsky, M.; Galajda, P. A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware. Radioengineering 2007, 16, 120–127. [Google Scholar]
- Sprott, J.C.; Thio, W.J. A chaotic circuit for producing gaussian random numbers. Int. J. Bifurc. Chaos 2020, 30, 2050116. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Li, Z.; Halang, W.A.; Chen, G. Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI. Chaos Solitons Fractals 2009, 42, 1378–1387. [Google Scholar] [CrossRef]
- Elwakil, A.S.; Soliman, A.M. Current conveyor chaos generators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1999, 46, 393–398. [Google Scholar] [CrossRef]
- Bernat, P.; Balaz, I. RC autonomous circuits with chaotic behavior. Radioengineering 2002, 11, 1–5. [Google Scholar]
- Tokunaga, R.; Komuro, M.; Matsumoto, T.; Chua, L.O. Lorenz attractor from an electrical circuit with uncoupled continuous piecewise-linear resistor. Int. J. Circuit Theory Appl. 1989, 17, 71–85. [Google Scholar] [CrossRef]
- Kumari, B.; Gupta, N. Realization of chaotic circuits using lambda diode. J. Circuits Syst. Comput. 2017, 26, 1750189. [Google Scholar] [CrossRef]
- Minati, L.; Frasca, M.; Oswiecimka, P.; Faes, L.; Drozd, S. Atypical transistor-based chaotic oscillators: Design, realization, and diversity. Chaos 2017, 27, 073113. [Google Scholar] [CrossRef] [Green Version]
- Petrzela, J.; Pospisil, V. Nonlinear resistor with polynomial AV characteristics and its application in chaotic oscillator. Radioengineering 2004, 13, 20–25. [Google Scholar]
- Petrzela, J.; Kolka, Z.; Hanus, S. Simple chaotic oscillator: From mathematical model to practical experiment. Radioengineering 2006, 15, 6–12. [Google Scholar]
- Petrzela, J.; Slezak, J. Conservative chaos generators with CCII+ based on mathematical model of nonlinear oscillator. Radioengineering 2008, 17, 19–24. [Google Scholar]
- Kataoka, M.; Saito, T. A two-port VCCS chaotic oscillator and quad screw attractor. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 1057–1064. [Google Scholar] [CrossRef]
- Petrzela, J.; Sotner, R. Binary memory implemented by using variable gain amplifiers with multipliers. IEEE Access 2020, 8, 197276–197286. [Google Scholar] [CrossRef]
- Biolek, D.; Senani, R.; Biolkova, V.; Kolka, Z. Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering 2008, 17, 15–32. [Google Scholar]
- Kiers, K.; Klein, T.; Kolb, J.; Price, S.; Sprott, J.C. Chaos in a nonlinear analog computer. Int. J. Bifurc. Chaos 2004, 14, 2867–2873. [Google Scholar] [CrossRef]
- Piper, J.R.; Sprott, J.C. Simple autonomous chaotic circuits. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 730–734. [Google Scholar] [CrossRef]
- Sprott, J.C. A new chaotic jerk circuit. IEEE Trans. Circuits Syst. II Express Briefs 2011, 58, 240–243. [Google Scholar] [CrossRef]
- Petrzela, J.; Hrubos, Z.; Gotthans, T. Modeling deterministic chaos using electronic circuits. Radioengineering 2011, 20, 438–444. [Google Scholar]
- Klomkarn, K.; Sooraksa, P.; Chen, G. New construction of mixed-mode chaotic circuits. Int. J. Bifurc. Chaos 2010, 20, 1485–1497. [Google Scholar] [CrossRef]
- Petrzela, J.; Gotthans, T.; Guzan, M. Current-mode network structures dedicated for simulation of dynamical systems with plane continuum of equilibrium. J. Circuits Syst. Comput. 2018, 27, 1830004. [Google Scholar] [CrossRef]
