Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts?
Abstract
:1. Introduction
1.1. Conceptualizing Teachers’ Professional Competence in Terms of Diagnosing
1.1.1. Conceptualizing Teachers’ Professional Knowledge
1.1.2. Conceptualizing Situation-Specific Skills for Reasoning about Instruction
- identifying problems (e.g., a teacher recognizes a noteworthy incident in classroom instruction driven by prior knowledge, cf. [59]);
- questioning (e.g., a teacher asks for reasons of the identified problematic incident);
- generating hypothesis (e.g., a teacher makes an assumption about the underlying problem of the teaching situation);
- constructing artifacts (e.g., a teacher generates tests/tasks to be used for (further) data collection);
- generating evidence (e.g., a teacher or observer uses the test or task or systematically observes and describes the situation, for example, with regard to relevant student or teacher behavior);
- evaluating evidence (e.g., a teacher interprets data and evaluates the extent to which it supports a demanded standard);
- drawing conclusions (e.g., a teacher derives (behavioral) consequences from the evaluation of multiple data sources);
- communicating the process and results (e.g., a teacher shares findings and feedback can be given; afterward, further measures can be taken or alternative instructional strategies can be implemented).
1.2. Fostering Professional Knowledge and (Scientific) Reasoning Skills
1.3. Motivation of the Study and Research Questions
- RQ1a: Is the self-directed knowledge acquisition via texts effective to foster pre-service biology teachers’ PCK, CK, and PK?
- RQ1b: Are there different effects of the intervention on pre-service biology teachers’ PCK, CK, and PK?
- RQ2: Is the self-directed knowledge acquisition via texts effective to foster the execution of diagnostic activities?
2. Materials and Methods
2.1. Design and Sample
2.2. Description of the Treatments
2.3. Measuring Professional Knowledge and Diagnostic Activities
2.3.1. Professional Knowledge Tests
2.3.2. Video-Based Assessment Tool DiKoBi Assess
- DiKoBi I Assess (sub-theme: “skin as a sensory organ”) to assess pre-service teachers’ diagnostic activities before the intervention (diagnostic activities pre);
- DiKoBi II Assess (sub-theme: “protective function of the skin”) to assess pre-service teachers’ diagnostic activities after the intervention (diagnostic activities post).
2.4. Data Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Treatment | Content Included in the Texts | References |
---|---|---|
1 PCK |
| [25,42,105,106,107,108,109,110,111,112,113,114,115,116,117,118] |
2 CK |
| [107,119,120,121,122,123,124,125] |
3 PK |
| [106,107,126,127,128,129,130,131] |
4 combination of PCK, CK, PK |
| [25,105,106,111,113,114,115,117,119,120,121,122,123,125] |
5 no information (control group) |
| - |
Appendix B
References
- National Research Council. Taking Science to School: Learning and Teaching Science in Grades K–8; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Morris, B.J.; Croker, S.; Masnick, A.M.; Zimmerman, C. The Emergence of Scientific Reasoning. In Current Topics in Children’s Learning and Cognition; Kloos, H., Morris, B.J., Amaral, J.L., Eds.; InTech: Rijeka, Croatia, 2012; pp. 61–82. ISBN 978-953-51-0855-9. [Google Scholar]
- Krell, M.; Redman, C.; Mathesius, S.; Krüger, D.; Van Driel, J. Assessing Pre-Service Science Teachers’ Scientific Reasoning Competencies. Res. Sci. Educ. 2020, 50, 2305–2329. [Google Scholar] [CrossRef]
- Kind, P.; Osborne, J. Styles of Scientific Reasoning: A Cultural Rationale for Science Education? Sci. Educ. 2017, 101, 8–31. [Google Scholar] [CrossRef] [Green Version]
- Nowak, K.H.; Nehring, A.; Tiemann, R.; Zu Belzen, A.U. Assessing students’ abilities in processes of scientific inquiry in biology using a paper-and-pencil test. J. Biol. Educ. 2013, 47, 182–188. [Google Scholar] [CrossRef]
- Mayer, J. Erkenntnisgewinnung als wissenschaftliches Problemlösen (Inquiry as scientific problem solving). In Theorien in der Biologiedidaktischen Forschung: Ein Handbuch für Lehramtsstudenten und Doktoranden (Theories in Biology Education Research. A Handbook for Pre-Service Teachers and Doctoral Students); Krüger, D., Vogt, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–186. [Google Scholar]
- Helmke, A.; Lenske, G. Unterrichtsdiagnostik als Voraussetzung für Unterrichtsentwicklung (Diagnosis of Classroom Instruction from Different Perspectives as a Prerequisite for Improving Teaching and Learning). Beitr. Lehrerbildung 2013, 31, 214–233. [Google Scholar]
- Heitzmann, N.; Seidel, T.; Hetmanek, A.; Wecker, C.; Fischer, M.R.; Ufer, S.; Schmidmaier, R.; Neuhaus, B.; Siebeck, M.; Stürmer, K.; et al. Facilitating Diagnostic Competences in Simulations in Higher Education A Framework and a Research Agenda. Front. Learn. Res. 2019, 7, 1–24. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Boone, W.J.; Seidel, T.; Neuhaus, B.J. Investigating Pre-Service Biology Teachers’ Diagnostic Competences: Relationships between Professional Knowledge, Diagnostic Activities, and Diagnostic Accuracy. Educ. Sci. 2021, 11, 89. [Google Scholar] [CrossRef]
