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Abstract: Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are pro-
duced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of
EVs has been investigated in various pathologies, including development, coagulation, inflamma-
tion, immune response modulation, and cell–cell communication. Proteomics technologies have
revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver
comprehensive identification and quantification with rich structural information (PTMs, proteo-
forms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin,
disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to
ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in
this publication. Notably, successful application and translation require a constant improvement of
methods for sample preparation and analysis and their standardization, both of which are areas of
active research. This review summarizes the characteristics, isolation, and identification approaches
for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by
employing proteomics. In addition, the current and predicted future challenges and technical barriers
are also reviewed and discussed.
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1. Introduction

The general term “extracellular vesicles (EVs)” refers to particles (40 nm–10 µm) with
lipid bilayer membranes, which are produced by and released from almost all cells, in-
cluding eukaryotes and prokaryotes. The versatile (patho-)physiological role of EVs has
been investigated in development, coagulation, inflammation, immune response modu-
lation, and disease by cell–cell communication [1]. The first hint of particulate fractions
(EVs) with coagulant activity was obtained after isolating blood-coagulating proteins from
plasma by high-speed centrifugation [2] where the lipid-rich particles were described
as platelet-derived microstructures of varied diameters and densities and were termed
“platelet dust” [3]. Initially, by investigating reticulocytes, EVs were thought to discard
garbage from cells and named exosomes [4,5]. Later, Raposo et al. [6] found exosomes
derived from human and murine B lymphocytes to mediate antigen presentation. Fur-
thermore, Zitvogel et al. [7] observed that exosomes secreted from dendritic cells sup-
press tumor growth, which implied that exosomes partake in intercellular communication.
Valadi et al. [8] first identified exosomes containing both mRNA and microRNA, which
can be transferred to recipient cells and trigger signal transduction.

Cai et al. first reported exosomes carrying genomic DNA and mitochondrial DNA
in human plasma [9]; in the same year, the Nobel Prize was awarded for the discovery of
vesicle trafficking, then Besse et al. [10] gave impetus to the first clinical trials and used
autologous EVs as therapeutics from dendritic cells to boost the immune response of a
lung cancer patient. Incited by the tremendous medical prospects, the scientific community
has enthusiastically produced a wealth of studies and addressed the need for guidelines
and standardization. Worth noting are the efforts by Lotvall and Thery et al. who updated
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guidelines of nomenclature, separation, characterization, and functional analysis for EVs
with minimal information for studies of EVs, MISEV2104 and MISEV2018, to generate
references to make data reliable and reproducible between labs [11,12] (Figure 1).

This review addresses EV features, common and emerging methods in EV sample
preparation, and their potential for diagnosis and therapy with a focus on contributions
made by proteomics. In addition, the current and future challenges and barriers are also
reviewed and discussed.

2. The Features of EVs

EVs are produced and released by cells from all living organisms; further classifica-
tion of EVs is based on size, biogenesis, and composition [12] with the diversity of EVs
expanding continuously [13]. According to biological function and features, EVs are mainly
divided into three categories: apoptotic bodies, microvesicles, and exosomes. It is evident
from Table 1 that these three classes of EVs substantially overlap in their physicochemical
features. This heterogeneity poses a great challenge for purification from biological samples.
Apoptotic bodies are secreted merely by direct budding from the plasma membrane of
dying cells and enclosed with the fragments of the cellular components [14] while mi-
crovesicles originate via shedding of the plasma membrane. The outward budding of
microvesicles is controlled by intracellular Ca2+ levels, and they consist of an intracellular
set of proteins and trapped materials that contribute to cellular communication, signal trans-
duction, or metabolism of protein and nucleic acid [15,16]. Notably, exosomes generated
from various cells during the inward budding process of endocytosis: The first invagination
of the plasma membrane forms the early endosome before a second invagination gives
rise to develop intraluminal vesicles (ILVs) within the late endosome, known as multi-
vesicular bodies (MVBs). Next, the limiting membrane of the MVBs fuses with the plasma
membrane, then releases ILVs into the extracellular milieu, now named exosomes; their
cargoes are cytosolic proteins and lipids, as well as trapped molecules, such as metabolites
and nucleic acids, which specifically mirror the physiology of their cellular origin during
their biogenesis [17,18]. To promote comprehension of EVs’ complexity, ExoCarta [19] and
Vesiclepedia [20] were launched, two continuously updated web-based databases incor-
porating RNA, proteins, lipids, and metabolites in EVs of diverse species [21] (Figure 1) .
According to the published literature, the exosome is the most well-studied type of all EVs,
sorting proteins and other materials into recipient cells and triggering complex intracellular
pathways to regulate various processes, including development, coagulation, inflammation,
immune response modulation, and disease by cell–cell communication [1,22–25]. Known
for their ability to package and convey cargo, microvesicles play a role in the pathophysi-
ological process of humans as well. Given their nanoscale size and natural lipid bilayer
abound with adhesive proteins to fuse with the plasma membrane of recipient cells, EVs
(which primarily refer to exosomes and small microvesicles) prospectively represent an
attractive source of a diagnostic biomarker for disease or as drug delivery vehicles [26,27].

Table 1. Characteristics of EVs.

Feature Exosome Microvesicle Apoptotic Body

Size (nm) 40–150 150–1000 1000–5000
Density (g/mL) 1.13–1.19 1.25–1.30 1.16–1.28

Origin Living cell Living cell Dying cell

Process Releasing ILVs during plasma
membrane fusion of MVBs

Budding from the plasma
membrane directly

Blebbing from the plasma
membrane during cell apoptosis

Contents Nucleic acid, protein, lipid, etc. Nucleic acid, protein, lipid, etc. Fragments of the cellular
components

Markers [28] CD63, TSG101, Alix, HSP70, etc. Integrins, selections, CD40 Histones, TSP, C3b
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Table 1. Cont.

Feature Exosome Microvesicle Apoptotic Body

Clinical application Diagnosis, therapy [1,29] Diagnosis, therapy [27,30] Emerging [31]
Biomarker and

therapeutic research ˆ High [32] Medium [15] Low [31,33]

ˆ: research quantity.
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3. An Overview of the EV Biology in Disease Context