- Almatroud, O.A.; Tamba, V.K.; Grassi, G.; Pham, V.-T. An oscillator without linear terms: Infinite equilibria, chaos, realization, and application. Mathematics 2021, 9, 3315. [Google Scholar] [CrossRef]
- Sprott, J.C. A proposed standard for the publication of new chaotic systems. Int. J. Bifurc. Chaos 2011, 21, 2391–2394. [Google Scholar] [CrossRef] [Green Version]
- Gotthans, T.; Sprott, J.C.; Petrzela, J. Simple chaotic flow with circle and square equilibrium. Int. J. Bifurc. Chaos 2016, 26, 1650137. [Google Scholar] [CrossRef] [Green Version]
- Pham, V.-T.; Jafari, S.; Volos, C.; Giakoumis, A.; Vaidyanathan, S.; Kapitaniak, T. A chaotic system with equilibria located on the rounded square loop and its circuit implementation. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 878–882. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Akgul, A.; Jafari, S.; Karthikeyan, A.; Koyuncu, I. Chaotic chameleon: Dynamical analysis, circuit implementation, FPGA design and fractional-order form with basic analysis. Chaos Solitons Fractals 2017, 103, 476–487. [Google Scholar]
- Kapitaniak, T.; Mohammadi, S.A.; Mekhilef, S.; Alsaadi, F.E.; Hayat, T.; Pham, V.-T. A new chaotic system with stable equilibrium: Entropy analysis, parameter estimation, and circuit design. Entropy 2018, 20, 670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, V.-T.; Ali, D.S.; Al-Saidi, N.M.G.; Rajagopal, K.; Alsaadi, F.E.; Jafari, S. A novel mega-stable chaotic circuit. Radioengineering 2020, 29, 140–146. [Google Scholar] [CrossRef]
- Lai, Q.; Akgul, A.; Li, C.H.; Xu, G.; Cavusoglu, U. A new chaotic system with multiple attractors: Dynamic analysis, circuit realization and S-box design. Entropy 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, S.; Sprott, J.C.; Pham, V.-T.; Volos, C.; Li, C. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dyn. 2016, 86, 1349–1358. [Google Scholar] [CrossRef]
- Li, C.; Peng, Y.; Tao, Z.; Sprott, J.C.; Jafari, S. Coexisting infinite equilibria and chaos. Int. J. Bifurc. Chaos 2021, 31, 2130014. [Google Scholar] [CrossRef]
- Munoz-Pacheco, J.M.; Tlelo-Cuautle, E.; Toxqui-Toxqui, I.; Sanchez-Lopez, C.; Trejo-Guerra, R. Frequency limitations in generating multi-scroll chaotic attractors using CFOAs. Int. J. Electron. 2014, 101, 1559–1569. [Google Scholar] [CrossRef]
- Ma, J.; Wang, L.; Duan, S.; Xu, Y. A multi-wing butterfly chaotic system and its implementation. Int. J. Circuit Theory Appl. 2017, 45, 1873–1884. [Google Scholar] [CrossRef]
- Karimov, T.; Nepomuceno, E.G.; Druzhina, O.; Karimov, A.; Butusov, D. Chaotic oscillators as inductive sensors: Theory and practice. Sensors 2019, 19, 4314. [Google Scholar] [CrossRef] [Green Version]
- Sprott, J.C. Simple chaotic systems and circuits. Am. J. Phys. 2000, 68, 758–763. [Google Scholar] [CrossRef]
- Sprott, J.C. A new class of chaotic circuit. Phys. Lett. A 2000, 266, 19–23. [Google Scholar] [CrossRef]
- Gotthans, T.; Petrzela, J. Experimental study of sampled labyrinth chaos. Radioengineering 2011, 20, 873–879. [Google Scholar]
- Singh, J.P.; Roy, B.K. Simplest hyperchaotic system with only one piecewise linear term. Electron. Lett. 2019, 55, 378–380. [Google Scholar] [CrossRef]
- Yang, X.S.; Li, Q.; Chen, G. A twin-star hyperchaotic attractor and its circuit implementation. Int. J. Circuit Theory Appl. 2003, 31, 637–640. [Google Scholar] [CrossRef]