- Förtsch, C.; Sommerhoff, D.; Fischer, F.; Fischer, M.R.; Girwidz, R.; Obersteiner, A.; Reiss, K.; Stürmer, K.; Siebeck, M.; Schmidmaier, R.; et al. Systematizing Professional Knowledge of Medical Doctors and Teachers: Development of an Interdisciplinary Framework in the Context of Diagnostic Competences. Educ. Sci. 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Baumert, J.; Kunter, M.; Blum, W.; Brunner, M.; Voss, T.; Jordan, A.; Klusmann, U.; Krauss, S.; Neubrand, M.; Tsai, Y.-M. Teachers’ Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. Am. Educ. Res. J. 2010, 47, 133–180. [Google Scholar] [CrossRef] [Green Version]
- Tepner, O.; Borowski, A.; Dollny, S.; Fischer, H.E.; Jüttner, M.; Kirschner, S.; Leutner, D.; Neuhaus, B.J.; Sandmann, A.; Sumfleth, E.; et al. Modell zur Entwicklung von Testitems zur Erfassung des Professionswissens von Lehrkräften in den Naturwissenschaften (Item Development Model for Assessing Professional Knowledge of Science Teachers). ZfDN 2012, 18. [Google Scholar]
- TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im Internationalen Vergleich (TEDS-M 2008. Professional Competence and Learning Opportunities of Prospective Secondary Mathematics Teachers in International Comparison); Blömeke, S., Kaiser, G., Lehmann, R., Eds.; Waxmann: Münster, Germany, 2010. [Google Scholar]
- Ball, D.L.; Thames, M.H.; Phelps, G. Content Knowledge for Teaching. J. Teach. Educ. 2008, 59, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Kersting, N.B.; Givvin, K.B.; Thompson, B.J.; Santagata, R.; Stigler, J.W. Measuring Usable Knowledge: Teachers’ Analyses of Mathematics Classroom Videos Predict Teaching Quality and Student Learning. Am. Educ. Res. J. 2012, 49, 568–589. [Google Scholar] [CrossRef]
- Hoth, J.; Döhrmann, M.; Kaiser, G.; Busse, A.; König, J.; Blömeke, S. Diagnostic competence of primary school mathematics teachers during classroom situations. ZDM Math. Educ. 2016, 48, 41–53. [Google Scholar] [CrossRef]
- Blömeke, S.; Busse, A.; Kaiser, G.; König, J.; Suhl, U. The relation between content-specific and general teacher knowledge and skills. Teach. Teach. Educ. 2016, 56, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond Dichotomies. Z. Psychol. 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Boyatzis, R.E. The Competent Manager; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Kaiser, G.; Blömeke, S.; König, J.; Busse, A.; Döhrmann, M.; Hoth, J. Erratum to: Professional competencies of (prospective) mathematics teachers—Cognitive versus situated approaches. Educ. Stud. Math. 2016, 94, 183–184. [Google Scholar] [CrossRef] [Green Version]
- Depaepe, F.; Verschaffel, L.; Kelchtermans, G. Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematics educational research. Teach. Teach. Educ. 2013, 34, 12–25. [Google Scholar] [CrossRef]
- Zimmerman, C. The Development of Scientific Reasoning Skills. Dev. Rev. 2000, 20, 99–149. [Google Scholar] [CrossRef] [Green Version]
- Seidel, T.; Shavelson, R.J. Teaching Effectiveness Research in the Past Decade: The Role of Theory and Research Design in Disentangling Meta-Analysis Results. Rev. Educ. Res. 2007, 77, 454–499. [Google Scholar] [CrossRef]
- Lipowsky, F.; Rakoczy, K.; Pauli, C.; Drollinger-Vetter, B.; Klieme, E.; Reusser, K. Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean Theorem. Learn. Instr. 2009, 19, 527–537. [Google Scholar] [CrossRef]
- Wüsten, S. Allgemeine und Fachspezifische Merkmale der Unterrichtsqualität im Fach Biologie: Eine Video- und Interventionsstudie (General and Subject-Specific Instructional Quality in the Subject Biology. A Video and Intervention Study). Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2010. [Google Scholar]
- König, J.; Kramer, C. Teacher professional knowledge and classroom management: On the relation of general pedagogical knowledge (GPK) and classroom management expertise (CME). ZDM Math. Educ. 2015, 48, 139–151. [Google Scholar] [CrossRef]
- Praetorius, A.-K.; Klieme, E.; Herbert, B.; Pinger, P. Generic dimensions of teaching quality: The German framework of Three Basic Dimensions. ZDM Math. Educ. 2018, 50, 407–426. [Google Scholar] [CrossRef]
- Klieme, E.; Schümer, G.; Knoll, S. Mathematikunterricht in der Sekundarstufe I: Aufgabenkultur und Unterrichtsgestaltung (Mathematics Instruction in Secondary Education: Task Culture and Instructional Processes). In TIMMS—Impulse für Schule und Unterricht (TIMSS—Impetus for School and Teaching); Bundesministerium für Bildung und Forschung, Ed.; Bundesministerium für Bildung und Forschung (BMBF): Bonn, Germany, 2001; pp. 43–57. [Google Scholar]
