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Abstract: The improved element-free Galerkin (IEFG) method is proposed in this paper for solving 

3D Helmholtz equations. The improved moving least-squares (IMLS) approximation is used to 

establish the trial function, and the penalty technique is used to enforce the essential boundary 

conditions. Thus, the final discretized equations of the IEFG method for 3D Helmholtz equations 

can be derived by using the corresponding Galerkin weak form. The influences of the node 

distribution, the weight functions, the scale parameters of the influence domain, and the penalty 

factors on the computational accuracy of the solutions are analyzed, and the numerical results of 

three examples show that the proposed method in this paper can not only enhance the 

computational speed of the element-free Galerkin (EFG) method but also eliminate the phenomenon 

of the singular matrix. 

Keywords: improved element-free Galerkin method; Helmholtz equation; penalty method;  

improved moving least-squares approximation 

 

1. Introduction 

As an important elliptic differential equation, the Helmholtz equation has been 

widely applied in many different fields, such as mechanics, acoustics, physics, 

electromagnetics, engineering, and so on. It is well known that how to achieve the 

numerical solutions of Helmholtz equations effectively and accurately is one of the 

important directions in the scientific research. 

Currently, many meshless methods have been used for researching Helmholtz 

equations, such as the element-free Galerkin (EFG) method [1], meshless Galerkin least-

square method [2], meshless hybrid boundary-node method [3], boundary element-free 

method [4], and complex variable boundary element-free method [5,6]. Compared to the 

traditional finite difference method [7–10] and the finite element method, meshless 

methods [11–15] are based on scattered point approximation, which can avoid the mesh 

reconstruction, and thus a higher accuracy of the numerical solutions can be obtained. 

As an important meshless method, the EFG method [16] was studied by Belytschko 

et al. In this method, a trial function is established by using the moving least-squares 

(MLS) approximation. Cheng et al. analyzed the error estimates of EFG method for 

potential problems [17]. Because the MLS approximation is based on the least-squares 

method [18–22], the disadvantages of the least-squares method also exist in the MLS 

approximation, in which sometimes ill-conditional or singular matrices occur. 

In order to eliminate the singular matrices, the improved moving least-squares 

(IMLS) approximation [23] was proposed by Cheng et al., in which the orthogonal 

function system with a weight function is used as basis function, and thus can make up 

for the deficiency of the MLS approximation and has greater computational efficiency, 

using the IMLS approximation to establish the trial function. Thus, the improved element-
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free Galerkin (IEFG) method was applied for potential [24], transient heat conduction 

problems [25], the wave equation [26], the Schrödinger equation [27], advection–diffusion 

[28], elastodynamics [29], elastoplasticity [30], viscoelasticity [31], and diffusional drug 

release [32] problems. From these studies, we can see that under similar computational 

accuracy, the IEFG method has higher computational speed than the EFG method. As we 

know, meshless methods are based on node approximation without mesh reconstruction. 

When solving large deformation problems and dynamic propagation of cracks, the 

meshless method can obtain greater precision than the finite element method. In order to 

take advantage of the IEFG method further, Zhang et al. [33] developed the enriched IEFG 

method to solve 2D fracture problems. In this method, the enriched basis function is used 

at the tip of the crack. As a result, the singularity of the stresses at the tip of the crack can 

be shown better than in the IEFG method. Cai et al. [34] used the IEFG method for solving 

large elastoplasticity deformation problems. Three numerical examples are given to show 

that the numerical solutions are in good agreement with the solutions of finite element 

method software ANASYS and can enhance the computational efficiency of the EFG 

method. 

By introducing the singular weight function into the MLS approximation, Lancaster 

et al. presented an interpolating MLS method [35]. The boundary conditions could be 

enforced directly in the corresponding meshless method. Based on the concept of an inner 

production, Ren et al. improved the interpolating MLS method [36] by using the singular 

weight function in interpolating points and orthogonalizing some of the base functions. 

