Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0
Abstract
1. Introduction
2. Background and Challenges
3. Metal Additive Manufacturing
4. Sensors for Monitoring Temperature in Additive Manufacturing
4.1. Indirect Temperature Measurements
4.2. Direct Temperature Measurements
4.3. In-Industry Practices for Temperature Monitoring
5. Metal Additive Manufacturing and Industry 4.0
6. Challenges and Outlook
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, K. The Future of Metals. Science 2010, 328, 319–320. [Google Scholar] [CrossRef] [PubMed]
- Raabe, D.; Tasan, C.C.; Olivetti, E.A. Strategies for Improving the Sustainability of Structural Metals. Nature 2019, 575, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Körner, C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting—A Review. Int. Mater. Rev 2016, 61, 361–377. [Google Scholar] [CrossRef]
- Silva, F.J.G.; Pereira, A.B.; Sousa, V.F.C.; Ferreira, L.P. 21—Additive Manufacturing’s Future Prospects and Challenges. In Sanjay Mavinkere Rangappa, Vinod Ayyappan, Suchart Siengchin, in Additive Manufacturing Materials and Technologies, Additive Manufacturing Materials and Technology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 523–541. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, R.K.; Sachdeva, A.; Rafik, M.; Qureshi, N.M. Comparing environmental sustainability of additive manufacturing and investment casting: Life cycle assessment of Aluminium LM04 (Al-Si5-Cu3). Mater. Sci. Eng. A 2025, 923, 147765. [Google Scholar] [CrossRef]
- Hamza, A.; Bousnina, K.; Dridi, I.; Ben Yahia, N. Revolutionizing Automotive Design: The Impact of Additive Manufacturing. Vehicles 2025, 7, 24. [Google Scholar] [CrossRef]
- Zawadzki, P.; Żywicki, K. Smart Product Design and Production Control for Effective Mass Customization in the Industry 4.0 Concept. Prod. Eng. Rev. 2016, 7, 105–112. [Google Scholar] [CrossRef]
- Aikin, A.R. Introduction to metals additive manufacturing advanced digital design and fabrication: Additive manufacturing has great potential to make metal parts that are lighter, smaller, more refined and less expensive than traditional manufacturing processes. Tribol. Lubr. Technol. 2025, 81, 28–33. [Google Scholar]
- Ng, W.L.; Goh, G.L.; Goh, G.D.; Ten, J.S.J.; Yeong, W.Y. Progress and Opportunities for Machine Learning in Materials and Processes of Additive Manufacturing. Adv. Mater. 2024, 36, 2310006. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.P.; N, Y.; Vipin. A Review on Wire Arc Additive Manufacturing Based on Cold Metal Transfer. Mater. Manuf. Process. 2024, 39, 1315–1341. [Google Scholar] [CrossRef]
- Agbedor, S.O.; Wu, H.; Ren, Y.; Liang, L.; Yang, D.; Liu, B.; Liu, Y.; Baker, I. A Two-Decade Odyssey in Fusion-Based Additive Manufacturing of Titanium Alloys and Composites. Appl. Mater. Today 2024, 39, 102242. [Google Scholar] [CrossRef]
- Available online: https://wohlersassociates.com/product/wr2024/ (accessed on 11 June 2025).
- In StartUs Insights, Additive Manufacturing Report 2024. 2024. Available online: https://www.startus-insights.com/innovators-guide/additive-manufacturing-report/ (accessed on 16 June 2025).