The intracellular cargoes of EVs are a rich source of disease-associated molecules,
which are considered to have great potential as a noninvasive source of biomarkers in
various models of health and disease, which can be readily isolated from a wide range
of almost all physiological fluids in the body, such as plasma, saliva, cerebrospinal fluid,
amniotic fluid, breast milk, urine, and so forth [34]. Emerging clinical applications are
engineered vesicles as a promising drug delivery tool, especially in central nervous system
diseases, to cross the blood–brain barrier thanks to their nanoparticle size and the ability to
transfer cargo to distant sites throughout the body by delivering it in a soluble format and
concentrated status [35]. For instance, Han et al. [36] utilized a vibrating mesh nebulizer to
deliver small EVs loaded with small RNAs to alleviate lung injury in mice, demonstrating
the therapeutic potential. Many publications [37,38] demonstrated that EVs derived from
tumors generate a premetastatic niche in distant organs and modulate immunity, thereby
promoting tumor metastasis and immune escape in the tumor microenvironment by regu-
lating subsequent signal transduction in recipient cells, illustrating the potential therapeutic
value of EVs. Moreover, increasing reports [39] present EVs as a pivotal mediator in host
innate immune responses, and Xiong et al. [40] exploited EVs from manipulated dendritic
cells to generate a cell-free anticancer vaccine to inhibit tumor growth and enhance survival
rate (Figure 2). Subsequently, we will discuss the recent progress of EVs research in cancer
progression, immune response modulation, neurodegenerative disease, and viral infection
via the proteomic tool.
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3.1. Cancer Progression

After decades of studying EVs, it has been established that biological fluids from cancer
patients contain more secreted EVs because of intensified cell-to-cell communication, which
is considered an essential factor for tumor progression and therapeutic targeting [41,42].
Chang et al. [43] found an EV protein signature (six proteins) derived from the serum of
colorectal cancer patients where APOF and CFB are linked to clathrin-mediated endocytosis
signaling, and the complement system is considered crucial for the development of tumori-
genesis. Matthiesen et al. [44] collected EVs from plasma and performed proteomic profiles
to distinguish diffuse large B cell lymphoma cancer patients and proposed the use of EV
protein indicators to predict prospective survival. By virtue of quantitative proteomics and
further verification through ELISA and immunoblot, Hou et al. [45] found that Stratifin,
a member of the 14-3-3 protein family generated from the serum EVs of colorectal cancer
patients, is a biomarker to predict prognosis. In addition, EVs directly extracted from tissue
samples exhibit excellent tissue specificity and an intimate relationship to the microenviron-
ment. Zhang et al. [46] utilized the specific binding between TiO2 and phosphate groups to
isolate EVs and conduct a proteomic analysis of about 11 biomarkers for hepatocellular
carcinoma. EVs isolated from tumor cell lines are purer and more homogenous than from
liquid biopsy and were used to investigate the regulation mechanism of proliferation,
invasion, and metastatic dissemination [47–51].

3.2. Immune Response Modulation

EVs have been found to deliver protein, lipids, and nucleic acid cargo to play key roles
in the immune response modulation system and trigger activating and suppressive func-
tions via intercellular communication [52,53]. EVs are regarded as a useful and prospective
therapeutic tool to enhance antitumor immunity and improve the outcome of cancer treat-
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ment. Gargiulo et al. [54] isolated EVs to observe and analyze surface protein expression in
immune regulation and then displayed time-dependent changes in the immune response
and metabolism pathway after CD8+T cells were treated with EVs derived from a leukemia
microenvironment to demonstrate they were remodeling the immune microenvironment of
the chronic lymphocytic leukemia mouse model. Human milk not only supports the growth
and development of newborns but also contains EVs to benefit the health of infants by
influencing the immune system [55]. In a reproduction study, Jena et al. [56] compared the
proteome of EVs originating from semen and suggested GDF-15 and C3 related to impaired
immune response modulation in recurrent pregnancy loss patients. Finamore et al. [57]
evaluated the differential expressed protein in EVs derived from saliva between primary
Sjögren’s syndrome patients and healthy donors, which indicated the protein–protein
interaction network involved in the innate immune response process. Gerwing et al. [58]
separated EVs derived from a 4T1 breast cancer cell and compared the protein inventory
to a healthy group, then injected tumor EVs into healthy mice to show the alteration of
immune cell composition in distant metastatic organs.

3.3. Neurodegenerative Disease

The fact that EVs can cross the blood–brain barrier not only exhibits the potential
for drug delivery research in the central nervous system but also yields valuable infor-
mation on neurodegenerative disease [59]. The three main neurodegenerative diseases
are Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS). You et al. [60] utilized four neural cell types, including excitatory neurons, astrocytes,
microglia-like cells, and oligodendrocyte-like cells, to isolate their EVs, respectively, and
identified protein markers for specific cell types by analyzing their proteome. After protein
co-expression network analysis in human brain-derived EVs, they found EVs derived
from astrocytes are the most significant enrichment module and highlighted the potential
pathogenesis mechanism in AD. Additionally, promising and novel AD biomarkers of
EVs derived from various sources were discovered [61–67], and researchers compared
the proteomic landscape following the knockout or overexpression of important genes
to understand AD pathology [68,69]. Jewett et al. [70] revealed the dysregulated protein
of EVs isolated from the Gba1b mutant (GBA deficiency) Drosophila model to promote
abnormal protein aggregation in neurons of PD. ALS is a heterogeneous, multifactorial,
and fatal neurodegenerative disease; Vassileff et al. [71] identified 16 proteins associated
with ALS from the proteome of EVs separated from the motor cortex and demonstrated
their potential to indicate ALS. Thompson et al. [72] detected the protein alteration of
EVs derived from CSF of ALS patients and regarded this as a potential biomarker, while
Sjoqvist et al. [73] found no differentially expressed protein in EVs derived from CSF by
using a ultra-sensitive proximity extension assay. Thus, further research is necessary to
establish robust biomarkers for early diagnosis and treatment.

3.4. Viral Infection

EVs can either accelerate the infection of neighboring cells via the transport of in-
fectious viral particles or induce the antiviral response to assist the host cell in curbing
the infection [74,75]. For Epstein–Barr virus (EBV), which is associated with many dis-
eases, Xie et al. [76] applied proteomic analysis in exosomes derived from the plasma of
EBV-hemophagocytic lymphohistiocytosis patients and listed key proteins for diagnostic
biomarkers. Ito et al. [77] found that integrin αLβ2 and FGF2 mediate the emergence of
tumor-associated macrophages from surrounding phagocytes, which were induced by the
specific EV subtype (phosphatidylserine-exposing exosomes). Human immunodeficiency
virus (HIV) infection leads to acquired immunodeficiency syndrome and other disor-
ders [78]; Falasca et al. [79] compared the protein contents of EVs derived from endothelial
cells, leukocytes, and platelets from HIV patients with healthy volunteers and suggested
EVs upregulated chronic inflammation to facilitate viral replication after HIV infection
through γIFN, IL1α, NF-κB, and JAK/STAT3 signaling pathways. At present, COVID-19
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still influences the world as a pandemic infectious disease; Pesce et al. [80] isolated EVs
from the plasma of mild and severe COVID-19 patients followed up by proteomics with
healthy donors as the control group and observed both mild and severe case-derived EVs
to be involved in the upregulation of the immune response for SARS-CoV-2, but differ-
ences in the immunomodulatory effects in the activation of immune cells (CD4+T-cell)
and acute inflammation, respectively, associated with different protein signatures in EVs.
Barberis et al. [81] studied the pathogenesis of COVID-19 based on the proteome of plasma-
derived EVs and found enrichment of the immune response and inflammation enabling
coagulation and complement pathways.