Thus, the corresponding interpolating EFG method was presented for potential [37], 

transient heat conduction [38], and some mechanics [39–41] problems. Compared with the 

traditional EFG method, the interpolating EFG method has higher computational 

efficiency. Additionally, the interpolating smoothed particle method was developed by 

Qin et al. [42]. 

Using the nonsingular weight function, Wang et al. developed the improved 

interpolating MLS method [43], which can overcome the difficulties caused by the 

singular weight function in the interpolating MLS method, and used this method to 

construct the trial function. The improved interpolating EFG method was presented for 

potential [43] and several large deformation problems [44–46]. 

Based on the approximation of the vector function, the complex variable moving 

least-squares (CVMLS) approximation was presented by Cheng et al. [47]. Based on the 

CVMLS approximation and Galerkin weak form, the complex variable element-free 

Galerkin (CVEFG) method [48] was presented. Moreover, based on the conjugate basis 

function, Bai et al. proposed the improved CVMLS approximation to construct the shape 

function, and the improved CVEFG method was presented for elasticity problems [49]. 

The improved CVEFG method has higher computational accuracy and efficiency than the 

EFG method, but it cannot be applied to 3D problems directly because the complex theory 

is used. Chen et al. [50,51] proposed the complex variable reproducing kernel particle 

method. 
By combining meshless methods and the finite difference method, the hybrid CVEFG 

method [52–56], dimension-splitting EFG method [57–60], dimension-splitting 

reproducing kernel particle method [61–64], interpolating dimension-splitting EFG 

method [65] and hybrid generalized interpolated EFG method [66] were proposed. These 

methods can greatly improve the computational efficiency of the traditional meshless 

method for solving multi-dimensional problems. 

The IEFG method has some advantages over the traditional EFG method, such as 

higher computational efficiency, avoiding matrix inversion, and eliminating singular 

matrix. Therefore, it has been applied to many science and engineering problems. 

However, 3D Helmholtz equations have not been studied by the IEFG method yet, and 

the corresponding parameters cannot be discussed; thus, the computational accuracy and 

efficiency of the IEFG method for 3D Helmholtz equations are also uncertain. In order to 

overcome the disadvantage of the lower efficiency of the EFG method, this paper presents 
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the IEFG method for solving 3D Helmholtz equations. The trial function was established 

by using the IMLS approximation, using the penalty technique to enforce the essential 

boundary conditions. The final discretized equations could be derived by using the 

corresponding weak form. Thus, we obtained the final formulate of the IEFG method for 

3D Helmholtz equations. 

In Section 4, the influences of the node distribution, the weight functions, the scale 

parameters, and the penalty factors on the computational accuracy of the solutions are 

analyzed by giving examples. It is shown that the IEFG method for Helmholtz equations 

is convergent. Compared with the EFG method, the IEFG method has greater 

computational speed. Moreover, the singular matrix can be eliminated. 

2. The IMLS Approximation 

The approximation of a function )(xu  is 
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1
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where )( Iw xx −  is a weighting function, and 
Ix  ( nI ,,2,1 = ) are the nodes with 

influence domains covering point x . 

Equation (6) can be written as 
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Equation (12) sometimes forms a singular or ill-conditional matrix. In order to make 

up for this deficiency, for basis functions 
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Substituting Equation (18) into Equation (5), we have 


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is the shape function. 

This is the IMLS approximation [23], in which the shape function can be obtained 

more easily than the MLS approximation. Moreover, the IMLS approximation can also 

avoid the singular matrix. Thus, it can enhance the computational efficiency of the MLS 

approximation. 

3. The IEFG Method for 3D Helmholtz Equations 

The governing equation is 
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and the boundary conditions are 
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where 2k  is the wave number, )(xf  is the given function, u  and q  are the given 

values, and qu ΓΓΓ = , =qu ΓΓ  , in  ( 3,2,1=i ) is the unit outward normal to 

the boundary Γ  in direction ix . 

For 3D Helmholtz equations, the equivalent functional is 
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By introducing the penalty technique to apply the boundary conditions, we can 

obtain the modified functional 
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where α  is the penalty factor. 