- Liu, G.; Zhang, X.; Chen, X.; He, Y.; Cheng, L.; Huo, M.; Yin, J.; Hao, F.; Chen, S.; Wang, P.; et al. Additive Manufacturing of Structural Materials. Mater. Sci. Eng. R Rep. 2021, 145, 100596. [Google Scholar] [CrossRef]
- Tshephe, T.S.; Akinwamide, S.O.; Olevsky, E.; Olubambi, P.A. Additive Manufacturing of Titanium-Based Alloys- A Review of Methods, Properties, Challenges, and Prospects. Heliyon 2022, 8, e09041. [Google Scholar] [CrossRef] [PubMed]
- Badoniya, P.; Srivastava, M.; Jain, P.K.; Rathee, S. A State-of-the-Art Review on Metal Additive Manufacturing: Milestones, Trends, Challenges and Perspectives. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 339. [Google Scholar] [CrossRef]
- Behbahani, K.M.; Aliyu, A.; Bishop, D.P.; Nasiri, A. Additive Manufacturing of Copper-Based Alloys for High-Temperature Aerospace Applications: A Review. Mater. Today Commun. 2024, 38, 108395. [Google Scholar] [CrossRef]
- AMPOWER. Additive Manufacturing Market by Material: Metal Additive Manufacturing Feedstock of Powder and Wire. 2021. Available online: https://additive-manufacturing-report.com/report-2021/metal-am-market-by-material-2021/ (accessed on 13 June 2025).
- Fidan, I.; Alshaikh Ali, M.; Naikwadi, V.; Gudavasov, S.; Mahmudov, M.; Mohammadizadeh, M.; Zhang, Z.; Sharma, A. Nano-Level Additive Manufacturing: Condensed Review of Processes, Materials, and Industrial Applications. Technologies 2024, 12, 117. [Google Scholar] [CrossRef]
- Manfredi, D.; Calignano, F.; Krishnan, M.; Canali, R.; Ambrosio, E.P.; Atzeni, E. From Powders to Dense Metal Parts: Characterization of a Commercial AlSiMg Alloy Processed through Direct Metal Laser Sintering. Materials 2013, 6, 856. [Google Scholar] [CrossRef] [PubMed]
- Pusateri, V.; Hauschild, M.Z.; Kara, S.; Goulas, C.; Olsen, S.I. Quantitative Sustainability Assessment of Metal Additive Manufacturing: A Systematic Review. CIRP J. Manuf. Sci. Technol. 2024, 49, 95–110. [Google Scholar] [CrossRef]
- Plessis, A.; Berto, F.; Razavi, N. 2—Introduction to Metal Additive Manufacturing and Unique Aspects Relating to Fatigue. In Additive Manufacturing Materials and Technologies, Fatigue in Additive Manufactured Metals; Berto, F., Plessis, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 5–22. [Google Scholar] [CrossRef]
- Ghany, K.A.; Moustafa, S.F. Comparison between the Products of Four RPM Systems for Metals. Rapid Prototype. J. 2006, 12, 86. [Google Scholar] [CrossRef]
- Withers, P.J.; Bhadeshia, H.K.D.H. Residual Stress. Part 2—Nature and Origins. Mater. Sci. Technol. 2001, 17, 366. [Google Scholar] [CrossRef]
- Kruth, J.P.; Badrossamay, M.; Yasa, E.; Deckers, J.; Thijs, L.; Van Humbeeck, J. Part and Material Properties in Selective Laser Melting of Metals. In Proceedings of the 16th International Symposium on Electromachining ISEM XVI, Shanghai, China, 19–23 April 2010; pp. 3–14. [Google Scholar]
- Liu, Z.H.; Zhang, D.Q.; Chua, C.K.; Leong, K.F. Crystal Structure Analysis of M2 High Speed Steel Parts Produced by Selective Laser Melting. Mater. Charact. 2013, 84, 72. [Google Scholar] [CrossRef]
- Armstrong, M.; Mehrabi, H.; Naveed, N. An Overview of Modern Metal Additive Manufacturing Technology. J. Manuf. Process. 2022, 84, 1001–1029. [Google Scholar] [CrossRef]
- İyibilgin, O.; Gepek, E. Additive Manufacturing Technologies and Its Future in Industrial Applications. Int. J. Integr. Eng. 2021, 13, 245–257. [Google Scholar] [CrossRef]
- Yang, G.; Xie, Y.; Zhao, S.; Qin, L.; Wang, X.; Wu, B. Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-Powder-Melt Pool Interaction: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front 2022, 1, 100037. [Google Scholar] [CrossRef]
