Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays
Abstract
1. Introduction
2. Related Work
2.1. The Team Orienteering Problem
2.2. Using Simheuristics in Routing Problems
3. Modeling the TOP with Probabilistic Delays
4. An Extended Simheuristic with Reliability Concepts
4.1. A Biased-Randomized Algorithm for the Deterministic TOP
Algorithm 1 Computing the efficiency list. | |
1: | input: |
2: | V: list of nodes without origin and end nodes |
3: | o: starting node |
4: | f: destination node |
5: | end input: |
6: | efficiencyList ← Ø |
7: | k ← getLength(V) |
8: | for
do |
9: | node ← getNode(n) |
10: | onEdge ← Edge(o, node) |
11: | nfEdge ← Edge(node, f) |
12: | onEdgeCost ← computeEuclideanDistance(o, node) |
13: | nfEdgeCost ← computeEuclideanDistance(node, f) |
14: | end for |
15: | for
do |
16: | iNode ← getNode(i) |
17: | for do |
18: | jNode ← getNode(j) |
19: | ijEdge ← Edge(iNode, jNode) |
20: | jiEdge ← Edge(jNode, iNode) |
21: | ijEdgeCost ← computeEuclideanDistance(iNode, jNode) |
22: | setCost(ijEdge, ijEdgeCost) |
23: | setCost(jiEdge, ijEdgeCost) |
24: | ijEfficiency ← computeEfficiency(iNode, jNode) |
25: | jiEfficiency ← computeEfficiency(jNode, iNode) |
26: | efficiencyList ← appendEdges(ijEdge, jiEdge) |
27: | sortEfficiencyList |
28: | end for |
29: | end for |
30: | return efficiencyList |
4.2. A Simheuristic for the Stochastic TOP-PD
- The heuristic provides the deterministic solution for a . This is, we allow the routes to have maximum duration.
- If after a short simulation the probability of the solution incurring in a delay is greater than p, we will slightly increase . Therefore, the new deadline taken to construct the solutions will be , with and . Note that when a is found such that , it will be saved (), so the future solutions created by the algorithm will have deadline .
Algorithm 2 Simulating a solution. | |
1: | input: |
2: | numberSimulations: simulations runs |
3: | solutionRoutes: routes of the solution |
4: | deadline: upper time limit for all the routes |
5: | end input |
6: | stochasticProfit ← 0 |
7: | totalProfit ← 0 |
8: | k ← getLength(solutionRoutes) |
9: | for
do |
10: | simProfit ← 0 |
11: | for do |
12: | route ← getRoute(r) |
13: | routeEdges ← getEdges(route) |
14: | profit ← 0 |
15: | routeDuration ← 0 |
16: | n ← getLength(routeEdges) |
17: | for do |
18: | edge ← getEdge(routeEdges, e) |
19: | customer ← getEndNodeInEdge(edge) |
20: | customerProfit ← getCustomerProfit(customer) |
21: | if customerProfit > 0 then |
22: | ← getStochasticValue |
23: | edgeDuration ← getDuration(edge) |
24: | routeStochasticDuration ← edgeDuration + |
25: | routeDuration ← routeDuration + routeStochasticDuration |
26: | profit ← profit + customerProfit |
27: | end if |
28: | end for |
29: | if routeDuration > deadline then |
30: | profit ← 0 |
31: | end if |
32: | simProfit ← simProfit + profit |
33: | end for |
34: | totalProfit ← totalProfit + simProfit |
35: | end for |
36: | totalProfit ← totalProfit/numberSimulations |
37: | stochasticProfit ← totalProfit |
38: | return stochasticProfit |
5. Computational Experiments
6. Analysis of Results
6.1. Impact of Delay Selection
6.2. Probability of Incurring Different Delays
6.3. Reliability of a Solution
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayliss, C.; Juan, A.A.; Currie, C.S.; Panadero, J. A learnheuristic approach for the team orienteering problem with aerial drone motion constraints. Appl. Soft Comput. 2020, 92, 106280. [Google Scholar] [CrossRef]