- Meschede, N.; Fiebranz, A.; Möller, K.; Steffensky, M. Teachers’ professional vision, pedagogical content knowledge and beliefs: On its relation and differences between pre-service and in-service teachers. Teach. Teach. Educ. 2017, 66, 158–170. [Google Scholar] [CrossRef]
- Schlesinger, L.; Jentsch, A. Theoretical and methodological challenges in measuring instructional quality in mathematics education using classroom observations. ZDM Math. Educ. 2016, 48, 29–40. [Google Scholar] [CrossRef]
- Lai, M.K.; Schildkamp, K. In-service Teacher Professional Learning: Use of Assessment in Data-based Decision-making. In Handbook of Human and Social Conditions in Assessment; Brown, G., Ed.; Routledge: London, UK, 2016; pp. 77–94. ISBN 9781315749136. [Google Scholar]
- Weinert, F.E.; Schrader, F.-W.; Helmke, A. Educational expertise. Closing the gap between educational research and classroom practice. Sch. Psychol. Int. 1990, 11, 163–180. [Google Scholar] [CrossRef]
- Baumert, J.; Kunter, M. The COACTIV Model of Teachers’ Professional Competence. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers: Results from the COACTIV Project; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: New York, NY, USA, 2013; pp. 25–48. ISBN 978-1-4614-5148-8. [Google Scholar]
- Fischer, F.; Kollar, I.; Ufer, S.; Sodian, B.; Hussmann, H.; Pekrun, R.; Neuhaus, B.; Dorner, B.; Pankofer, S.; Fischer, M.; et al. Frontline Learning Research. Front. Learn. Res. 2014, 2, 28–45. [Google Scholar] [CrossRef]
- Paris, S.G.; Lipson, M.Y.; Wixson, K.K. Becoming a strategic reader. Contemp. Educ. Psychol. 1983, 8, 293–316. [Google Scholar] [CrossRef]
- Shulman, L. Knowledge and Teaching: Foundations of the New Reform. Harv. Educ. Rev. 1987, 57, 1–23. [Google Scholar] [CrossRef]
- Shulman, L.S. Those who understand: Knowledge growth in teaching. Educ. Res. 1986, 15, 4–14. [Google Scholar] [CrossRef]
- Voss, T.; Kunter, M.; Baumert, J. Assessing teacher candidates’ general pedagogical/psychological knowledge: Test construction and validation. J. Educ. Psychol. 2011, 103, 952–969. [Google Scholar] [CrossRef]
- Fischer, H.E.; Borowski, A.; Tepner, O. Professional Knowledge of Science Teachers. In Second International Handbook of Science Education; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2011; pp. 435–448. [Google Scholar]
- Kunina-Habenicht, O.; Maurer, C.; Wolf, K.; Holzberger, D.; Schmidt, M.; Dicke, T.; Teuber, Z.; Koc-Januchta, M.; Lohse-Bossenz, H.; Leutner, D.; et al. Der BilWiss-2.0-Test: Ein revidierter Test zur Erfassung des bildungswissenschaftlichen Wissens von (angehenden) Lehrkräften (The BilWiss-2.0 Test: A Revised Instrument for the Assessment of Teachers‘ Educational Knowledge). Diagnstica 2020, 66, 80–92. [Google Scholar] [CrossRef]
- Gess-Newsome, J. A model of professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. In Re-Examining Pedagogical Content Knowledge in Science Education; Berry, A., Friedrichsen, P., Loughran, J., Eds.; Routledge: New York, NY, USA, 2015; pp. 28–42. [Google Scholar]
- Förtsch, C.; Werner, S.; von Kotzebue, L.; Neuhaus, B.J. Effects of biology teachers’ professional knowledge and cognitive activation on students’ achievement. Int. J. Sci. Educ. 2016, 38, 2642–2666. [Google Scholar] [CrossRef]
- Schmelzing, S.; Van Driel, J.; Jüttner, M.; Brandenbusch, S.; Sandmann, A.; Neuhaus, B.J. Development, evaluation, and validation of a paper-and-pencil test for measuring two components of biology teachers’ pedagogical content knowledge concerning the ‘cardiovascular system’. Int. J. Sci. Math. Educ. 2013, 11, 1369–1390. [Google Scholar] [CrossRef]
- Förtsch, S.; Förtsch, C.; von Kotzebue, L.; Neuhaus, B.J. Effects of Teachers’ Professional Knowledge and Their Use of Three-Dimensional Physical Models in Biology Lessons on Students’ Achievement. Educ. Sci. 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Gess-Newsome, J.; Taylor, J.A.; Carlson, J.; Gardner, A.L.; Wilson, C.D.; Stuhlsatz, M.A.M. Teacher pedagogical content knowledge, practice, and student achievement. Int. J. Sci. Educ. 2017, 41, 944–963. [Google Scholar] [CrossRef]
- Alonzo, A.C.; Berry, A.; Nilsson, P. Unpacking the Complexity of Science Teachers’ PCK in Action: Enacted and Personal PCK. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Hume, A., Cooper, R., Borowski, A., Eds.; Springer: Singapore, 2019; pp. 271–286. [Google Scholar]
- Magnusson, S.; Krajcik, J.; Borko, H. Nature, Sources, and Development of Pedagogical Content Knowledge for Science Teaching. In Science & Technology Education Library; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2006; pp. 95–132. [Google Scholar]
- Carlson, J.; Daehler, K.R.; Alonzo, A.C.; Barendsen, E.; Berry, A.; Borowski, A.; Carpendale, J.; Chan, K.K.H.; Cooper, R.; Friedrichsen, P.; et al. The Refined Consensus Model of Pedagogical Content Knowledge in Science Education. In Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science; Springer International Publishing: Singapore, 2019; pp. 77–94. [Google Scholar]