- Tamasevicius, A.; Namajunas, A.; Cenys, A. Simple 4D chaotic oscillator. Electron. Lett. 1996, 32, 957–958. [Google Scholar] [CrossRef]
- Varrientos, J.E.; Sanchez-Sinencio, E. A 4-D chaotic oscillator based on a differential hysteresis comparator. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 3–10. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C.; Thio, W.; Zhu, H. A new piecewise linear hyperchaotic circuit. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 977–981. [Google Scholar] [CrossRef]
- Folifack Signing, V.R.; Kengne, J.; Mboupda Pone, J.R. Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos Solitons Fractals 2019, 118, 187–198. [Google Scholar] [CrossRef]
- Yujun, N.; Xingyuan, W.; Mingjun, W.; Huanguang, Z. A new hyperchaotic system and its circuitry implementation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3518–3524. [Google Scholar] [CrossRef]
- Cernys, A.; Tamasevicius, A.; Baziliauskas, A.; Krivickas, R.; Lindberg, E. Hyperchaos in coupled Colpitts oscillators. Chaos Solitons Fractals 2003, 17, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Tamba, V.K.; Fotsin, H.B.; Kengne, J.; Kapche Tagne, F.; Talla, P.K. Coupled inductor-based chaotic Colpitts oscillators: Mathematical modeling and synchronization issues. Eur. Phys. J. Plus 2015, 130, 137. [Google Scholar] [CrossRef]
- Petrzela, J. Chaotic and hyperchaotic self-oscillations of lambda diode composed by generalized bipolar transistors. Appl. Sci. 2021, 11, 3326. [Google Scholar] [CrossRef]
- Petrzela, J. Hyperchaotic self-oscillations of two-stage class C amplifier with generalized transistors. IEEE Access 2021, 9, 62182–62194. [Google Scholar] [CrossRef]
- Caponeto, R.; Di Mauro, A.; Fortuna, L.; Frasca, M. Field programmable analog array to implement a programmable Chua’s circuit. Int. J. Bifurc. Chaos 2005, 15, 1829–1836. [Google Scholar] [CrossRef]
- Li, C.; Thio, W.J.; Sprott, J.C.; Iu, H.H.; Xu, Y. Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access 2018, 6, 29003–29012. [Google Scholar] [CrossRef]
- Dalkiran, F.Y.; Sprott, J.C. Simple chaotic hyperjerk system. Int. J. Bifurc. Chaos 2016, 26, 1650189. [Google Scholar] [CrossRef]
- Kilic, R. Universal programmable chaos generator: Design and implementation issues. Int. J. Bifurc. Chaos 2010, 20, 419–435. [Google Scholar] [CrossRef]
- Guillén-Fernández, O.; Moreno-López, M.F.; Tlelo-Cuautle, E. Issues on applying one- and multi-step numerical methods to chaotic oscillators for FPGA implementation. Mathematics 2021, 9, 151. [Google Scholar] [CrossRef]
- Pham, V.-T.; Vaidyanathan, S.; Volos, C.; Jafari, S. Hidden attractor in a chaotic system with an exponential nonlinear term. Eur. Phys. J. Spec. Top. 2015, 224, 1507–1517. [Google Scholar] [CrossRef]
- Ozoguz, S.; Sengor, N.S. On the realization of NPN-only log-domain chaotic oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003, 50, 291–294. [Google Scholar] [CrossRef]
- Yener, S.C.; Kuntman, H.H. Fully CMOS memristor based chaotic circuit. Radioengineering 2014, 23, 1140–1149. [Google Scholar]
- Rodriguez-Vazquez, A.; Delgado-Restituto, M. CMOS design of chaotic oscillators using state variables: A monolithic Chua’s circuit. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1993, 40, 596–613. [Google Scholar] [CrossRef]