4. Methods of EV Isolation
4.1. Conventional Approaches for the Isolation of EVs

Many methods have been developed by researchers to enrich EVs based on their phys-
ical (sedimentation coefficient, size, and density), biochemical, and affinity properties [82].
Differential ultracentrifugation based on the different sedimentation rates of particles with
physical characterizations is the primary method, the gold standard, to isolate EVs and
is widely used among labs despite its limitations, such as low sample recovery rate, low
throughput, potential damage to EVs, and contamination from soluble proteins. Large-
volume samples are especially suitable for ultrafiltration, which concentrate EVs by a
certain molecular weight under low-speed centrifugation but are prone to detrimental
membrane clogging effects and contamination with unspecific proteins. To improve ultra-
filtration performance, a tangential flow filtration (TFF) system was developed to reduce
the formation of filter cake and enhance the efficiency of filter membranes via laminar
flow. Size-exclusion chromatography (SEC) utilizes resins, a porous stationary phase, in
which the elution times of various materials are different; it is low-cost and quick, while
the capacity is limited for sample volume and does not reach complete purity. According
to the densities of EVs being lower than proteins, density gradient ultracentrifugation
separates EVs effectively but more laboriously than differential centrifugation. Common
pre-treatment is filtering through a 0.22 µm filter to remove cell debris, lysosomes, etc. EVs
also can be precipitated with polymers, but the method is prone to contamination with ag-
gregates from untargeted proteins. Affinity-based methods that extract EVs via the affinity
interaction of surface markers are often combined with chromatography and provide high
purity by exploiting the biological signature of specific subpopulations [83]. Examples are
immunoaffinity (e.g., Veneceremin binds HSPs at the surface of EVs specifically), lectin-
glycoproteins affinity, and lipid affinity. Moreover, peptide [84] and aptamer-based [85]
affinity materials were engineered and developed for the isolation and recognition of EVs.

In addition, the strategy of combining the above methods to isolate EVs from various
samples has been demonstrated superior to a single method yet may pertain to sample loss
and a laborious workflow [86,87]. There is no ideal method for EV separation according
to the ISEV (International Society for Extracellular Vesicles), and the choice of techniques
depends on the downstream application and scientific question in conjunction with desired
recovery and specificity (Table 2). Despite the intense development of novel methods lately,
the most widely used and most accessible method remains differential ultracentrifuga-
tion. Until now, no comprehensive experimental comparison of method performance for
proteomics has been made.

Table 2. Characteristics of EVs enrichment strategies.

Method Yield Purity Time Workload Price Practice

Conventional approaches
Differential

ultracentrifugation
High Medium Long >100 mL Low Easy

Ultrafiltration High Low Medium >100 mL Medium Easy
Tangential flow filtration High Medium Medium >100 mL Medium Medium
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Table 2. Cont.

Method Yield Purity Time Workload Price Practice

Size-exclusion
chromatography

Low Medium Short Up to a few mL Medium Easy

Density gradient
ultracentrifugation

Low High Long Up to 1 mL Medium Medium

Precipitation High Low Medium >100 µL Low Easy
Affinity Low High Long Up to 1 mL High Medium

Advanced approaches
AF4 Low High Medium 100 µL / # Medium

Microfluidic-based
technologies

Low High - * >10 µL High Medium

Dichotomic SEC Medium High Short 20 mL Medium Easy
EXODUS High High Short >100 mL Medium Easy

EVrich - * High - * / # / # Easy
Commercial EV isolation kits High High Various Various High Easy

*: A streamlined workflow platform for downstream analysis; #: Unknown.

A strong impact of the sample preparation method on proteome results has been
appreciated in various studies: Askeland et al. [88] compared ultracentrifugation, SEC,
and a precipitation kit in plasma-derived EV biomarker studies through MS analysis and
considered ultracentrifugation and SEC as suitable approaches for large and small EVs, re-
spectively. Tuner et al. [89] evaluated the combination of ultracentrifugation as well as only
ultracentrifugation or SEC to enrich plasma EVs, and they suggested ultracentrifugation
with subsequent SEC was the best method for proteome profiling. Mussack et al. [90] used
five urinary EV purification methods and found a significant method-dependent difference
in protein composition. Karimi et al. [91] combined SEC with a density gradient centrifu-
gation, which alleviated the contamination from lipoproteins and facilitated proteome
analysis of plasma EVs. Tauro et al. [92] noted that the isolation of exosomes from a tumor
cell line conditional medium by immunoaffinity capture outperforms ultracentrifugation
and density-based separation for proteomics. Wang et al. [93] extracted serum exosomes
through a magnetic affinity separation nanoplatform, which outperformed current ul-
tracentrifugation for downstream proteomic analysis. Huang et al. [94] compared four
methods (ultracentrifugation, Size-exclusion chromatography, ExoQuick-TC precipitation,
and ExoQuick-TC ULTRA isolation) and also presented method-dependent differences in
proteomes. The latter illustrates a general challenge when pursuing purification enrichment
of the desired type of exosomes and avoiding its unintended depletion due to insufficient
knowledge of their biochemical and/or biophysical properties.

4.2. Advanced Approaches for the Isolation of EVs

The innovations and endeavors of researchers are contributing to the development of
upgraded and new techniques aimed at elevating the efficiency and purity of EV isolation
from MISEV2018, the consensus of the ISEV. There is a sharp increase in new techniques
for promoting higher purity in EV isolation.

4.2.1. Asymmetric Flow Field Flow Fraction, AF4

A nanoparticle detection device was established for field flow fraction (FFF), which was
developed by Giddings et al. [95]. A size-based purification method with two perpendicular
flows creates a force field to avoid mechanical and shear stress for EV separation to achieve
a high resolution and broad size range but is limited to small sample loads and low yield.
Moreover, Zhang et al. [96,97] utilized optimized AF4 and identified two EVs and a novel
nanoparticle termed exomeres.
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4.2.2. Microfluidic-Based Technologies

An integrable module of separation and detection for EVs with a low risk of cross-
contamination to simplify the complicated multiple workflows of conventional methods
was advertised as a promising tool in clinical diagnosis [98]. The isolation, detection,
and analysis parts are based on acoustic nanofiltration, deterministic lateral displacement,
viscoelastic flow sorting, plasmonic sensing, and electrochemical sensing. Xu et al. [99]
reported a ZnO-nanorods integrated (ZNI) microfluidic chip device that captured EVs onto
the surface of nanomaterials via immunoaffinity and detected the fluorescent signal of Vi-
mentin, the osteosarcoma biomarker, to increase sensitivity for distinguishing osteosarcoma
and metastatic disease effectively. Lo et al. [100] refined an immune affinity-based microflu-
idic device, ExoChip, coated by the CD63 antibody to capture EVs derived from the blood
of amyotrophic lateral sclerosis patients specifically. Sung et al. [101] described an auto-
mated and highly sensitive integrated microfluidic platform featuring a sample treatment to
microRNA biomarker quantification from 20 µL plasma in ovarian cancer. Rima et al. [102]
developed a novel microfluidic system to collect EVs generated from breast cancer tumor
spheroids, thereby enabling analysis at the single-vesicle level. Niu et al. [103] designed
a fluid nanoporous microinterface (FluidporeFace) in a microfluidic chip to enhance the
isolation efficiency of EVs derived from the tumor.