- Jüttner, M.; Boone, W.J.; Park, S.; Neuhaus, B.J. Development and use of a test instrument to measure biology teachers’ content knowledge (CK) and pedagogical content knowledge (PCK). Educ. Asse. Eval. Acc. 2013, 25, 45–67. [Google Scholar] [CrossRef]
- Shavelson, R.J. On the measurement of competency. Empir. Res. Vocat. Educ. Train. 2010, 2, 41–63. [Google Scholar] [CrossRef]
- Kaiser, G.; Busse, A.; Hoth, J.; König, J.; Blömeke, S. About the Complexities of Video-Based Assessments: Theoretical and Methodological Approaches to Overcoming Shortcomings of Research on Teachers’ Competence. Int. J. Sci. Math. Educ. 2015, 13, 369–387. [Google Scholar] [CrossRef]
- Brown, N.J.S.; Furtak, E.M.; Timms, M.; Nagashima, S.O.; Wilson, M. The Evidence-Based Reasoning Framework: Assessing Scientific Reasoning. Educ. Assess. 2010, 15, 123–141. [Google Scholar] [CrossRef]
- Dorfner, T.; Förtsch, C.; Germ, M.; Neuhaus, B.J. Biology instruction using a generic framework of scientific reasoning and argumentation. Teach. Teach. Educ. 2018, 75, 232–243. [Google Scholar] [CrossRef]
- European Commission. Science Education for Responsible Citizenship: Report to the European Commission of the Expert Group on Science Education; Publications Office of the European Union: Luxembourg, 2015; ISBN 9789279436369. [Google Scholar]
- Wildgans-Lang, A.; Scheuerer, S.; Obersteiner, A.; Fischer, F.; Reiss, K. Analyzing prospective mathematics teachers’ diagnostic processes in a simulated environment. ZDM Math. Educ. 2020, 52, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Loibl, K.; Leuders, T.; Dörfler, T. A Framework for Explaining Teachers’ Diagnostic Judgements by Cognitive Modeling (DiaCoM). Teach. Teach. Educ. 2020, 91, 103059. [Google Scholar] [CrossRef]
- Ostermann, A.; Leuders, T.; Nückles, M. Improving the judgment of task difficulties: Prospective teachers’ diagnostic competence in the area of functions and graphs. J. Math. Teach. Educ. 2017, 21, 579–605. [Google Scholar] [CrossRef]
- Ohle, A.; McElvany, N.; Horz, H.; Ullrich, M. Text-picture integration—Teachers’ attitudes, motivation and self-related cognitions in diagnostics. J. Educ. Res. Online 2015, 7, 11–33. [Google Scholar]
- Kim, S.; Rehder, B. How prior knowledge affects selective attention during category learning: An eyetracking study. Mem. Cogn. 2010, 39, 649–665. [Google Scholar] [CrossRef]
- Bauer, E.; Fischer, F.; Kiesewetter, J.; Shaffer, D.W.; Fischer, M.R.; Zottmann, J.M.; Sailer, M. Diagnostic Activities and Diagnostic Practices in Medical Education and Teacher Education: An Interdisciplinary Comparison. Front. Psychol. 2020, 11, 562665. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Seidel, T.; Neuhaus, B.J. Comparing two constructs for describing and analyzing teachers’ diagnostic processes. Stud. Educ. Eval. 2021, 28. [Google Scholar] [CrossRef]
- Sherin, M.G.; Van Es, E.A. Effects of Video Club Participation on Teachers’ Professional Vision. J. Teach. Educ. 2008, 60, 20–37. [Google Scholar] [CrossRef]
- Seidel, T.; Stürmer, K. Modeling and Measuring the Structure of Professional Vision in Preservice Teachers. Am. Educ. Res. J. 2014, 51, 739–771. [Google Scholar] [CrossRef] [Green Version]
- Hetmanek, A.; Engelmann, K.; Opitz, A.; Fischer, F. Beyond Intelligence and Domain Knowledge: Scientific Reasoning and Argumentation as a Set of Cross-Domain Skills. Scientific Reasoning and Argumentation: The roles of Domain-Specific and Domain-General Knowledge; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Krell, M.; Reinisch, B.; Krüger, D. Analyzing Students’ Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics. Res. Sci. Educ. 2015, 45, 367–393. [Google Scholar] [CrossRef]
- Klemm, J.; Flores, P.; Sodian, B.; Neuhaus, B.J. Scientific Reasoning in Biology – the Impact of Domain-General and Domain-Specific Concepts on Children’s Observation Competency. Front. Psychol. 2020, 11, 53. [Google Scholar] [CrossRef]
- Tröbst, S.; Kleickmann, T.; Depaepe, F.; Heinze, A.; Kunter, M. Effects of instruction on pedagogical content knowledge about fractions in sixth-grade mathematics on content knowledge and pedagogical knowledge. Unterrichtswissenschaft 2019, 47, 79–97. [Google Scholar] [CrossRef]
- Meier, M.; Grospietsch, F.; Mayer, J. Vernetzung von Wissensfacetten professioneller Handlungskompetenz in hochshuldidaktischen Lehr-Lernsettings (Linking of knowledge facets of professional acting in teaching-learning settings of higher education). In Kohärenz in der Universitären Lehrerbildung; Glowinski, I., Borowski, A., Gillen, J., Schanze, S., Von Meien, J., Eds.; Universitätsverlag Potsdam: Potsdam, Germany, 2018; pp. 143–178. [Google Scholar]
- Gruber, H.; Mandl, H.; Renkl, A. Was lernen wir in der Schule und Hochschule: Träges Wissen? (What do we learn in school and college: Inert knowledge?). In Die Kluft zwischen Wissen und Handeln. Empirische und Theoretische Lösungsansätze (The Gap Between Knowledge and Action. Empirical and Theoretical Approaches); Mandl, H., Gerstenmaier, J., Eds.; Hogrefe: Göttingen, Germany, 2000; pp. 139–156. [Google Scholar]