- Carbajal-Gomez, V.H.; Tlelo-Cuautle, E.; Munoz-Pacheco, J.M.; Gerardo de la Fraga, L.; Sanchez-Lopez, F.V. Optimization and CMOS design of chaotic oscillators robust to PVT variations. Integration 2019, 65, 32–42. [Google Scholar] [CrossRef]
- Radwan, A.G.; Soliman, A.M.; El-Sedeek, A.L. Low-voltage MOS chaotic oscillator based on the nonlinearity of gm. J. Circuits Syst. Comput. 2004, 13, 101. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Nishio, Y. Simple chaotic circuit using CMOS ring oscillators. Int. J. Bifurc. Chaos 2004, 14, 2513–2524. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Restituto, M.; Linan, M.; Ceballos, J.; Rodriguez-Vazquez, A. Bifurcations and synchronization using an integrated programmable chaotic circuit. Int. J. Bifurc. Chaos 1997, 7, 1737–1773. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Carbajal-Gomez, V.H.; Rodriguez-Gomez, G.A. A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 2013, 219, 5113–5122. [Google Scholar] [CrossRef]
- Sanchez-Lopez, C.; Trejo-Guerra, R.; Munoz-Pacheco, J.M.; Tlelo-Cuautle, E. N-scroll chaotic attractors from saturated functions employing CCII+s. Nonlinear Dyn. 2010, 61, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, C.H. A novel multi-attractor period multi-scroll chaotic integrated circuit based on CMOS wide adjustable CCCII. IEEE Access 2019, 7, 16336–16350. [Google Scholar]
- Tang, W.K.S.; Zhong, G.Q.; Chen, G.; Man, K.F. Generation of N-scroll attractors via sine function. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 1369–1372. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, M.E.; Suykens, J.A.K.; Vandewalle, J.; Ozoguz, S. Families of scroll grid attractors. Int. J. Bifurc. Chaos 2002, 12, 23–41. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Lu, J.; Leung, H.; Chen, G. Design and implementation of n-scroll chaotic attractors from a general jerk circuit. IEEE Trans. Circuits Syst. I Regul. Pap. 2005, 52, 1459–1476. [Google Scholar]
- Lu, J.; Chen, G. Generating multiscroll chaotic attractors: Theories, methods and applications. Int. J. Bifurc. Chaos 2006, 16, 775–858. [Google Scholar] [CrossRef]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Jimenez-Fuentes, J.M.; Sanchez-Lopez, C.; Munoz-Pacheco, J.M.; Espinosa-Flores-Verdad, G.; Rocha-Perez, J.M. Integrated circuit generating 3- and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4328–4335. [Google Scholar] [CrossRef]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Jimenez-Fuentes, J.M.; Munoz-Pacheco, J.M.; Sanchez-Lopez, C. Multiscroll floating gate based integrated chaotic oscillator. Int. J. Circuit Theory Appl. 2013, 41, 831–843. [Google Scholar] [CrossRef]
- Carbajal-Gomez, V.H.; Tlelo-Cuautle, E.; Sanchez-Lopez, C.; Fernandez-Fernandez, F.V. PVT-robust CMOS programmable chaotic oscillator: Synchronization of two 7-scroll attractors. Electronics 2018, 7, 252. [Google Scholar] [CrossRef] [Green Version]
- Jin, J. Programmable multi-direction fully integrated chaotic oscillator. Microelectron. J. 2018, 75, 27–34. [Google Scholar] [CrossRef]
- Hulub, M.; Frasca, M.; Fortuna, L.; Arena, P. Implementation and synchronization of 3 × 3 grid scroll chaotic circuits with analog programmable devices. Chaos 2006, 16, 013121. [Google Scholar] [CrossRef]