- Panadero, J.; Ammouriova, M.; Juan, A.A.; Agustin, A.; Nogal, M.; Serrat, C. Combining parallel computing and biased randomization for solving the team orienteering problem in real-time. Appl. Sci. 2021, 11, 12092. [Google Scholar] [CrossRef]
- Chica, M.; Juan, A.A.; Bayliss, C.; Cordón, O.; Kelton, W.D. Why Simheuristics? Benefits, Limitations, and Best Practices when Combining Metaheuristics with Simulation. Stat. Oper. Res. Trans. 2020, 44, 311–334. [Google Scholar] [CrossRef]
- Emmert-Streib, F.; Dehmer, M. Introduction to survival analysis in practice. Mach. Learn. Knowl. Extr. 2019, 1, 1013–1038. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A.; Pascual, F.G. Statistical Methods for Reliability Data; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Barakat, A.; Mittal, A.; Ricketts, D.; Rogers, B.A. Understanding survival analysis: Actuarial life tables and the Kaplan–Meier plot. Br. J. Hosp. Med. 2019, 80, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Vansteenwegen, P.; Gunawan, A. Orienteering Problems: Models and Algorithms for Vehicle Routing Problems with Profits; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chao, I.M.; Golden, B.L.; Wasil, E.A. A Fast and Effective Heuristic for the Orienteering Problem. Eur. J. Oper. Res. 1996, 88, 475–489. [Google Scholar] [CrossRef]
- Golden, B.; Levy, L.; Vohra, R. The orienteering problem. Nav. Res. Logist. 1987, 34, 307–318. [Google Scholar] [CrossRef]
- Chao, I.M.; Golden, B.; Wasil, E. The team orienteering problem. Eur. J. Oper. Res. 1996, 88, 464–474. [Google Scholar] [CrossRef]
- Keshtkaran, M.; Ziarati, K.; Bettinelli, A.; Vigo, D. Enhanced exact solution methods for the team orienteering problem. Int. J. Prod. Res. 2016, 54, 591–601. [Google Scholar] [CrossRef]
- Archetti, C.; Hertz, A.; Speranza, M.G. Metaheuristics for the team orienteering problem. J. Heuristics 2007, 13, 49–76. [Google Scholar] [CrossRef]
- Dang, D.C.; Guibadj, R.N.; Moukrim, A. An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 2013, 229, 332–344. [Google Scholar] [CrossRef]
- Bianchessi, N.; Mansini, R.; Speranza, M.G. A branch-and-cut algorithm for the Team Orienteering Problem. Int. Trans. Oper. Res. 2018, 25, 627–635. [Google Scholar] [CrossRef]
- Boussier, S.; Feillet, D.; Gendreau, M. An Exact Algorithm for the Team Orienteering Problem. 4OR 2007, 5, 211–230. [Google Scholar] [CrossRef]
- Tae, H.; Kim, B. A branch-and-price approach for the team orienteering problem with time windows. Int. J. Ind. Eng. Theory Appl. Pract. 2015, 22, 243–251. [Google Scholar]
- Sundar, K.; Sanjeevi, S.; Montez, C. A branch-and-price algorithm for a team orienteering problem with fixed-wing drones. EURO J. Transp. Logist. 2022, 11, 100070. [Google Scholar] [CrossRef]
- El-Hajj, R.; Dang, D.C.; Moukrim, A. Solving the team orienteering problem with cutting planes. Comput. Oper. Res. 2016, 74, 21–30. [Google Scholar] [CrossRef]
- Butt, S.E.; Ryan, D.M. An Optimal Solution Procedure for the Multiple Tour Maximum Collection Problem Using Column Generation. Comput. Oper. Res. 1999, 26, 427–441. [Google Scholar] [CrossRef]
- Tang, H.; Miller-Hooks, E. Algorithms for a stochastic selective travelling salesperson problem. J. Oper. Res. Soc. 2005, 56, 439–452. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Berghe, G.; Oudheusden, D. A Guided Local Search Metaheuristic for the Team Orienteering Problem. Eur. J. Oper. Res. 2009, 196, 118–127. [Google Scholar]