- Barth, V.L.; Piwowar, V.; Kumschick, I.R.; Ophardt, D.; Thiel, F. The impact of direct instruction in a problem-based learning setting. Effects of a video-based training program to foster preservice teachers’ professional vision of critical incidents in the classroom. Int. J. Educ. Res. 2019, 95, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kleickmann, T.; Tröbst, S.; Heinze, A.; Bernholt, A.; Rink, R.; Kunter, M. Teacher Knowledge Experiment: Conditions of the Development of Pedagogical Content Knowledge. In Competence Assessment in Education: Research, Models and Instruments; Leutner, D., Fleischer, J., Grünkorn, J., Klieme, E., Eds.; Springer: Cham, Switzerland, 2017; pp. 111–129. ISBN 978-3-319-50028-7. [Google Scholar]
- Smit, R.; Weitzel, H.; Blank, R.; Rietz, F.; Tardent, J.; Robin, N. Interplay of secondary pre-service teacher content knowledge (CK), pedagogical content knowledge (PCK) and attitudes regarding scientific inquiry teaching within teacher training. Res. Sci. Technol. Educ. 2017, 35, 477–499. [Google Scholar] [CrossRef]
- Van Es, E.A.; Sherin, M.G. Mathematics teachers’ “learning to notice” in the context of a video club. Teach. Teach. Educ. 2008, 24, 244–276. [Google Scholar] [CrossRef]
- Santagata, R.; Guarino, J. Using video to teach future teachers to learn from teaching. ZDM Math. Educ. 2011, 43, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Furtak, E.M.; Bakeman, R.; Buell, J. Developing knowledge-in-action with a learning progression: Sequential analysis of teachers’ questions and responses to student ideas. Teach. Teach. Educ. 2018, 76, 267–282. [Google Scholar] [CrossRef]
- Kramer, M.; Förtsch, C.; Stürmer, J.; Förtsch, S.; Seidel, T.; Neuhaus, B.J. Measuring biology teachers’ professional vision: Development and validation of a video-based assessment tool. Cogent Education 2020, 7. [Google Scholar] [CrossRef]
- Cortina, K.S.; Thames, M.H. Teacher Education in Germany. In Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers: Results from the COACTIV Project; Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., Neubrand, M., Eds.; Springer: New York, NY, USA, 2013; pp. 49–62. ISBN 978-1-4614-5148-8. [Google Scholar]
- Campbell, D. How to write good multiple-choice questions. J. Paediatr. Child Health 2011, 47, 322–325. [Google Scholar] [CrossRef]
- Jüttner, M.; Neuhaus, B.J. Development of Items for a Pedagogical Content Knowledge Test Based on Empirical Analysis of Pupils’ Errors. Int. J. Sci. Educ. 2012, 34, 1125–1143. [Google Scholar] [CrossRef] [Green Version]
- Wirtz, M.A.; Caspar, F. Beurteilerübereinstimmung und Beurteilerreliabilität. Methoden zur Bestimmung und Verbesserung der Zuverlässigkeit von Einschätzungen mittels Kategoriensystemen und Ratingskalen (Interrateragreement and Interraterreliability. Methods for Determining and Improving the Reliability of Assessments via Category Systems and Rating Scales); Hogrefe: Göttingen, Germany, 2002; ISBN 3801716465. [Google Scholar]
- Kunter, M.; Leutner, D.; Terhart, E.; Baumert, J. Bildungswissenschaftliches Wissen und der Erwerb professioneller Kompetenz in der Lehramtsausbildung (BilWiss) (Broad Pedagogical Knowledge and the Development of Professional Competence in Teacher Education (BilWiss)) (Version 5) (Data Set). Available online: https://www.iqb.hu-berlin.de/fdz/studies/BilWiss (accessed on 10 February 2021).
- Boone, W.J.; Staver, J.R.; Yale, M.S. Rasch Analysis in the Human Sciences; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Bond, T.G.; Fox, C.M. Applying the Rasch Model: Fundamental Measurement in the Human Sciences. J. Educ. Meas. 2003, 40, 185–187. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.D.; Linacre, J.M. Reasonable mean-square fit values. Rasch Meas. Trans. 1996, 2, 370. [Google Scholar]
- Linacre, J.M. A User’s Guide to Winsteps® Ministeps Rasch-Model Computer Programs: Program Manual 3.81.0. Available online: http://www.winsteps.com/manuals.htm (accessed on 10 February 2021).
- Questback GmbH. EFS Survey; Questback GmbH: Köln, Germany, 2018. [Google Scholar]
- Dorfner, T.; Förtsch, C.; Neuhaus, B.J. Die methodische und inhaltliche Ausrichtung quantitativer Videostudien zur Unterrichtsqualität im mathematisch-naturwissenschaftlichen Unterricht: Ein Review [The methodical and content-related orientation of quantitative video studies on instructional quality in mathematics and science education. A review]. ZfDN 2017, 23, 261–285. [Google Scholar] [CrossRef]
- Kersting, N.B.; Sherin, B.L.; Stigler, J.W. Automated Scoring of Teachers’ Open-Ended Responses to Video Prompts. Educ. Psychol. Meas. 2014, 74, 950–974. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Kyriakides, L.; Christoforou, C.; Charalambous, C.Y. What matters for student learning outcomes: A meta-analysis of studies exploring factors of effective teaching. Teach. Teach. Educ. 2013, 36, 143–152. [Google Scholar] [CrossRef]