- Pano-Azucena, A.D.; Rangel-Magdaleno, J.J.; Tlelo-Cuautle, E.; Quintas-Valles, A.J. Arduino-based chaotic secure communication system using multi-directional multiscroll chaotic oscillators. Nonlinear Dyn. 2017, 87, 2203–2217. [Google Scholar] [CrossRef]
- Biolek, D.; Di Ventra, M.; Pershin, Y.V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 2013, 22, 945–982. [Google Scholar]
- Chua, L.O. Everything you wish to know about memristors but are afraid to ask. Radioengineering 2015, 24, 319–368. [Google Scholar] [CrossRef]
- Biolek, Z.; Biolek, D.; Biolkova, V. Utilization of Euler-Lagrange equations in circuits with memory elements. Radioengineering 2016, 25, 783–789. [Google Scholar] [CrossRef]
- Minati, L.; Gambuzza, L.V.; Thio, W.J.; Sprott, J.C.; Frasca, M. A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 2020, 138, 109990. [Google Scholar] [CrossRef]
- Wang, L.; Drakakis, E.; Duan, S.; He, P.; Liao, X. Memristor model and its application for chaos generation. Int. J. Bifurc. Chaos 2012, 22, 1250205. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Liu, J.; Cao, Y. A new simple chaotic circuit based on memristor and meminductor. Eur. Phys. J. Plus 2021, 136, 1182. [Google Scholar] [CrossRef]
- Muthuswamy, B. Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 2010, 20, 1335–1350. [Google Scholar] [CrossRef]
- Kengne, J.; Njitacke, Z.T.; Nguomkam Negou, A.; Fouodji Tsostop, M.; Fotsin, H.B. Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. Int. J. Bifurc. Chaos 2016, 26, 1650081. [Google Scholar] [CrossRef]
- Pham, V.-T.; Buscarino, A.; Fortuna, L.; Frasca, M. Simple memristive time-delay chaotic systems. Int. J. Bifurc. Chaos 2013, 23, 1350073. [Google Scholar] [CrossRef]
- Du, C.; Liu, L.; Zhanh, Z.; Yu, S. A memristive conservative chaotic circuit with two different offset boosting behaviors. AEU-Int. J. Electron. Commun. 2022, 147, 154146. [Google Scholar] [CrossRef]
- Bao, B.; Bao, H.; Wang, N.; Chen, M.; Xu, Q. Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 2017, 94, 102–111. [Google Scholar] [CrossRef]
- Petrzela, J. Fractional-order chaotic memory with wideband constant phase elements. Entropy 2020, 22, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lin, P.; Sun, W. Nonlinear control and circuit implementation in coupled nonidentical fractional-order chaotic systems. Fractal Fract. 2022, 6, 428. [Google Scholar] [CrossRef]
- Valencia-Ponce, M.A.; Castañeda-Aviña, P.R.; Tlelo-Cuautle, E.; Carbajal-Gómez, V.H.; González-Díaz, V.R.; Sandoval-Ibarra, Y.; Nuñez-Perez, J.-C. CMOS OTA-based filters for designing fractional-order chaotic oscillators. Fractal Fract. 2021, 5, 122. [Google Scholar] [CrossRef]
- Pham, V.-T.; Kingni, S.T.; Volos, C.H.; Jafari, S.; Kapitaniak, T. A simple three-dimensional fractional-order chaotic system without equilibrium. AEU-Int. J. Electron. Commun. 2017, 78, 220–227. [Google Scholar] [CrossRef]
- Pham, V.-T.; Ouannas, A.; Volos, C.; Kapitaniak, T. A simple fractional-order chaotic system without equilibrium and its synchronization. AEU-Int. J. Electron. Commun. 2018, 86, 69–76. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W.; Wu, R.; Wang, K.; He, Y. Generation and circuit implementation of fractional-order multi-scroll attractors. Chaos Solitons Fractals 2016, 85, 22–31. [Google Scholar] [CrossRef]