4.2.3. Dichotomic SEC

Guo et al. [104] described an optimized dichotomic SEC method using a CL-6B column
with increased bed volumes to produce a high-level yield of EVs and a low level of
contaminants without multiple fractions and pooling operations.

4.2.4. Ultrafast-Isolation System, EXODUS

Chen et al. [105] developed EXODUS to purify EVs from various body fluids with out-
standing efficiency via negative pressure oscillation (NPO) and double coupled harmonic
oscillator (HO)-enabled membrane vibration to isolate EVs after removing contaminants
(nuclear acids and proteins) to support downstream omics analysis in urine, cerebrospinal
fluid, plasma, and tears [106–109] with limited throughput yet effective fractionation into
three nanopore sizes (20, 100, and 200 nm).

4.2.5. EV Enrichment Device, EVrich

Zhang et al. [110] designed a magnetic beads-based device using EVtrap beads, which
were modified with a combination of hydrophilic and lipophilic groups that have a unique
affinity (non-antibody-based) toward lipid-coated EVs to recover and purify EVs in 96-well
plates, which enabled a high-throughput and automated process for microRNA, proteomics,
and phospho-proteomics analysis directly with minimal hands-on time.

4.2.6. Commercial Exosome Isolation Kits

Several commercial exosome isolation kits (Table 3) have been developed, such as
Exo-spin™, ExoQuick™ Exosome Precipitation, Total Exosome Isolation Reagent from
Invitrogen™, the PureExo® Exosome Isolation Kit, the miRCURY™ Exosome Isolation
Kit, the ExoSure™ Exosome Isolation Kit, the MagCapture™ Exosome Isolation Kit, the
Hieff® Quick Exosome Isolation Kit, the exoEasy™ Maxi Kit, the EasySep™ Extracellular
Vesicle PE Positive Selection Kit, the Capturem™ Extracellular Vesicle Isolation Kit, and
the ExoPure™ Isolation Kit, for different sample types.

4.2.7. Others

For downstream analysis of EVs by proteomics, Buck et al. [111] developed an Azo-
enabled method to extract protein and digest it rapidly during sample preparation to
attain high sample throughput. Wang et al. integrated a nanoporous TiO2-based device to
separate tumor-derived exosomes with high recovery and high specificity, distinguishable
from microvesicles similar to exosomes at the size level [112].
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Table 3. List of commercial exosome isolation kits and separation principles.

Commercial Exosomes Isolation Kits Separation Principle Company Cat. No.

Capturem Affinity, lectin Takara 635741
EasySep Affinity, antibody Stem Cell 100-0812
exoEasy Affinity, membrane-based Qiagen 76064
ExoPure Precipitation Abcam ab287883

ExoQuick Precipitation System Biosciences EXOQ20A-1
Exo-spin Size-exclusion chromatography Cell Guidance Systems EX05
ExoSure Size-exclusion chromatography Gene Copoeia EP001

Hieff Precipitation YEASEN 41201ES25
MagCapture Affinity, phosphatidylserine FUJIFILM Wako 290-84103
miRCURY Precipitation Qiagen 76603
PureExo Precipitation 101Bio P101

Total Exosome Isolation Reagent Precipitation Invitrogen 4478359

5. -Omics Approaches to Study EV in Clinical Biofluid
The Role of -Omics Methods in Clinical Applications of EVs

-Omics technologies have revolutionized studies of biological regulation and our un-
derstanding of disease mechanisms by enabling high-throughput analysis of biomolecules.
Moreover, this rich information has highlighted individual variation in large-scale co-
hort research, paving the way to personalized medicine. Various directions of -omics
methods exist: Proteomics technology is a comprehensive and powerful tool for defining
potential protein functional roles. In addition, genomics, epigenomics, transcriptomics,
metabolomics, lipidomics, and glycomics also partake in the bioinformation flow and
present (patho-)physiological changes. -Omics data from above facilitated the determi-
nation of candidate biomarkers on different molecular levels for EVs, which diagnose
disease-specific subtypes, monitor the progress of diseases, or respond to therapeutic
intervention. The goal of -omics is to obtain a large amount of comprehensive informa-
tion in a short time to be processed by advanced computational algorithms that preserve
real biological variation by eliminating systematic experimental bias and technical varia-
tion [65,113–115]. Achieving this goal depends on ongoing method development for EVs
to deal with general and specific challenges (Table 4).

Table 4. Common -omics research in EVs.

Omics Subject Current Challenges

Genomics DNA [116] The DNA of EVs is still difficult to preserve and
isolate [117].

Epigenomics DNA [118] The interpretation of the data from dynamic and
specific tissue [119].

Transcriptomics RNA
A relatively robust method has been studied in
high throughput even at a single EV level [120].
Now, analysis is the bottleneck.

Proteomics Protein
Comprehensive, reproducible, and accurate data
depends on the purity of EVs [121]; sensitivity
and throughput.

Metabolomics/Lipidomics/Glycomics Metabolite [122]/
Lipid [123]/Glycan [124]

The sensitivity, reproducibility, robustness, speed,
and accuracy; the investigation of EV
subpopulation; comprehensive analysis.