- Campos, V.; Martí, R.; Sánchez-Oro, J.; Duarte, A. GRASP with path relinking for the orienteering problem. J. Oper. Res. Soc. 2014, 65, 1800–1813. [Google Scholar]
- Ke, L.; Archetti, C.; Feng, Z. Ants Can Solve the Team Orienteering Problem. Comput. Ind. Eng. 2008, 54, 648–665. [Google Scholar] [CrossRef]
- Yassen, E.T.; Jihad, A.A.; Abed, S.H. Lion optimization algorithm for team orienteering problem with time window. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 538–545. [Google Scholar]
- Lin, S. Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput. 2013, 13, 1064–1073. [Google Scholar] [CrossRef]
- Bouly, H.; Dang, D.; Moukrim, A. A Memetic Algorithm for the Team Orienteering Problem. 4OR-Q J. Oper. Res. 2010, 8, 49–70. [Google Scholar] [CrossRef]
- Ke, L.; Zhai, L.; Li, J.; Chan, F.T. Pareto Mimic Algorithm: An Approach to the Team Orienteering Problem. Omega 2016, 61, 155–166. [Google Scholar] [CrossRef]
- Tsakirakis, E.; Marinaki, M.; Marinakis, Y.; Matsatsinis, N. A Similarity Hybrid Harmony Search Algorithm for the Team Orienteering Problem. Appl. Soft Comput. 2019, 80, 776–796. [Google Scholar] [CrossRef]
- Ferreira, J.; Quintas, A.; Oliveira, J.; Pereira, G.A.B.; Dias, L. Solving the team orienteering problem: Developing a solution tool using a genetic algorithm approach. In Soft Computing in Industrial Applications; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2014; Volume 223, pp. 365–375. [Google Scholar]
- Kobeaga, G.; Merino, M.; Lozano, J.A. An efficient evolutionary algorithm for the orienteering problem. Comput. Oper. Res. 2018, 90, 42–59. [Google Scholar] [CrossRef]
- Panadero, J.; Currie, C.; Juan, A.A.; Bayliss, C. Maximizing Reward from a Team of Surveillance Drones under Uncertainty Conditions: A simheuristic approach. Eur. J. Ind. Eng. 2020, 14, 485–516. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, M. Genetic programming hyper-heuristic for stochastic team orienteering problem with time windows. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Song, Y.; Ulmer, M.W.; Thomas, B.W.; Wallace, S.W. Building Trust in Home Services—Stochastic Team-Orienteering with Consistency Constraints. Transp. Sci. 2020, 54, 823–838. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, X. A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach. Transp. Res. Part E Logist. Transp. Rev. 2018, 115, 246–266. [Google Scholar] [CrossRef]
- Dolinskaya, I.; Shi, Z.E.; Smilowitz, K. Adaptive orienteering problem with stochastic travel times. Transp. Res. Part E Logist. Transp. Rev. 2018, 109, 1–19. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.A.; Gruler, A.; Juan, A.A.; Armas, J.D.; Ramalhinho, H. Using simheuristics to promote horizontal collaboration in stochastic city logistics. Prog. Artif. Intell. 2017, 6, 275–284. [Google Scholar] [CrossRef]
- Gruler, A.; Quintero, C.L.; Calvet, L.; Juan, A.A. Waste Collection Under Uncertainty: A Simheuristic Based on Variable Neighbourhood Search. Eur. J. Ind. Eng. 2017, 11, 228–255. [Google Scholar] [CrossRef]
- Guimarans, D.; Dominguez, O.; Panadero, J.; Juan, A.A. A simheuristic approach for the two-dimensional vehicle routing problem with stochastic travel times. Simul. Model. Pract. Theory 2018, 89, 1–14. [Google Scholar] [CrossRef]
- Reyes-Rubiano, L.; Ferone, D.; Juan, A.A.; Faulin, J. A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times. SORT 2019, 1, 3–24. [Google Scholar]