- König, J.; Blömeke, S.; Klein, P.; Suhl, U.; Busse, A.; Kaiser, G. Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teach. Teach. Educ. 2014, 38, 76–88. [Google Scholar] [CrossRef]
- Belland, B.R.; Kim, C.; Hannafin, M.J. A Framework for Designing Scaffolds That Improve Motivation and Cognition. Educ. Psychol. 2013, 48, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Osborne, J.F.; Borko, H.; Fishman, E.; Zaccarelli, F.G.; Berson, E.; Busch, K.C.; Reigh, E.; Tseng, A. Impacts of a Practice-Based Professional Development Program on Elementary Teachers’ Facilitation of and Student Engagement with Scientific Argumentation. Am. Educ. Res. J. 2019, 56, 1067–1112. [Google Scholar] [CrossRef]
- Stuermer, K.; Könings, K.D.; Seidel, T. Declarative knowledge and professional vision in teacher education: Effect of courses in teaching and learning. Br. J. Educ. Psychol. 2012, 83, 467–483. [Google Scholar] [CrossRef]
- Van Es, E.A.; Sherin, M.G. Learning to notice: Scaffolding new teachers‘ interpretations of classroom interactions. J. Technol. Teach. 2002, 10, 571–596. [Google Scholar]
- Santagata, R.; Yeh, C. The role of perception, interpretation, and decision making in the development of beginning teachers’ competence. ZDM Math. Educ 2016, 48, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Gaudin, C.; Chaliès, S. Video viewing in teacher education and professional development: A literature review. Educ. Res. Rev. 2015, 16, 41–67. [Google Scholar] [CrossRef]
- Blomberg, G.; Renkl, A.; Gamoran Sherin, M.; Borko, H.; Seidel, T. Five research-based heuristics for using video in pre-service teacher education. J. Educ. Res. Online 2013, 5, 90–114. [Google Scholar]
- Kaiser, G.; Blömeke, S.; Busse, A.; Döhrmann, M.; König, J. Professional knowledge of (prospective) Mathematics teachers—Its structure and development. In Proceedings of the Joint Meeting of PME 38 and PME-NA 36; Liljedahl, P., Nicol, C., Oesterle, S., Allan, D., Eds.; PME: Vancouver, BC, Canada, 2014; pp. 35–50. [Google Scholar]
- Mishra, P.; Koehler, M.J. Technological pedagogical content knowledge: A framework for teacher knowledge. Teach. Coll. Rec. 2006, 108, 1017–1054. [Google Scholar] [CrossRef]
- Huang, Y.; Richter, E.; Kleickmann, T.; Wiepke, A.; Richter, D. Classroom complexity affects student teachers’ behavior in a VR classroom. Comput. Educ. 2021, 163. [Google Scholar] [CrossRef]
- Blömeke, S.; König, J.; Suhl, U.; Hoth, J.; Döhrmann, M. Wie situationsbezogen ist die Kompetenz von Lehrkräften? Zur Generalisierbarkeit der Ergebnisse von videobasierten Performanztests (To What Extent Is Teacher Competence Situation-Related? On the generalizability of the results of video-based performance tests). Z. Pädagog. 2015, 61, 310–327. [Google Scholar]
- Harr, N.; Eichler, A.; Renkl, A. Integrated learning: Ways of fostering the applicability of teachers’ pedagogical and psychological knowledge. Front. Psychol. 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sweller, J.; Ayres, P.; Kalyuga, S. Cognitive Load Theory; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Werner, S. Zusammenhänge zwischen dem Fachspezifischen Professionswissen einer Lehrkraft, dessen Unterrichtsgestaltung und Schülervariablen am Beispiel eines Elaborierten Modelleinsatzes (Relationships between a Teacher‘s Subject-Specific Professional Knowledge, their Iinstructional Design, and Student Variables Using the Example of an Elaborate Model Use). Ph.D. Thesis, Ludwig-Maximilians Universität, München, Germany, 2016. [Google Scholar]
- Seidel, T.; Schindler, A.-K. Klassenführung. In Handwörterbuch Pädagogische Psychologie (Handbook of Educational Psychology), 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 328–336. ISBN 978-3-621-28297-0. [Google Scholar]
- Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. Standards für die Lehrerbildung–Bildungswissenschaften. Available online: https://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2004/2004_12_16-Standards-Lehrerbildung.pdf (accessed on 16 October 2020).
- Klieme, E.; Pauli, C.; Reusser, K. The Pythagoras Study: Investigating Effects of Teaching and Learning in Swiss and German Mathematics Classrooms. In The Power of Video Studies in Investigating Teaching and Learning in the Classroom; Janík, T., Seidel, T., Eds.; Waxmann: Münster, Germany, 2009; pp. 137–160. [Google Scholar]
- Kattmann, U. Modelle (Models). In Fachdidaktik Biologie, 8th ed.; Gropengießer, H., Kattmann, U., Eds.; Aulis: Köln, Germany, 2008; pp. 330–339. [Google Scholar]
- Jatzwauk, P.; Rumann, S.; Sandmann, A. Der Einfluss des Aufgabeneinsatzes im Biologieunterricht auf die Lernleistung der Schüler—Ergebnisse einer Videostudie (The effect of usage of tasks in biology education on learning performance—A video study). ZfDN 2008, 14, 263–282. [Google Scholar]