Unsurprisingly, the use of -omics methods in diagnosis delivered an avalanche of
biomarker candidates, showing great promise for better disease detection and treatment.
Nevertheless, a stable, predictive, and interpretable biomarker inevitably undergoes a long
and costly process to qualify for personalized medicine, and most biomarker candidates
from -omics studies were eliminated during that development. Publications related to
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-omics techniques for EV studies are increasing. Most of them focus on proteomics and
transcriptomics through summarizing the last five years’ literature (Figure 3a). Table 5
contains a list of candidate biomarkers originating from EVs in body fluids obtained via
a proteome study and Table 6 for a transcriptome study; of note, tumor-derived non-
coding RNA cargo in EVs has attracted lots of attention and attributed to the specific
contents from the original cells that are faithfully and sensitively detected in EVs and
were reviewed elsewhere (Ebrahimi et al. [125]). It should be mentioned that it remains
to be established if annotation as “non-coding” is correct for many of these RNAs since
studies [126,127] suggest the need to re-annotate as well as to newly discover protein-
encoding RNAs. Proteomics is an invaluable tool to resolve this issue and may uncover
new disease-relevant proteins. EVs have been further investigated in biomarker, therapy,
drug delivery, and cancer vaccine fields (Figure 3b). Obviously, many biomarker candidates
were identified from EVs in clinical body fluids, but very few enter clinical trials with
physiological activities and ultimately obtain approval (e.g., by FDA); the road from
bench to bedside is full of challenges and obstacles, such as human disease heterogeneity,
limitations of surrogate disease model systems for biomarker candidates, and the difficulties
in establishing a clear link between molecular indicators and disease pathology with high
sensitivity and specificity [128]. Hope is given by accumulating clinical trials applied to
EVs summarized by Lai et al. [121], which involves cancer (main cases), cardiovascular
disease, infectious disease (COVID-19), neurodegenerative disease, and others. To date
(Dec. 23rd, 2022), there are 112 ongoing clinical trials about EVs in diagnosis and therapy,
including early phase 1 (9 cases), phase 1 (35 cases), phase 1/2 (21 cases), phase 2 (29 cases),
phase 2/3 (5 cases), phase 3 (5 cases), and phase 4 (8 cases) [129]. ExoDxLung (ALK)
is the world’s first plasma-based diagnostic enabling real-time detection of EML4-ALK
mutations in non-small cell lung cancer patients, launched by Exosome Diagnostics in
2016 [130]. Although there is no licensed EV therapeutic product so far, increasing clinical
trials are applied EVs in human diseases, such as EXOFLO derived from human bone
marrow mesenchymal stromal cells to alleviate the moderate-to-severe acute respiratory
distress syndrome of COVID-19 patients (NCT05354141) [131]. Therefore, the global market
displays great enthusiasm for EVs diagnostics and therapeutics. A market report by BBC
Research predicted global investment in EVs with a compound annual growth rate (CAGR)
of 41.3% for the period of 2021–2026 in the diagnostics field and 38.6% in the therapeutic
field [132] with a large fraction of EV research concentrated on cancer [132,133]. Moreover,
Vesigen Therapeutics raised $28.5 million for the use of microvesicles in drug delivery
therapy due to its benefit of carrying greater payloads than exosomes and being more
readily produced at large scale [134].

There are plenty of proteome studies on the essential components of EVs in biofluids,
mostly blood and urine, to identify candidate biomarkers. Proteomics is a highly promising
tool for EVs and is able to classify tumor types and establish signature proteins and robust
biomarkers. Hoshino et al. [135] conducted proteomic profiles of EVs from 426 human
cancer samples to identify and classify uncertain primary tumor subtypes illustrating
that EVs from body fluids possess a potential value to improve the remedial outcome of
lethal cancer. In addition, EVs possess extraordinary features ideal for proteomics using
mass spectrometry (MS) [136]: relatively low complexity, enrichment in low abundance
molecules, a conserved set of common proteins that are vital for vesicle biogenesis, struc-
ture, trafficking, and the presence of specifical proteins from the (pathological) cell type they
originated. Proteomics gives access to post-translationally modified (PTM) proteins that
were altered in function, physicochemical properties, and cellular pathogenesis through
chemical modification after translation, including cleavage of precursors, formation of
disulfide bonds, covalent attachment or removal of low-molecular-weight groups, and
so forth. Glycosylation, phosphorylation, ubiquitination, SUMOylation, acetylation, and
S-nitrosylation have been identified and studied in EVs [137]. For example, immobilized
metal affinity chromatography (IMAC) is a common method to enrich phosphopeptides
with robust interaction between phosphate groups and metal ions, and hydrophilic inter-
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action chromatography (HILIC) is a favorable method to concentrate glycopeptides due
to excellent enrichment efficiency and unbiased binding; Zheng et al. [138] fabricated the
above and developed a core–shell carbonyl-functionalized magnetic zirconium–organic
framework (CFMZOF) to identify phosphopeptides and glycopeptides simultaneously in a
human urine sample with high selectivity and a low detection limit. Nunez et al. [139] first
defined the proteome landscape of diabetes patients’ serum-derived EVs and quantified
the circulating global proteins and phosphoproteins simultaneously. More importantly,
proteomics boosts the dissection of the protein signature, signaling pathways, and clinical
pharmacokinetics of EVs by improving the proteome sequence coverage to better character-
ize their molecular cargo via identifying PTMs and proteoforms in particular pathological
events with the ultimate aim of achieving clinical translation.
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Table 5. List of potential disease biomarkers derived from EVs in human body fluids via proteome studies.

Source Biomarker Isolation Method/Identification Method Screening Method/Verification Method Disease Ref.

Serum COPB2↑ Filter column/WB, SEM LC-MS/MS/WB, ELISA COVID-19 [140]
Plasma and

serum HSP90A↑, STIP1↑, TAGLN-2↑ Ultrafiltration, differential centrifugation, density
gradient centrifugation/TEM, NTA, WB, LVSEM LC-MS/MS/WB Adenomyosis [141]

Plasma PKG1↑, RALGAPA2↑, TJP2↑ Ultracentrifugation/WB LC-MS/MS/PRM Breast Cancer [142]

Plasma TSPAN1↑ Differential centrifugation, ExoQuick®/TEM,
NTA, WB

LC-MS/MS/WB, ELISA Colon Cancer [143]

Serum GCLM↓, KEL↑, APOF↑, CFB↓,
PDE5A↓, ATIC↓ Size-exclusion chromatography/TEM, WB LC-MS/MS/NA Colon Cancer [43]

Blood ORM1 NA/NA Large-scale targeted proteomics
analysis/NA Colon Cancer [144]

Serum Stratifin↑ Size-exclusion chromatography, exoEasy
kit/TEM, NTA, WB LC-MS/MS (TMT)/ELISA Colon Cancer [45]

Serum Annexin A3↑, A4↑, and A11↑ Differential ultracentrifugation, density gradient
centrifugation/NA LC-MS/MS (SRM)/NA Colon Cancer [145]

Serum TRIM3↓ ExoQuick®/WB, TEM, NTA, LC-MS/MS/ELISA, WB Gastric Cancer [146]

Plasma TGFβ1↑ Extracellular vesicles enrichment kit/TEM, NTA,
WB LC-MS/MS(TMT)/ELISA Head and Neck Squamous

Cell Carcinoma [147]

Serum AMPN↑, PIGR↑, VNN↑ Filtration, ultracentrifugation/TEM, NTA, WB LC-MS/MS/WB Liver Cancer [148]
Plasma SRGN↑, TPM3↑, THBS1↑, HUWE1↑ Density gradient flotation/TEM, NTA, WB LC-MS/MS/WB Lung Cancer [149]

Serum CD5L↑ Precipitation and magnetic-based
immunoaffinity/TEM, NTA, WB, DLS MALDI-TOF-MS/WB Lung Cancer [150]

Serum CD91↑ MSIA monolith tips/NA LC-MS/MS/ELISA Lung Cancer [151]
Serum α-synuclein↑, Clusterin↑ Immunoaffinity/SEM, NTA, WB LC-MS/MS/electrochemiluminescence Parkinson’s Disease [152]
Serum Syntenin-1↑ Ultracentrifugation/NTA, EM, WB LC-MS/MS/WB Parkinson’s Disease [153]

Plasma IgG↑, IgM↑, C1q↑ Immunoaffinity/flow cytometry LC-MS/MS/NA Systemic Lupus
Erythematosus [154]

Plasma G3BP↑, TGFβ1↓ Centrifugation/NA LC-MS/MS/NA Systemic Lupus
Erythematosus [155]

Urine Hsp 90↑, syndecan-1↑, MARCKS↑,
ZO-2↑

Gradient density ultracentrifugation, differential
ultracentrifugation/TEM, NTA, WB

LC-MS/MS(TMT/SRM/MRM)/
immunohistochemical Bladder Cancer [156]

Urine
EHD4↑, EPS8L1↑, EPS8L2↑, GBP3↑,
GsGTPa↑, GTPase Nras↑, MUC4↑,

RAI3↑, Resistin↑
Ultracentrifugation/WB LC-MS/MS/WB Bladder Cancer [157]
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Table 5. Cont.

