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Abstract: In this paper, we introduce a new, three-dimensional chaotic system with one stable
equilibrium. This system is a multistable dynamic system in which the strange attractor is hidden.
We investigate its dynamic properties through equilibrium analysis, a bifurcation diagram and
Lyapunov exponents. Such multistable systems are important in engineering. We perform an entropy
analysis, parameter estimation and circuit design using this new system to show its feasibility and
ability to be used in engineering applications.

Keywords: chaotic flow; hidden attractor; multistable; entropy

1. Introduction

Chaotic systems are very important in nonlinear dynamics. Many researchers are investigating the
reason for the existence of chaotic attractors. For many years, researchers thought that the existence of a
saddle equilibrium [1,2] is a necessary condition for strange attractors. However, in recent years many
chaotic systems with no saddle point have been proposed. For example, we note systems with chaotic
attractors and without any equilibria [3,4], with stable equilibria [5,6], with a line of equilibria [7,8],
with a curve of equilibria [9,10], with circle and square equilibria [11], with a circular equilibria [12],
with ellipsoid equilibria [13] and with a plane or surface of equilibria [14–17].

Leonov and Kusnetsov have introduced a new topic in nonlinear dynamics that has been called
hidden attractors [18–20]. Hidden attractors are attractors in which the basin of attraction does
not intersect with any equilibrium point [21–23]. The opposite side of this definition is self-excited
attractors. A self-excited attractor has a basin of attraction that is associated with at least one unstable
equilibrium [24–26]. Many unusual chaotic systems that have been proposed recently are systems with
hidden attractors [27]. Hidden attractors in fractional order systems are also studied in [28–30].
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Multistability is another important phenomenon that can be observed in dynamic systems [31–33].
In multistable systems, the final state of the system is dependent on the initial conditions [34,35].
Chaotic systems with stable equilibria are examples of multistable systems [36,37].

The quantification of chaotic attractors is a challenging topic in nonlinear dynamics. There are
many measures that are used in this area. The main such measure is the Lyapunov exponent [38].
Entropy is another measure that determines the unpredictability of complex dynamics [39]. Entropy can
be helpful in short time series [40], while the Lyapunov exponent is not suitable for them.

In this paper, a new three-dimensional chaotic flow with one stable equilibrium is proposed.
The chaotic attractor of this system is hidden since it cannot be found using the stable equilibrium
point. The rest of the paper is organized as follows:

The new chaotic system is proposed in Section 2. Some of its dynamic properties are investigated
in Section 3. Section 4 discuses the complexity of the system’s attractors. Section 5 is devoted to the
parameter estimation of the proposed system. The circuit implementation of the system is carried out
in Section 6. Finally, the paper is concluded in Section 7.

2. System Description

In this paper, we are going investigate the dynamic properties of the following system:

.
x = z

.
y = −x − z

.
z = 0.1x + 5y − z + xy − 0.3xz + a

(1)

where parameter a = 1. System (1) is a three-dimensional chaotic flow that can have a chaotic attractor.
This system has been designed based on the method proposed in [41]. In the first step of investigating
its dynamic properties, the equilibrium points of the system were calculated. By setting zero at the
right hand side of this equation we obtain:

z = 0

x = 0

y = − 1
5

(2)

Thus, the system has one equilibrium point in (0, −0.2, 0). A stability analysis of this equilibrium
point can be carried out using the following Jacobian matrix at the equilibrium:

J =

 0 0 1
−1 0 −1
−0.1 5 −1

 (3)

By solving the equality det(λI − J) = 0, the characteristic equation of System (1) is determined
as follows:

λ3 + λ2 + 5.1λ + 5 = 0 (4)

Solving Equation (4), we find that System (1) has three eigenvalues (λ1 = −0.9835, λ2,3 = −0.0082±
2.2547i) for the equilibrium (0, −0.2, 0). Thus, it is a stable equilibrium point. Every other possible
attractor of this system coexists with this stable equilibrium point. The system shows a chaotic attractor
if we choose initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3). The chaotic attractor cannot be found
using any equilibrium points of the system since the system has only one stable equilibrium point.
Thus the strange attractor is hidden [27]. The time series of three states of System (1) for a = 1 are
shown in Figure 1. Three projections of the chaotic attractor and its three-dimensional attractor are
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presented in Figure 2 and its Poincaré map is shown in Figure 3. In this plot, we use the peak values of
x variable as the Poincaré map.Entropy 2018, 20, x 3 of 11 

 

 
Figure 1. Time series of System (1) with parameter = 1  and initial conditions , , =5.4, −1.8, 3.3 .  