Let 
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We can obtain the following equivalent integral weak form 
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In the cubic domain Ω , we employ M  nodes 
Ix  ( MI ,1,2,= ). Thus, we have 
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Substituting Equations (31) and (33) into Equation (28), we have 
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In Equation (36), the form of u  is the same as Equation (32), and Mn = . 

All integral terms in Equation (36) are analyzed as follows: 
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Substituting Equations (37)–(42) into Equation (36), we can obtain 
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uδ  is arbitrary; thus we can obtain 
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This is the IEFG method for 3D Helmholtz equations. 

4. Numerical Examples 

The formula of the relative error is 
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In order to illustrate the advantages of the IFFG method, we chose three examples 

from other literature. The nodes distributed in the problem domains of these numerical 

examples were regular, the linear basis function was selected, and 3×3×3 Gaussian points 
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were selected in each integral cell. The IEFG and the EFG methods are used to solve these 

examples. 

The following equation is considered in the first example: 

32

4

1

2

1 cossin)12( xxxxuu −=+ . (55) 

The boundary conditions are 

0),,0( 32 =xxu , (56) 
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The problem domain is ]π,0[]π,0[]π,0[ = , and 

32

4

1 cossin xxxu =  (60) 

is the analytical solution. 

In order to study the convergence of the EFG and the IEFG methods for Helmholtz 

equations, all parameters of both methods were kept the same. The cubic spline weight 

functions were used, dmax = 1.35, α = 2.0 × 104. Table 1 shows the relationship between 

relative errors and node distribution. It is shown that, with the increase in nodes, the 

precision of numerical solutions improves as well, but the computational efficiency is 

reduced gradually. Therefore, the two methods in this paper are convergent. Both the 

computational accuracy and efficiency are considered, and 15 × 15 × 15 regularly 

distributed nodes are selected. 

Table 1. Relative errors and CPU times of the improved element-free Galerkin (IEFG) and 

element-free Galerkin (EFG) methods with the increase in node distribution. 

Nodes 
Relative Error Time (s) 

IEFG EFG IEFG EFG 

7 × 7 × 7 4.3092% 4.3092% 5.5 5.8 

11 × 11 × 11 1.3234% 1.3234% 26.7 28.5 

13 × 13 × 13 0.8832% 0.8832% 49.9 53.1 

15 × 15 × 15 0.6296% 0.6296% 92.1 98.0 

17 × 17 × 17 0.4706% 0.4706% 152.0 161.9 

21 × 21 × 21 0.2905% 0.2905% 384.5 398.6 

25 × 25 × 25 0.1967% 0.1967% 903.3 940.2 

29 × 29 × 29 0.1520% 0.1520% 1907.2 1937.1 

33 × 33 × 33 0.1075% 0.1075% 4287.2 4408.3 

The effects of the weight function, the scale parameter of the influence domain, and 

the penalty factor on solution of the IEFG method will be discussed. 

(1) Weight function 

When the cubic spline function is used, 15 × 15 × 15 regularly distributed nodes and 

14 × 14 × 14 background integral cells are selected, α = 2.0 × 104, dmax = 1.35. Thus, the 

smaller relative error is 0.6296%. When the quartic spline function is used, and the same 

regularly distributed nodes and background integral grids are used, α = 2.2 × 104, dmax = 
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1.28, the smaller relative error is 0.6274%. It is shown that the similar relative errors can 

be obtained when using two weight functions. 

In addition, the singular matrix can be avoided in the IEFG method when using the 

cubic spline function. If dmax = 1.0, the quartic spline function is selected. Unfortunately, 

the singular matrix occurs and the final result cannot be obtained. When the cubic spline 

function is used, the relative error is 0.6451%. 

Thus, the cubic spline function is selected. 

(2) Scale parameter 

The same node distribution and background integral grids are selected, α =

2.0 × 104, and the cubic spline function is used. Figure 1 shows the relationship between 

dmax and relative errors. Because of the error of computer itself, the relative error become 

larger when dmax = 1.2. It is shown that when dmax = 1.35, the relative error is smaller. 
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Figure 1. The error of the numerical solutions of the IEFG method with the increase in dmax. 