Source Biomarker Isolation Method/Identification Method Screening Method/Verification Method Disease Ref.

Urine APOA1↑, TTR↑, PIGR↑, HPX↑,
AZGP1↑, CP↑

Differential ultracentrifugation/protein
concentration LC-MS/MS (DDA)/WB

Chronic Active
Antibody-Mediated

Rejection
[158]

Urine Calbindin↑, SNAP23↑ Ultracentrifugation/NTA, TEM, WB LC-MS/MS/WB Parkinson’s Disease [159]
Urine AGP1↑ Differential ultracentrifugation/TEM, NTA, WB LC-MS/MS/WB Primary Aldosteronism [160]

Urine
AQP1↓, CAIX↑, CD10↓, CD147↓,
CP↑, DKK4↑, DPEP1↓, MMP9↑,

PODXL↑, Syntenin-1↓

Differential centrifugation, density gradient
ultracentrifugation, ultrafiltration/TEM, WB,

NTA
LC-MS/MS/WB Renal Cancer [161]

Saliva BASP1↑, NUCB2↑, PSMA7↑,
PSMB7↑, TKT↑, TLN1↑, WDR1↑ Centrifugation, exosome isolation kit/EM, WB LC-MS/MS/WB

Inflammatory Bowel
Disease/Ulcerative

Colitis/Crohn’s Disease
[162]

Tear and
Saliva STOM↑, ANXA4↑, ANXA1↑ Size-exclusion chromatography/NTA, flow

cytometry LC-MS/MS/NA Primary Sjögren’s
Syndrome [163]

NTA, nanoparticle tracking analysis; WB, western blot; TEM, transmission electron microscope; SEM, scanning electron microscope; DLS, dynamic light scattering; ELISA, enzyme-linked
immunosorbent assay; LVSEM, low-vacuum scanning electron microscope; TMT, tandem mass tag; DDA, data-dependent acquisition; SRM, selective reaction monitoring; MRM,
multiple reaction monitoring; PRM, parallel reaction monitoring; LC-MS/MS, liquid chromatography with tandem mass spectrometry; UPLC, ultra-performance liquid chromatography;
MALDI-TOF-MS, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass-spectrometer; NA, not available; ↑, upregulated; ↓, downregulated.

Table 6. List of potential disease biomarkers derived from EVs in human body fluids via transcriptome studies.

Source Type Biomarker Isolation Method/Identification Method Screening
Method/Verification Method Disease Ref.

Serum circular RNAs Chr10q11↑, Chr1p11↑, Chr7q11↑ exoRNeasy Midi kit,
ultracentrifugation/TEM, NTA, WB RNA Seq/RT-qPCR Gastric Cancer [164]

Plasma circRNAs↑ Differential centrifugation/cryo-EM, NTA RNA-Seq/NA Multiple Sclerosis [165]

Serum long non-coding
RNAs HULC↑ Ultracentrifugation/- Microarray/RT-qPCR Pancreatic Cancer [166]

Serum LINC00853↑ ExoQuick/TEM, NTA, WB RNA Seq/RT-qPCR Hepatocellular
Carcinoma [167]

Plasma RP3-399L15.2↓, CH507-513H4.6↓ exoRNeasy/TEM, NTA, WB RNA Seq/RT-qPCR Endometriosis [168]

Plasma exLR NFKBIA↑, NDUFB10↑, SLC7A7↑,
ARPC5↑, SEPTIN9↑, etc. Ultracentrifugation/TEM, NTA, WB RNA Seq/RT-qPCR Lung Cancer [169]

Plasma microRNAs hsa-miR-106b-3p↑, hsa-miR-125a-5p↑,
hsa-miR-3615↑, et al. Ultracentrifugation/TEM, NTA, WB RNA Seq/RT-qPCR Lung Cancer [170]
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Table 6. Cont.

Source Type Biomarker Isolation Method/Identification Method Screening
Method/Verification Method Disease Ref.

Plasma hsa-miR-186-5p↑, hsa-miR-200c-3p↑,
hsa-miR-429↑, etc. SEC/TEM, NTA, WB RNA Seq/RT-qPCR Gastric Cancer [171]

Plasma long RNAs hsa-miR-483-5p↑
Total Exosome Isolation Kit, differential

ultracentrifugation/TEM, DLS,
flowcytometry

Microarray/RT-qPCR Adrenocortical
Tumors [172]

Plasma microRNAs microRNA-29a↑ Differential centrifugation, density gradient
centrifugation/TEM, NTA, WB RNA Seq/ddPCR

Chronic
Methamphetamine

Use Disorder
[173]

Serum MicroRNA-431-5p↑ Differential centrifugation/TEM, NTA, WB Microarray/RT-qPCR Diabetic Retinopathy [174]

Plasma microRNA-491-5p↑ ExoQuick/TEM, NTA, WB NanoString miRNAs
analysis/RT-qPCR

Head and Neck
Squamous Cell

Carcinoma
[175]

Plasma miR-101↓ Differential centrifugation/TEM, NTA, WB RNA Seq/RT-qPCR Osteosarcoma [176]
Plasma miR-101-3p↓, miR-150-5p↑ Precipitation/TEM, NTA, WB, ExoView RNA Seq/RT-qPCR Lung Cancer [177]

Plasma miR-103a-3p↑, miR-30e-3p↓ Ultracentrifugation/TEM, NTA, flow
cytometry OpenArray/RT-qPCR Malignant Pleural

Mesothelioma [178]

Serum miR-122-5p↑, miR-2110↑, miR-483-5p↑;
miR-370-3p↓, miR-409-3p↓, etc. miRCURY/NA RNA-Seq/RT-qPCR- Atherosclerosis [179]

Serum miR-1246↑ SEC/TEM, NTA Microarray/RT-qPCR Gallbladder Cancer [180]

Plasma miR-127-3p↓, miR-155-5p↓,
miR-21-5p↓, miR-24-3p↓, let-7a-5p↓ SEC/NA RNA Seq/RT-qPCR Classical Hodgkin