 

Figure 2. Three projections of the chaotic attractor of System (1) with parameter = 1 and initial 
conditions , , = 5.4, −1.8, 3.3  in (a) X-Y plane. (b) X-Z plane. (c) Y-Z plane and (d) 3-D 
chaotic attractor. 
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Figure 1. Time series of System (1) with parameter a = 1 and initial conditions (x0, y0, z0) =

(5.4, −1.8, 3.3).
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Figure 2. Three projections of the chaotic attractor of System (1) with parameter a = 1 and initial
conditions (x0, y0, z0) = (5.4, −1.8, 3.3) in (a) X-Y plane. (b) X-Z plane. (c) Y-Z plane and (d) 3-D
chaotic attractor.
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(x0, y0, z0) = (5.4, −1.8, 3.3).

3. Bifurcation Analysis

In order to show the different dynamic behaviors of System (1), its bifurcation diagram was
investigated. Figure 4a shows a bifurcation diagram of the system with respect to the changing parameter
a. The system has an inverse route of period doubling after its chaotic behavior. The dynamic of the
system also suddenly changes in a = 1.46 from a stable limit cycle to a stable equilibrium. In other words,
System (1) has a chaotic attractor in parameter a = 1 and initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3).
The system also has a stable equilibrium point in

(
0,− a

5 , 0
)
=
(

0,− 1
5 , 0
)

. Thus, there are some initial
conditions in the vicinity of this stable equilibrium that are attracted to it. In the bifurcation diagram of
Figure 4, we used the initial conditions (x0, y0, z0) = (5.4, −1.8, 3.3) for parameter a = 1 and applied the
forward continuation method for the higher values of parameter a. In other words, in the higher values of
parameter a, we used initial conditions from the end of trajectory in the previous parameter with forward
changing. Thus, the trajectory of the system traps into one attractor that is chaotic in parameter a = 1
and bifurcates with an inverse route of period doubling to chaos. In parameter a = 1.46 the previous
attractor becomes unstable and the system jumps from a stable limit cycle to the stable equilibrium point
(0,− a

5 , 0). To be sure about the chaotic and other types of attractors of the system, it was necessary to
calculate the Lyapunov exponents (Figure 4b). In the smaller values of the parameter a the system has
a chaotic attractor (one positive, one zero, and one negative LE). It then shows the limit cycle, since its
largest Lyapunov exponent is zero and the other two LEs are negative. After that, in the higher values of
parameter a, the attractor changed to a stable equilibrium that has three negative Lyapunov exponents.
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Figure 4. (a) Bifurcation diagram of System (1) with respect to the changing parameter a in the interval
[1, 1.5] and forward continuation. (b) Lyapunov exponents of System (1) with respect to the changing
parameter a in the interval [1, 1.5] and forward continuation.
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4. Entropy Analysis

Entropy is a measure of unpredictability. Shannon has proposed a formulation for calculating
entropy [42]. Since chaotic attractors have an infinite number of states, another type of entropy is
needed to calculate their unpredictability. This entropy is called Kolmogorov–Sinai (Hks) [40,43] and
its formulation is shown in Equation (5).

Hks(β[ε]) =
1

τmin(β[ε]) ∑
τ

ρ(τ, β[ε])log
(

1
ρ(τ, β[ε])

)
(5)

It is defined using the first Poincaré recurrence times (FPRs) denoted by τi. β is a D-dimensional
box in the state space with side ε1 where the FPRs are observed. ρ(τ, β) is the probability distribution
of τi. For a smooth chaotic system Hks is equal to the sum of all positive Lyapunov exponents [44,45].
The Kolmogorov–Sinai entropy of System (1) with respect to the changing parameter a is shown in
Figure 5. Near a bifurcation point, the system’s state becomes slower. In other words, the transient
time increases near a bifurcation point [46,47]. In order to use Kolmogorov–Sinai entropy to anticipate
a bifurcation point, we calculated it without removing the transient time of the trajectory. If we remove
the transient time, then the estimated Kolmogorov–Sinai entropy became zero in regular dynamics and
it changed through variations in the final state of the system. By applying Kolmogorov–Sinai entropy
to the system’s state without removing transient time, we were able to see complexity of transient parts
as well as final state of the system. As Figure 5 shows, in small values of parameter a the system has a
chaotic attractor and its unpredictability is high. By increasing parameter a, the system changes its
dynamic to a regular dynamic and thus its entropy decreases. However, in the bifurcation points the
system becomes slower and its transient time increases. That is the reason for the increasing entropy in
the bifurcation points.
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5. Parameter Estimation