- Haugwitz, M. Kontextorientiertes Lernen und Concept Mapping im Fach Biologie. Eine experimentelle Untersuchung zum Einfluss auf Interesse und Leistung unter Berücksichtigung von Moderationseffekten individueller Voraussetzungen beim kooperativen Lernen (Context-Oriented Learning and Concept Mapping in Biology. An Experimental Investigation of the Influence on Interest and Achievement Considering Moderation Effects of Individual Prerequisites in Cooperative Learning). Ph.D. Thesis, Universität Duisburg-Essen, Duisburg, Germany, 2009. [Google Scholar]
- Förtsch, C.; Dorfner, T.; Baumgartner, J.; Werner, S.; von Kotzebue, L.; Neuhaus, B.J. Fostering Students’ Conceptual Knowledge in Biology in the Context of German National Education Standards. Res. Sci. Educ. 2020, 50, 739–771. [Google Scholar] [CrossRef]
- Dorfner, T.; Förtsch, C.; Neuhaus, B.J. Use of Technical Terms in German Biology Lessons and its Effects on Students’ Conceptual Learning. Res. Sci. Technol. Educ. 2019, 38, 227–251. [Google Scholar] [CrossRef]
- Dorfner, T.; Förtsch, C.; Neuhaus, B.J. Effects of three basic dimensions of instructional quality on students’ situational interest in sixth-grade biology instruction. Learn. Instr. 2018, 56, 42–53. [Google Scholar] [CrossRef]
- Nawani, J.; Kotzebue, L.; Rixius, J.; Graml, M.; Neuhaus, B.J. Teachers’ Use of Focus Questions in German Biology Classrooms: A Video-based Naturalistic Study. Int. J. Sci. Math. Educ. 2017, 95, 639. [Google Scholar] [CrossRef]
- Förtsch, C.; Werner, S.; Dorfner, T.; von Kotzebue, L.; Neuhaus, B.J. Effects of Cognitive Activation in Biology Lessons on Students’ Situational Interest and Achievement. Res. Sci. Educ. 2017, 47, 559–578. [Google Scholar] [CrossRef]
- Wadouh, J.; Liu, N.; Sandmann, A.; Neuhaus, B.J. The Effect of Knowledge linking Levels in Biology Lessons upon Students’ Knowledge Structure. Int. J. Sci. Math. Educ. 2014, 12, 25–47. [Google Scholar] [CrossRef]
- Neuhaus, B.J.; Nachreiner, K.; Oberbei, I.; Spangler, M. Basiskonzepte zur Planung von Biologieunterricht. Ein Gedankenspiel [Core ideas for biology lesson planning. A mental game]. MNU (Math.-Nat. Unterr.) 2014, 67, 160–163. [Google Scholar]
- Thews, G.; Mutschler, E.; Vaupel, P. Anatomie Physiologie Pathophysiologie des Menschen. Ein Lehrbuch für Pharmazeuten und Biologen (Anatomy Physiology Pathophysiology of the Human Being. A Textbook for Pharmacists and Biologists); Wissenschaftliche Verlagsgesellschaft mbH.: Stuttgart, Germany, 1980. [Google Scholar]
- Purves, W.K.; Sadava, D.; Orians, G.H.; Heller, H.C. Biologie (Biology), 7th ed.; Elsevier: Munich, Germany, 2004. [Google Scholar]
- Müller, W.; Frings, S. Tier- und Humanphysiologie. Eine Einführung (Animal and Human Physiology. An Introduction), 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 9783540327332. [Google Scholar]
- Moyes, C.D.; Schulte, P.M. Tierphysiologie (Animal Physiology), 1st ed.; Pearson Studium: München, Germany, 2008; ISBN 9783827372703. [Google Scholar]
- Mörike, K.D.; Betz, E.; Mergenthaler, W. Biologie des Menschen (Human Biology), 15th ed.; Nikol: Hamburg, Germany, 2007; ISBN 9783937872551. [Google Scholar]
- Hildebrand, M.; Goslow, G.E. Vergleichende und Funktionelle Anatomie der Wirbeltiere (Comparative and Functional Anatomy of Vertebrates); Springer: Berlin/Heidelberg, Germany, 2004; ISBN 9783642189517. [Google Scholar]
- Hickman, C.P.; Roberts, L.S.; Larson, A.; L’Anson, H.; Eisenhour, D.J. Zoologie (Zoology), 13th ed.; Pearson Education: München, Germany, 2008; ISBN 3827372658. [Google Scholar]
- Koran, M.L.; Koran, J.J. Aptitude-treatment interaction research in science education. J. Res. Sci. Teach. 1984, 21, 793–808. [Google Scholar] [CrossRef]
- Biologieunterricht Heute. Eine Moderne Fachdidaktik (Biology Classes Today. A Modern View on Biology Education), 12th ed.; Killermann, W., Hiering, P., Starosta, B., Eds.; Auer: Donauwörth, Germany, 2008. [Google Scholar]
- Helmke, A.; Brühwiler, C. Unterrichtsqualität (Instructional Quality). In Handwörterbuch Pädagogische Psychologie (Handbook of Educational Psychology), 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 860–869. ISBN 978-3-621-28297-0. [Google Scholar]
- Helmke, A. Unterrichtsqualität und Lehrerprofessionalität. Diagnose, Evaluation und Verbesserung des Unterrichts (Quality of Teaching and Teacher Professionalism. Diagnosis, Evaluation and Improvement of teaching), 5th ed.; Klett-Kallmeyer: Seelze, Germany, 2014. [Google Scholar]
- Helmke, A. Aktive Lernzeit optimieren—Was wissen wir über effiziente Klassenführung? (Optimizing Time on Task—What do we know about effective classroom management?). Pädagogik 2007, 59, 44–49. [Google Scholar]
- Eder, F. Schul- und Klassenklima. In Handwörterbuch Pädagogische Psychologie (Handbook of Educational Psychology), 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 696–707. ISBN 978-3-621-28297-0. [Google Scholar]
Treatment | |||||
---|---|---|---|---|---|
1 PCK | 2 CK | 3 PK | 4 Combination of PCK, CK, PK | 5 No Information (Control Group) | |