Lymphoma [181]

Plasma miR-134-5p↓, miR-205-5p↑,
miR-409-3p↓ SEC/TEM, NTA, WB RNA Seq/RT-qPCR Nasopharyngeal

Carcinoma [182]

Plasma miR-181a↑, miR-1908↑, miR-21↑,
miR-486↑, miR-223↑ ExoQuick, exoRNeasy/NA RNA Seq/NA Ovarian Cancer [183]

Serum miR-181a-5p↑ Total exosome isolation kit/TEM, NTA, WB Microarray/RT-qPCR Prostate Cancer [184]

Serum miR-21-5p’(3′ addition C)↑,
miR-23a-3p↑, tRF-Lys↑ Total exosome isolation kit/TEM, NTA, WB RNA Seq/NA Breast Cancer [185]

Serum miR-223↑, let-7e-5p↑, miR-486-3p↑, etc. ExoQuick/TEM, NTA, flowcytometry RNA Seq/RT-qPCR Acute Rejection [186]

Plasma
miR-22-3p↑, miR-99a-5p↑,

miR-151a-5p↑, miR-320b↑, miR-320d↑,
etc.

ExoQuick, Exo-Spin/TEM, NTA, tunable
resistive pulse sensing, WB RNA Seq/RT-qPCR Chronic Obstructive

Pulmonary Disease [187]

Serum miR-342-3p↑, miR-1254↓ ExoChip/SEM, NTA, WB NanoString miRNAs
Analysis/NA

Sporadic
Amyotrophic Lateral

Sclerosis
[100]
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Table 6. Cont.

Source Type Biomarker Isolation Method/Identification Method Screening
Method/Verification Method Disease Ref.

Plasma miR-92b-3p↑, miR-374a-5p↑,
miR-106b-3p↑ miRCURY/NTA, TEM, WB RNA Seq/RT-qPCR Chronic Obstructive

Pulmonary Disease [188]

Plasma miRNA-152-3p↑, miRNA-1277-5p↑ SEC/NTA, TEM, WB RNA Seq/RT-qPCR Lung Cancer [189]

Serum miRNA-21↑ ExoQuick/NTA, WB miRNA array/RT-qPCR Chronic Lung
Disease [190]

Plasma miRNAs, miR-500a-3p↑, miR-501-3p↑,
miR-502-3p↑

3D medicine isolation reagent,
polyethylene glycol-based method/NTA,

SEM, WB
RNA Seq/NA

Pulmonary
Ground-Glass

Nodules
[191]

Plasma Let-7b-5p↑, miR-184↓, circulating
miR-22-3p↓ SEC/NTA, EM, WB RNA Seq/RT-qPCR Lung Cancer [192]

Plasma let-7e↑ Norgen plasma, serum exosome
purification mini kit/WB RNA Seq/RT-qPCR Alzheimer’s Disease [193]

Plasma let-7i-5p↑ ExoQuick/TEM, NanoFCM, WB RNA Seq/RT-qPCR Asthma [194]

Serum piRNAs DQ593039↑ Total exosome isolation reagent, exoEasy
kit/TEM, NTA, WB RNA Seq/RT-qPCR Pulmonary

Hypertension [195]

CSF microRNAs miR-21↑ miRCURY/TEM, NanoFCM, WB RNA Seq/ddPCR Leptomeningeal
Metastasis [196]

Urine microRNAs hsa-miR-193b-3p↓, hsa-miR-8485↓ miRCURY/ExoView miRNA Seq/NA
Acute

Exercise-Induced
Fatigue

[197]

Neurosurgical
aspirate
fluids

microRNAs miR-486-3p↑ Ultracentrifugation/TEM, NTA, WB RNA Seq/NA Glioblastoma [198]

TDV microRNAs miR-203a-3p↑ Ultracentrifugation/TEM, NTA, WB RNA Seq/RT-qPCR Lung Cancer [199]

TDV, tumor-draining vein; CSF, cerebrospinal fluid; NTA, nanoparticle tracking analysis; WB, western blot; TEM, transmission electron microscope; SEM, scanning electron microscope;
Cryo-EM, cryoelectron microscopy; DLS, dynamic light scattering; exLR, extracellular vesicle long RNA; piRNAs, P-element induced wimpy testis (PIWI)-interacting RNAs; ddPCR,
droplet digital polymerase chain reaction; NA, not available; ↑, upregulated; ↓, downregulated.
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6. The Identification of EVs

For new benchmarks in the characterization of EVs, almost all the literature still refers
to the MISEV2018 (a consensus of ISEV) [12]. It is necessary to identify EVs and aim to
ensure the biological functions of EVs merely. Multiple and complementary methods are
used to assess the purity, morphology, and quantification of EVs, such as the reviewed above
identification methods in Tables 5 and 6, western blot, NTA, and Cryo-EM are often used
to characterize EVs for downstream study. Recently, ExoView [121], a nanoflow cytometry
instrument that combines immunoaffinity with high-resolution imaging techniques for
specific exosomes, was developed and led to a more convenient and streamlined routine
for characterizing the count, size (>50 nm), and surface markers of EVs without sample
purification to capture EVs with antibodies, then measure surface protein expression levels
via fluorescent signals to evaluate multiple metrics on the individual particle at a high-
throughput level. For EV proteomic research, EV identification is a part of the workflow. An
efficient, quick, automated, and robust standard characterization process also is essential
for subsequent unbiased analysis of the physiology and pathology of the disease.

7. The Proteomic Profile Workflow of EVs in Clinical Investigation

In general, there are two proteome analyses that are bottom-up and top-down, re-
spectively; the former is popular in many labs since it has fewer instrument and software
requirements and is more established than the latter one. For researchers interested in set-
ting up their own workflow, published experimental protocols using different approaches
and targeting different aspects of the proteome [200–203] are a good starting point. A
generic bottom-up workflow is depicted in Figure 4 and consists of the following steps:
1. Sample collection from clinical biofluid with appropriate storing and processing con-
ditions; 2. Low-speed centrifugation to remove cells and debris as sample pretreatment
procedure; 3. Followed by conventional or optimized methods to purify EVs, further
(optional) purification to obtain more homogenous EVs via combining other methods;
4. Then characterization of EVs to ensure the purity conforms to the experimental re-
quirements; 5. For lysis and digestion of EVs enriched in MS-compatible buffers, FASP is
widely adopted for single-shot, label-free or label-based (TMT and iTRAQ) LC-MS/MS
analysis; 6. Identification, quantification, and statistical analysis of data by MaxQuant,
Perseus, and Proteome Discoverer software, etc.; 7. Finally, validation in a suitable model
to experimentally assess the value of certain proteins for intended future application (e.g.,
as a biomarker).
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8. Challenges for Proteomics of EVs in Clinical Investigation