(3) Penalty factor 

The same node distribution, background integral grids, and weight function are 

selected, dmax = 1.35. Figure 2 shows the relationship between α and relative errors. It is 

shown that when α = 2.0 × 104, the relative error is smaller. 
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Figure 2. The error of the numerical solutions of the IEFG method with the increase in α. 
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The IEFG method is selected to solve it, 15 × 15 × 15 regularly distributed nodes and 

14 × 14 × 14 background integral cells are selected, and the cubic spline function is used, 

α = 2.0 × 104, dmax = 1.35. When using the EFG method to solve it, the same parameters 

are selected, and thus the relative errors of two methods are equal to 0.6296%. 

Figures 3–5 show the comparison between numerical solutions and analytical ones, 

and the CPU times of the IEFG method and the EFG method are 92.1 s and 98.0 s, 

respectively. Obviously, higher computational efficiency can be obtained when using the 

IEFG method. 
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Figure 3. The comparison of the numerical and analytical solutions of the two methods along the 

x1-axis. 
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Figure 4. The comparison of the numerical and analytical solutions of the two methods along the 

x2-axis. 

Additionally, the singular matrix can be avoided when constructing the shape 

functions when the IEFG is used. If dmax = 1.0 and other parameters are the same, two 

methods are used to solve it, and two different results are obtained. When the EFG method 

is used, the singular matrix occurs and the final result cannot be obtained. However, using 
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the IEFG method to solve it, the relative error of the numerical solutions is 0.6451%. The 

numerical and analytical results are compared in Figure 6; it is shown that the numerical 

results are in good agreement with the analytical ones. 
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Figure 5. The comparison of the numerical and analytical solutions of the two methods along the 

x3-axis. 
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Figure 6. The numerical and analytical solutions of the IEFG method along the x1-axis. 

The second example [67] is 

02 =− uku . (61) 

The boundary conditions are 

)(

32
3322),,0(

xx
exxu

 +
= , (62) 

)(

32
33221),,1(

xx
xxu

 ++
= , (63) 

)(

31
3311),0,(

xx
exxu

 +
= , (56) 
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)(

31
33211),1,(

xx
exxu

 ++
= , (57) 

)(

21
2211)0,,(

xx
exxu

 +
= , (58) 

)(

21
32211)1,,(
 ++

=
xx

exxu . (59) 

The problem domain is ]1,0[]1,0[]1,0[ = , and 

)( 332211 xxx
eu

 ++
=  (60) 

is the analytical solution. 

We set k = 2, 
1  = 1, and 

2  = 0.5. The IEFG method is used to solve it, α = 1.7 × 103, 

dmax = 1.21. The 15×15×15 regularly distributed nodes and 14×14×14 background integral 

grids are used. When using the EFG method to solve it, the same parameters are selected, 

and thus the same computational accuracy can be obtained. The relative errors of both 

methods are equal to 0.0844%. Figures 7–9 show the comparison of the numerical 

solutions of the two methods and the analytical ones. The CPU times of the IEFG method 

and the EFG method are 92.1 s and 98.0 s, respectively. We can see that the computational 

results of both methods are in very good agreement with the analytical ones. 
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Figure 7. The comparison of the numerical and analytical solutions of the two methods along the 

x1-axis. 
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Figure 8. The comparison of the numerical and analytical solutions of the two methods along the 

x2-axis. 
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Figure 9. The comparison of the numerical and analytical solutions of the two methods along the 

x3-axis. 