Number of participants (thereof female) | 15 (13) | 15 (11) | 16 (15) | 17 (11) | 18 (11) |
Age in Years M (SD) | 24.4 (5.0) | 23.6 (4.4) | 24.6 (5.6) | 22.9 (2.0) | 22.7 (1.3) |
Study semester M (SD) | 4.0 (1.0) | 4.2 (1.3) | 3.6 (1.2) | 3.7 (1.7) | 4.0 (1.0) |
Percentage of pre-service teachers attending the academic track (%) | 53.3 | 53.3 | 43.8 | 41.2 | 50.0 |
Pre PCK M (SD) | −1.56 † (0.63) | −1.31 † (0.49) | −1.12 † (0.64) | −1.34 † (.76) | −1.29 † (0.76) |
Pre CK M (SD) | −0.78 † (0.80) | −0.70 † (0.71) | −0.61 † (0.59) | −0.73 † (0.65) | −0.60 † (0.41) |
Pre PK M (SD) | 0.30 † (0.42) | 0.39 † (0.56) | 0.38 † (0.60) | 0.45 † (0.51) | 0.48 † (0.41) |
Pre diagnostic activities M (SD) | −2.05 † (0.47) | −2.22 † (0.94) | −1.74 † (0.68) | −1.97 † (0.65) | −2.19 † (0.78) |
Knowledge Facet | Number of Items | All Item Outfit- MNSQ | Person Reliability | Item Reliability |
---|---|---|---|---|
PCK preanchored | 13 | <1.36 | 0.65 | 0.91 |
PCK post | 13 | <1.10 | 0.62 | 0.93 |
CK preanchored | 28 | <1.37 | 0.70 | 0.95 |
CK post | 28 | <1.36 | 0.76 | 0.96 |
PK preanchored | 15 | <1.28 | 0.54 | 0.95 |
PK post | 15 | <1.18 | 0.60 | 0.95 |
Classroom Situations Representing Subject-Specific Dimensions of Instructional Quality | Generating Evidence (13 Coding Variables) | Evaluating Evidence (6 Coding Variables) | Drawing Conclusion (12 Coding Variables) |
---|---|---|---|
(1) Level of students’ cognitive activities and creation of situational interest | Level of students’ cognitive activities | Proper explanation | Level of students’ cognitive activities |
Situational interest and motivation | Situational interest and motivation | ||
(2) Dealing with (specific) student ideas and errors | Formative handling of student errors | Proper explanation | Formative handling of student errors |
Identifying student error 1 | |||
Identifying student error 2 | |||
(3) Use of technical language | Quantity of technical terms | Proper explanation | Quantity of technical terms |
Quality of technical terms | Quality of technical terms | ||
Explaining terms and linking with function | Explaining terms and linking with function | ||
Constructive elaboration of terms | |||
(4) Use of experiments | Characteristics of scientific inquiry | Proper explanation | Characteristics of scientific inquiry |
(5) Use of models | Elaborate model use | Proper explanation | Elaborate model use |
Critical reflection | Critical reflection | ||
(6) Conceptual instruction | Linking and back referencing | Proper explanation | Linking and back referencing |
Conceptual instruction | Conceptual instruction |
N | M | SD | PCK Pre | PCK Post | CK Pre | CK Post | PK Pre | PK Post | Diagnostic Activities Pre | Diagnostic Activities Post | |
---|---|---|---|---|---|---|---|---|---|---|---|
PCK pre a | 81 | −1.32 | 0.67 | - | |||||||
PCK post a | 81 | −0.61 | 0.60 | 0.57 ** | - | ||||||
CK pre a | 81 | −0.68 | 0.65 | 0.16 | 0.12 | - | |||||
CK post a | 81 | −0.27 | 0.77 | 0.30 ** | 0.38 ** | 0.53 ** | - | ||||
PK pre a | 81 | 0.40 | 0.49 | 0.22 * | 0.30 ** | 0.17 | 0.13 | - | |||
PK post a | 81 | 0.51 | 0.48 | 0.06 | 0.26 * | 0.10 | 0.21 | 0.39 ** | - | ||
Diagnostic activities pre a,† | 81 | −1.85 † | 0.75 † | 0.33 ** | 0.37 ** | 0.16 | 0.10 | 0.21 | 0.05 | - | |
Diagnostic activities post a,† | 81 | −2.00 † | 0.83 † | 0.15 | 0.27 * | 0.17 | 0.17 | 0.19 | 0.19 | 0.38 ** | - |
Generating Evidence (N = 1053) | Evaluating Evidence (N = 486) | Drawing Conclusions (N = 972) | ||||
---|---|---|---|---|---|---|
Points | Pre | Post | Pre | Post | Pre | Post |
0 | 796 | 855 | 345 | 356 | 658 | 800 |
1 | 212 | 139 | 94 | 54 | 223 | 143 |
2 | 45 | 59 | 47 | 72 | 91 | 29 |
3 | not applicable | not applicable | 0 | 4 | not applicable | not applicable |
Total score | 302 | 257 | 188 | 210 | 405 | 201 |
df | F | p | Partial η2 | |
---|---|---|---|---|
PCK | ||||
| 1.76 4.76 4.76 | 118.28 0.53 1.11 | <0.001 0.715 0.359 | 0.61 0.03 0.06 |
CK | ||||
| 1.76 4.76 4.76 | 31.60 0.15 2.13 | <0.001 0.963 0.085 | 0.29 0.01 0.10 |
PK | ||||
| 1.76 4.76 4.76 | 3.60 0.17 0.72 | 0.062 0.952 0.583 | 0.05 0.01 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramer, M.; Förtsch, C.; Neuhaus, B.J. Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts? Educ. Sci. 2021, 11, 244. https://doi.org/10.3390/educsci11050244
Kramer M, Förtsch C, Neuhaus BJ. Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts? Education Sciences. 2021; 11(5):244. https://doi.org/10.3390/educsci11050244
Chicago/Turabian StyleKramer, Maria, Christian Förtsch, and Birgit J. Neuhaus. 2021. "Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts?" Education Sciences 11, no. 5: 244. https://doi.org/10.3390/educsci11050244
APA StyleKramer, M., Förtsch, C., & Neuhaus, B. J. (2021). Can Pre-Service Biology Teachers’ Professional Knowledge and Diagnostic Activities Be Fostered by Self-Directed Knowledge Acquisition via Texts? Education Sciences, 11(5), 244. https://doi.org/10.3390/educsci11050244