There are three crucial questions for EVs: Where are they from? Where are they
going? What do they do? Answering the first question is impeded by available methods
because it is hard to obtain a pure EVs subpopulation from biofluid by centrifugation
by applying existing protocols due to the size of other nanoparticles and inevitable con-
tamination that affects the proteomic profiles. Next, the isolation of EVs from a different
sample such as plasma, the most widely used in disease research, is more demanding than
urine and cerebrospinal fluid given the presence of large protein aggregates, chylomicrons,
protein–nucleic acid aggregates, and plasma proteins. In addition, importantly, the EV pop-
ulation derived from biofluid is heterogeneous and presents an extraordinarily complicated
mixture of host and disease-related particles, hence the paramount challenge of extracting
EVs from specific cells. Moreover, it is difficult to separate homogenous EV populations
due to the diversity of the molecular distribution of EVs, with only a few particles identical
to each other even when released from a single cell type. In addition, there is an intrinsic
and large inter-individual variability between clinical samples. Additionally, due to the
proteomic profiles being highly dependent on the isolation process of EVs, as mentioned
before [90,92–94], a mostly automated and traceable workflow for biofluid handling and
analysis is essential for quality control and analysis of the proteome data.

9. Recent Progress and Future Directions in EV Proteomics

While ELISA is the method of choice for high-throughput, sensitive, quantitative,
and qualitative analysis of known EV protein biomarkers, mass spectrometry discovers
new biomarkers and promising protein signatures specific to different diseases. Mani-
fold development (Table 7), including the isolation and characterization of EVs, the PTM
enrichment strategy of EVs, minimizing tradeoffs between throughput and depth of MS
in unbiased analysis, multi-omics techniques for molecular panels, signaling pathways,
and pharmacokinetics of EVs in particular pathological status, and final validation in
biological effects of key protein from EVs, have been promoted by scientists in proteomics
profiles of EVs since a review by Rocha et al. [204] in 2017. The heterogeneity between and
within EVs is still challenging research to distinguish and understand the role of EVs in
complicated body fluids. Fortunately, the nucleic acids can be amplified to obtain clues for
the heterogeneity of EVs; Ruben et al. [205] found EXOmotifs and CELLmotifs of miRNA-
mediated sorting or retention in EVs, which provided important insight into the partial
miRNA delivery system of EVs. However, it is impractical to carry out MS for a single EV
due to its tiny volume and the detection limit of current MS-based proteomics methods.
Consequently, Wu et al. [206] developed a proximity-dependent barcoding assay to distin-
guish variability and the respective number of individual exosome surface proteins using
antibody-DNA conjugates and next-generation sequencing. Another advanced single EV
method designed by Ko et al. [207] utilized the single EV immune sequencing technology
on a microfluidic-based droplet generator to enclose and link bead-derived DNA barcodes
to complexes containing individual antibodies and EVs. Recently, Banijamali et al. [208]
facilitated the verification of EV subtypes within and between samples via a scalable
and relatively simple droplet barcode sequencing for surface protein analysis at a single
EV level. For the isolation procedure of EVs, many developed methods [97,103–105,110]
are applied to improve EV purity effectively and to reduce the long processing times; it
remains important to screen for and report the most appropriate workflow of multiple
integrated strategies for each specific research scenario and sample type. For the charac-
terization of EVs, the widely used and classical approaches remain as western blot, NTA,
and cryo-EM; here, there is progress seen in more accurate devices introduced to detect
EVs’ multiple parameters simultaneously, such as high-resolution imaging nanoflow cy-
tometry developed by Choi et al. [209] and hollow-fiber flow field-flow fractionation (HF5)
designed by Marassi et al. [210]. As reported [211,212], shotgun proteomics for discovery
studies is the most popular technique to analyze the proteins of EVs; there are emerging
techniques, such as targeted quantification with selected/multiple/parallel reaction moni-
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toring (SRM/MRM/PRM) and DIA acquisition, such as sequential window acquisition
of all theoretical mass spectra (SWATH-MS), all greatly facilitating proteome coverage
capabilities, efficient validation, and accuracy. For the PTM-proteome of EVs, Andaluz
Aguilar et al. [203] described a workflow for the sequential analysis of phosphopeptides,
N-glycopeptides, and total proteome analysis from 1 mL of human plasma showcasing the
high sensitivity and high enrichment efficiency of current instruments and methods for
low-abundance PTM-proteome. As mentioned, proteome profiles are highly dependent
on the whole workflow; to ensure unbiased processing and reduce technical variance,
Ozge et al. [213] integrated an automated and high-throughput sample preparation (Ag-
ilent Bravo© liquid handling platform) in proteomics to detect Parkinson’s disease and
achieve patient stratification for precision therapy. Multi-omics boosts our systems biology
understanding of the EV function via obtaining rich molecular information because a single
omics study cannot reveal the complexities of a living system entirely. Cohn et al. [65]
revealed disease-associated signatures of EVs from human AD brain tissue via proteomics,
lipidomics, and miRNA transcriptomics. Noteworthily, Heo et al. [113] reviewed multi-
omics approaches in cancer research and pointed out the computational and biological
challenges. The final validation of biological effects after proteomic profiling for EVs is
hampered by insufficient standardization between research labs, which hinders the clinical
translation in diagnostic and therapeutic applications, emphasizing the need for further
establishment of routine workflows by ongoing research and collaborative efforts from
many different fields.

Table 7. Challenges and future directions in EVs proteomics.

Challenges Future Directions

1. The heterogeneity of EVs. Applying integrated module approaches at a single
EV level.

2. The purity of EVs. Selecting the most appropriate approach for each
specific research scenario and sample type.

3. The identification methods of EVs. Considering reproducible and accurate approaches.

4. The proteome coverage of EVs by LC/ESI-MS/MS and DDA/DIA. Alternative data analysis strategies according to set
parameters with robust bioinformatic tools.

5. The PTM-proteome of EVs. High capture efficiency of enrichment strategy.
6. Tradeoffs between throughput and depth of LC-MS/MS. Robust, automated, and high-throughput workflow.
7. Systems biology overview of the EVs function. Advanced computational and biological algorithms.

8. Final biological effects validation in EVs. A routine research workflow between labs and
collaborative efforts from many different fields.

10. Conclusions

Proteomics has largely contributed to our understanding of EVs, which have emerged
as a promising tool for clinical diagnosis, prognosis, and therapeutic interventions. The
whole field of proteomic research of EVs in clinical biofluids, such as blood, urine, and
cerebrospinal fluid, has matured in recent years where numerous works contributed to
the establishment of experimental tools and guidelines. However, limitations and chal-
lenges have been identified, which must be addressed in the future: For research, these lie
mainly in further improving the purification and characterization of EVs to unravel ever-
more biological details. For clinical applications, further improvement of standardization,
comparability, and reproducibility are key to wider acceptance and use. We can expect
for the future a prominent role of proteomics for EVs in clinical biofluids in advancing
personalized medicine and improving patient outcomes.
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