- Tordecilla, R.D.; Martins, L.d.C.; Panadero, J.; Copado, P.J.; Perez-Bernabeu, E.; Juan, A.A. Fuzzy Simheuristics for Optimizing Transportation Systems: Dealing with Stochastic and Fuzzy Uncertainty. Appl. Sci. 2021, 11, 7950. [Google Scholar] [CrossRef]
- Latorre-Biel, J.I.; Ferone, D.; Juan, A.A.; Faulin, J. Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Syst. Appl. 2021, 168, 114240. [Google Scholar] [CrossRef]
- Rabe, M.; Deininger, M.; Juan, A.A. Speeding up computational times in simheuristics combining genetic algorithms with discrete-event simulation. Simul. Model. Pract. Theory 2020, 103, 102089. [Google Scholar] [CrossRef]
- Belloso, J.; Juan, A.A.; Faulin, J. An Iterative Biased-Randomized Heuristic for the Fleet Size and Mix Vehicle-Routing Problem with Backhauls. Int. Trans. Oper. Res. 2019, 26, 289–301. [Google Scholar] [CrossRef]
- Raba, D.; Estrada-Moreno, A.; Panadero, J.; Juan, A.A. A Reactive Simheuristic using Online Data for a Real-Life Inventory Routing Problem with Stochastic Demands. Int. Trans. Oper. Res. 2020, 27, 2785–2816. [Google Scholar] [CrossRef]
- McCool, J.I. Using the Weibull Distribution: Reliability, Modeling, and Inference; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 950. [Google Scholar]
Instance | Deterministic | Stochastic | Gap w.r.t. OBD (%) | ||||
---|---|---|---|---|---|---|---|
OBD | OBD (time) | OBD-S | OBS | OBS (time) | OBD-S | OBS | |
p2.3.h | 160.0 | 2.2 | 53.1 | 140.5 | 30.8 | 66.8 | 13.8 |
p2.3.j | 200.0 | 0.0 | 38.5 | 176.0 | 1.1 | 80.7 | 13.6 |
p2.4.e | 70.0 | 0.0 | 62.6 | 69.6 | 17.0 | 10.6 | 0.6 |
p3.3.g | 250.0 | 8.9 | 130.0 | 240.0 | 30.3 | 48.0 | 4.2 |
p3.3.m | 440.0 | 15.7 | 126.9 | 410.0 | 0.5 | 71.2 | 7.3 |
p3.4.e | 140.0 | 0.0 | 139.1 | 139.2 | 0.0 | 0.7 | 0.6 |
p3.4.m | 370.0 | 0.2 | 191.1 | 360.0 | 126.9 | 48.3 | 2.8 |
p4.3.e | 312.0 | 38.9 | 94.0 | 293.4 | 16.7 | 69.9 | 6.4 |
p4.3.g | 427.0 | 0.1 | 297.0 | 385.6 | 0.0 | 30.4 | 10.7 |
p4.4.f | 253.0 | 0.4 | 198.1 | 237.3 | 22.4 | 21.7 | 6.6 |
p4.4.g | 291.0 | 0.5 | 212.7 | 255.5 | 8.3 | 26.9 | 13.9 |
p4.4.h | 393.0 | 47.5 | 175.0 | 355.2 | 144.1 | 55.5 | 10.6 |
p4.4.m | 625.0 | 0.2 | 527.8 | 535.6 | 0.0 | 15.6 | 16.7 |
p5.3.e | 95.0 | 0.1 | 61.8 | 81.7 | 0.0 | 35.0 | 16.3 |
p5.3.h | 230.0 | 0.8 | 178.9 | 209.1 | 2.0 | 22.2 | 10.0 |
p5.3.m | 590.0 | 172.5 | 170.0 | 495.0 | 6.2 | 71.2 | 19.2 |
p5.3.n | 660.0 | 1.3 | 169.6 | 575.5 | 37.7 | 74.3 | 14.7 |
p5.4.m | 540.0 | 2.1 | 238.9 | 479.7 | 47.6 | 55.8 | 12.6 |
p6.3.m | 612.0 | 1.8 | 450.8 | 577.0 | 3.0 | 26.3 | 6.1 |
p6.3.n | 870.0 | 18.1 | 210.0 | 719.5 | 80.8 | 75.9 | 20.9 |
p6.4.m | 486.0 | 2.5 | 469.1 | 480.0 | 2.1 | 3.5 | 1.3 |
p7.4.t | 876.0 | 56.2 | 420.9 | 834.8 | 114.7 | 52.0 | 4.9 |
Average | 404.1 | 16.8 | 209.8 | 365.9 | 31.5 | 43.7 | 9.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, E.M.; Panadero, J.; Carracedo, P.; Juan, A.A.; Perez-Bernabeu, E. Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics 2022, 10, 3788. https://doi.org/10.3390/math10203788
Herrera EM, Panadero J, Carracedo P, Juan AA, Perez-Bernabeu E. Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics. 2022; 10(20):3788. https://doi.org/10.3390/math10203788
Chicago/Turabian StyleHerrera, Erika M., Javier Panadero, Patricia Carracedo, Angel A. Juan, and Elena Perez-Bernabeu. 2022. "Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays" Mathematics 10, no. 20: 3788. https://doi.org/10.3390/math10203788
APA StyleHerrera, E. M., Panadero, J., Carracedo, P., Juan, A. A., & Perez-Bernabeu, E. (2022). Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics, 10(20), 3788. https://doi.org/10.3390/math10203788