When different parameters are selected, k = 5, 
1  = 3, and 

2  = 2.7. Using two 

methods to solve it, the same parameters are used. Thus, the relative errors of both 

methods are equal to 0.5295%. Figures 10–12 show the comparison of the numerical 

solutions of the two methods and the analytical ones, and the CPU times of the IEFG 

method and the EFG method are 92.1 s and 98.0 s, respectively. We can see that the 

computational results of both methods are in good agreement with the analytical ones. 
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Figure 10. The comparison of the numerical and analytical solutions of the two methods along the 

x1-axis. 
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Figure 11. The comparison of the numerical and analytical solutions of the two methods along the 

x2-axis. 
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Figure 12. The comparison of the numerical and analytical solutions of the two methods along the 

x3-axis. 

We can select k = 10, 
1  = 5.8, and 

2  = 6.2. Using the two methods to solve it, the 

same parameters are used, and the relative errors of both methods are equal to 2.3884%. 

Figures 13–15 show the comparison of the numerical solutions of the two methods and 

the analytical ones. The computational results of both methods are in good agreement 

with the analytical ones. 
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Figure 13. The comparison of the numerical and analytical solutions of the two methods along the 

x1-axis. 
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Figure 14. The comparison of the numerical and analytical solutions of the two methods along the 

x2-axis. 
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Figure 15. The comparison of the numerical and analytical solutions of the two methods along the 

x3-axis. 

From this example, we can draw two conclusions: On the one hand, the IEFG method 

has greater computational efficiency; on the other hand, the bigger the wave numbers are, 

the lower the computational accuracy. 

Similarly, if dmax = 1.0, we select k = 10, 
1  = 5.8, and 

2  = 6.2. When the EFG method 

is used, unfortunately, the singular matrix occurs. When the IEFG method is used, the 

relative error is 2.4229%. The numerical solutions and analytical ones are compared in 

Figure 16. It is shown that the numerical results are in good agreement with the analytical 

ones. 
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Figure 16. The numerical and analytical solutions of the IEFG method along the x2-axis. 

The third example [68] is 

)πsin()πsin()πcos()π3( 321

222 xxxkuku −=+ . (61) 

The boundary conditions are 

0
),,1(),,0(

1

32

1

32 =



=





x

xxu

x

xxu
, (70) 

0),1,(),0,( 3131 == xxuxxu , (62) 

0)1,,()0,,( 2121 == xxuxxu . (63) 

The problem domain is ]1,0[]1,0[]1,0[ = , and 

)πsin()πsin()πcos( 321 xxxu =  (64) 

is the analytical solution. 

The IEFG method is used to solved it. The wave number is selected as 100, and 19 × 

19 × 19 regularly distributed nodes and 18 × 18 × 18 background integral cells are used, 

α = 1.9 × 107, dmax = 1.1. When using the EFG method to solve it, the same parameters are 

selected, and the relative errors of both methods are equal to 0.8646%. Figures 17–19 show 

the comparison of the numerical solutions and the analytical ones. We can see that 

numerical solutions are in good agreement with the analytical ones. The CPU times of the 

IEFG method and the EFG method are 200.6 s and 208.1 s, respectively. 
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Figure 17. The comparison of the numerical and analytical solutions of the two methods along the 

x1-axis. 
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Figure 18. The comparison of the numerical and analytical solutions of the two methods along the 

x2-axis. 
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Figure 19. The comparison of the numerical and analytical solutions of the two methods along the 

x3-axis. 

A similar computational accuracy can be obtained when using the two methods, but 

the higher computational speed can be obtained when using the IEFG method. 

Similarly, if dmax = 1.0, when the EFG method is used, the singular matrix occurs and 

the final result cannot be obtained. However, when the IEFG method is selected, the 

relative error is 0.8648%. The numerical solutions and the analytical one are compared in 

Figure 20, where it is shown that the numerical results are in good agreement with the 

analytical ones. 
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Figure 20. The numerical and analytical solutions of the IEFG method along the x3-axis. 

5. Conclusions 

In order to solve 3D Helmholtz equations efficiently, the IEFG method is proposed 

in this paper. 

Some numerical examples are given in Section 4, and the convergence of the IEFG 

method is proven numerically. From these examples, we can see that the IEFG method in 

this paper can not only enhance the computational speed of the traditional EFG method, 

but also eliminate the phenomenon of the singular matrix. 
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