- Chen, L.; Pan, W.; Wu, R.; Tenreiro-Machado, J.A.; Lopes, A.M. Design and implementation of grid multi-scroll fractional-order chaotic oscillators. AIP Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 084303. [Google Scholar] [CrossRef] [Green Version]
- Silva-Juarez, A.; Tlelo-Cuautle, E.; de la Fraga, L.G.; Li, R. FPAA-based implementation of fractional-order chaotic oscillators using first-order active filter blocks. J. Adv. Res. 2020, 25, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Altun, K. FPAA implementations of fractional-order chaotic systems. J. Circuits Syst. Comput. 2021, 30, 2150271. [Google Scholar] [CrossRef]
- Dong, E.; Yuan, M.; Han, F.; Tong, J.; Du, S. Topological horseshoe analysis and FPGA implementation of a classical fractional order chaotic system. IEEE Access 2019, 7, 129095–129103. [Google Scholar] [CrossRef]
- Shah, D.K.; Charasiya, R.B.; Vyawahare, V.A.; Pichhode, K.; Patil, M.D. FPGA implementation of fractional-order chaotic systems. AEU-Int. J. Electron. Commun. 2017, 78, 245–257. [Google Scholar] [CrossRef]
- Petrzela, J. Optimal piecewise-linear approximation of the quadratic chaotic dynamics. Radioengineering 2012, 21, 20–28. [Google Scholar]
- Jafari, S.; Sprott, J.C.; Pham, V.-T.; Golpayegani, S.M.R.H. A new cost function for parameter estimation of chaotic systems using return maps as fingerprints. Int. J. Bifurc. Chaos 2014, 24, 1567–1580. [Google Scholar] [CrossRef]
- Valencia-Ponce, M.A.; Tlelo-Cuautle, E.; de la Fraga, L.G. Estimating the highest time-step in numerical methods to enhance the optimization of chaotic oscillators. Mathematics 2021, 9, 1938. [Google Scholar] [CrossRef]
- Liao, S.-J. On the clean numerical simulation (CNS) of chaotic dynamic systems. J. Hydrodyn. 2017, 29, 729–747. [Google Scholar] [CrossRef]
- Pchelintsev, A. Numerical and physical modeling of the dynamics of the Lorenz system. Numer. Anal. Appl. 2014, 7, 159–167. [Google Scholar] [CrossRef]
- Pchelintsev, A. On a high-precision method for studying attractors of dynamical systems and systems of explosive type. Mathematics 2022, 10, 1207. [Google Scholar] [CrossRef]
- Kvarda, P. Identifying the deterministic chaos by using the Lorenz maps. Radioengineering 2000, 9, 32–33. [Google Scholar]
- Kvarda, P. Identifying the deterministic chaos by using the Lyapunov exponents. Radioengineering 2001, 10, 38–40. [Google Scholar]
- Grygiel, K.; Szlachetka, P. Lyapunov exponent analysis of autonomous and nonautonomous set of ordinary differential equations. Acta Phys. Pol. Ser. B 1995, 26, 1321–1331. [Google Scholar]
- Sprott, J.C. Do we need more chaos examples? Chaos Theory Appl. 2020, 2, 1–3. [Google Scholar]
- Jafari, S.; Ahmadi, A.; Khalaf, A.J.M.; Abdlmohammadi, H.R.; Pham, V.-T.; Alsaadi, F.E. A new hidden chaotic attractor with extreme multi-stability. AEU-Int. J. Electron. Commun. 2018, 89, 131–135. [Google Scholar] [CrossRef]
- Islam, Y.; Li, C.; Jiang, Y.; Ma, X.; Akgul, A. A hidden chaotic attractor with an independent amplitude-frequency controller. Complexity 2022, 2022, 3086747. [Google Scholar] [CrossRef]
- Petrzela, J. Canonical hyperchaotic oscillators with single generalized transistor and generative two-terminal elements. IEEE Access 2022, 10, 90456–90466. [Google Scholar] [CrossRef]