There are various methods for parameter estimation in dynamic systems that are based on
optimization methods [48–50]. The basis of these methods is a cost function associated with the
differences between the time series obtained from a real system and the time series obtained from a
known model with unknown parameters. However, these approaches are not appropriate for chaotic
systems due to the butterfly effect [51–53]. Therefore an alternative method is proposed in [54,55].
This new method changes the analyzing domain of the chaotic system from time space to the state
space. In the other words, this new model compares the topology and structure of the points in the
state space. To this end, the algorithm searches the space of the parameter to find the most similar
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point from the model to the point of the data. Whenever the structure of the points in the state
space gets close enough to the structure of the real data, the optimum parameter is found. For more
complete details, see [55,56]. In this paper, we used this useful cost function along with WOA (whale
optimization algorithm [57,58]) for the parameter estimation method. Figure 6 shows the result of the
cost function with respect to changing the parameter a. As is shown in the figure, the global minimum
is located exactly in the main parameter a = 1. Figure 7 shows the result of the cost function with
respect to changing the parameters a and b (consider b as the coefficient of x in the third equation
of Equation (1)). As is shown in the figure, the global minimum is located in the main parameters
a = 1 & b = 0.1.
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One of the most efficient categories of the optimization methods is meta-heuristic methods, which
cover a wide range of problems, especially in engineering applications [50,59–61]. Most of them are
inspired by nature. Humpback whales’ hunting behavior in sea form the basis of the WOA (whale
optimization algorithm) meta-heuristic algorithm [57,58]. The hunting behavior of Humpback whales,
who encircle the recognized location of prey, has become the basis of the WOA algorithm. In this
algorithm the target prey is the current best candidate or close to the optimum solution and the
attacking strategy is a bubble-net strategy. By considering all these together, the WOA optimization
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method can be explained through three steps: Finding the prey, encircling the prey, and the bubble-net
attacking behavior of humpback whales.

At first, the algorithm determines the best candidate solution. Then it updates the position of the
other points in order to get closer to the best agent. The second step is about the attack strategy, which
can be divided into two approaches. The first is a shrinking encircling mechanism and the other is a
spiral updating position. For complete details see [57]. Figure 8 represents the result of the WOA for
the 30 searching agents and 40 iterations.
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6. Circuit Design

This section presents a circuit implementation for the three-dimensional flow (1) (see Figure 9).
The circuit implementation in Figure 9 was constructed using six operational amplifiers (U1 − U6)

and electronic elements [62–66]. We used TL084 operational amplifiers and AD633 analog multipliers.
Taking the voltages of three operational amplifiers (U1, U2, U3) as X, Y, Z, it confirms that the circuit
in Equation (6) corresponds to the flow (1):

.
X = 1

R1C1
Z

.
Y = − 1

R2C2
X − 1

R3C2
Z

.
Z = 1

R4C3
X + 1

R5C3
Y − 1

R6C3
Z + 1

R7C310V XY − 1
R8C310V XZ − 1

R9C3
Va

(6)

where Va is a DC voltage source.
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The circuit generates chaos as illustrated in Figure 10 for the following set of components:
C1 = C2 = C3 = 20 nF, R1 = R2 = R3 = R6 = R = 40 kΩ, R4 = 400 kΩ, R5 = 8 kΩ, R7 = 1 kΩ,
R8 = 3.333 kΩ, R9 = 160 kΩ, and Va = −1VDC.
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7. Conclusions

A new three-dimensional chaotic system with one stable equilibrium was proposed in this paper.
A bifurcation analysis of the system showed an inverse period doubling route to chaos with respect to
increasing parameter a. The unpredictability of its dynamic was discussed using Kolmogorov–Sinai
entropy. Parameter estimation of the system was carried out and circuit implementation of the system
confirmed its feasibility. It is noted that the real practical realization and real laboratory measurements
of the circuit should be carried out. Therefore, practical results will be reported in our next works.
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