- Rajagopal, K.; Li, C.; Nazarimehr, F.; Karthikeyan, A.; Duraisamy, P.; Jafari, S. Chaotic dynamics of modified Wien bridge oscillator with fractional order memristor. Radioengineering 2019, 28, 165–174. [Google Scholar] [CrossRef]
- Akgul, A. Chaotic oscillator based on fractional order memcapacitor. J. Circuits Syst. Comput. 2019, 28, 1950239. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, G.; Liu, S.; Moshayedi, A.J. Fractional-order circuit design with hybrid controlled memristors and FPGA implementation. AEU-Int. J. Electron. Commun. 2022, 153, 154268. [Google Scholar] [CrossRef]
- Rajagopal, K.; Kingni, S.T.; Khalaf, A.J.M.; Shekofteh, Y.; Nazarimehr, F. Coexistence of attractors in a simple chaotic oscillator with fractional-order-memristor component: Analysis, FPGA implementation, chaos control and synchronization. Eur. Phys. J. Spec. Top. 2019, 228, 2035–2051. [Google Scholar] [CrossRef]
- Joshi, M.; Ranjan, A. Low power chaotic oscillator employing CMOS. Integration 2022, 85, 57–62. [Google Scholar] [CrossRef]
- Petrzela, J.; Sotner, R. New nonlinear active element dedicated to modeling chaotic dynamics with complex polynomial vector field. Entropy 2019, 21, 871. [Google Scholar] [CrossRef] [Green Version]
- Adeyemi, V.-A.; Tlelo-Cuautle, E.; Perez-Pinal, F.-J.; Nuñez-Perez, J.-C. Optimizing the maximum Lyapunov exponent of fractional order chaotic spherical system by evolutionary algorithms. Fractal Fract. 2022, 6, 448. [Google Scholar] [CrossRef]
- Nuñez-Perez, J.-C.; Adeyemi, V.-A.; Sandoval-Ibarra, Y.; Perez-Pinal, F.-J.; Tlelo-Cuautle, E. Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Mathematics 2021, 9, 1194. [Google Scholar] [CrossRef]
- Letellier, C.; Abraham, R.; Shepelyansky, D.L.; Rössler, O.E.; Holmes, P.; Lozi, R.; Glass, L.; Pikovsky, A.; Olsen, L.F.; Tsuda, I.; et al. Some elements for a history of the dynamical systems theory. Chaos 2021, 31, 053110. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y. Some Problems in the Theory of Nonlinear Oscillations; Nippon Printing and Pub. Co.: Tokyo, Japan, 1968; 60p. [Google Scholar]
- Kapitaniak, T. Chaotic Oscillators: Theory and Applications; World Scientific Publishing Company: Singapore, 1992; 668p. [Google Scholar]
- Ueda, Y.; Abraham, R.H.; Steward, H.B. The Road to Chaos; Aerial Press: San Francisco, CA, USA, 1992; 223p. [Google Scholar]
- Elhadj, Z. Models and Applications of Chaos Theory in Modern Sciences; CRC Press: Boca Raton, FL, USA, 2012; 742p. [Google Scholar]
- Chen, G.; Ueta, T. Chaos in Circuits and Systems; World Scientific Publishing Company: Singapore, 2002; 630p. [Google Scholar]
- Kyprianidis, I.; Stouboulos, I.; Volos, C. New Research Trends in Nonlinear Circuits: Design, Chaotic Phenomena and Applications; Nova Publishers: Hauppauge, NY, USA, 2014; 310p. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrzela, J. Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example. Mathematics 2022, 10, 4108. https://doi.org/10.3390/math10214108
Petrzela J. Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example. Mathematics. 2022; 10(21):4108. https://doi.org/10.3390/math10214108
Chicago/Turabian StylePetrzela, Jiri. 2022. "Chaos in Analog Electronic Circuits: Comprehensive Review, Solved Problems, Open Topics and Small Example" Mathematics 10, no. 21: 4108. https://doi.org/10.3390/math10214108