- Saber, A.; Amer, A.M.; Shehata, A.I.; El-Gamal, H.A.; Abd Elsalam, A. Recent Developments in Additively Manufactured Crash Boxes: Geometric Design Innovations, Material Behavior, and Manufacturing Techniques. Appl. Sci. 2025, 15, 7080. [Google Scholar] [CrossRef]
- Song, X.; Zhai, W.; Huang, R.; Fu, J.; Fu, M.W.; Li, F. Metal-Based 3D-Printed Micro Parts & Structures. In Encyclopedia of Materials: Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 2022; pp. 448–461. [Google Scholar]
- Weinberg, J. A Precision Blade Mechanism for Powder Recoating in Selective Laser Melting. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Khaing, M.; Fuh, J.; Lu, L. Direct Metal Laser Sintering for Rapid Tooling: Processing and Characterisation of EOS Parts. J. Mater. Process. Technol. 2001, 113, 269–272. [Google Scholar] [CrossRef]
- Tebianian, M.; Aghaie, S.; Razavi Jafari, N.S.; Elmi Hosseini, S.R.; Pereira, A.B.; Fernandes, F.A.O.; Farbakhti, M.; Chen, C.; Huo, Y. A Review of the Metal Additive Manufacturing Processes. Materials 2023, 16, 7514. [Google Scholar] [CrossRef] [PubMed]
- Directed Energy Deposition—Synergy Additive Manufacturing. Available online: https://synergyadditive.com/directed-energy-deposition (accessed on 16 June 2025).
- Martinho, P.G. Chapter 9—Rapid Manufacturing and Tooling. In Design and Manufacturing of Plastics Products; Pouzada, A.S., Ed.; William Andrew Publishing: Norwich, NY, USA, 2021; pp. 381–456. [Google Scholar] [CrossRef]
- Taminger, K.M.B. Electron Beam Additive Manufacturing. Available online: https://www.sciaky.com/additive-manufacturing/electron-beam-additive-manufacturing-technology (accessed on 16 June 2025).
- Selema, A.; Ibrahim, M.N.; Sergeant, P. Metal Additive Manufacturing for Electrical Machines: Technology Review and Latest Advancements. Energies 2022, 15, 1076. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, J.; Li, T.; Tuo, Z.; Zheng, Z.; Wu, H. Microstructure, Mechanical Properties, and Fatigue Resistance of an Al-Mg-Sc-Zr Alloy Fabricated by Wire Arc Additive Manufacturing. Metals 2025, 15, 31. [Google Scholar] [CrossRef]
- Ahn, D.G. Directed Energy Deposition (DED) Process: State of the Art. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 8, 703–742. [Google Scholar] [CrossRef]
- Dass, A.; Moridi, A. State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings 2019, 9, 418. [Google Scholar] [CrossRef]
- Narasimharaju, S.R.; Zeng, W.; See, T.L.; Zhu, Z.; Scott, P.; Jiang, X.; Lou, S. A Comprehensive Review on Laser Powder Bed Fusion of Steels: Processing, Microstructure, Defects and Control Methods, Mechanical Properties, Current Challenges and Future Trends. J. Manuf. Process. 2022, 75, 375–414. [Google Scholar] [CrossRef]
- Hossain, J.; Tabatabaei, B.T.; Kiki, M.; Choi, J.-W. Additive Manufacturing of Sensors: A Comprehensive Review. Int. J. Precis. Eng. Manuf. Technol. 2024, 12, 277–300. [Google Scholar] [CrossRef]
- Chen, D.; Han, Z.; Zhang, J.; Xue, L.; Liu, S. Additive Manufacturing Provides Infinite Possibilities for Self-Sensing Technology. Adv. Sci. 2024, 11, 2400816. [Google Scholar] [CrossRef]
- Bas, J.; Dutta, T.; Garro, I.L.; Velázquez-González, J.S.; Dubey, R.; Mishra, S.K. Embedded Sensors with 3D Printing Technology: Review. Sensors 2024, 24, 1955. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bi, G.; Yao, X.; Su, J.; Tan, C.; Feng, W.; Benakis, M.; Chew, Y.; Moon, S.K. In-Situ Process Monitoring and Adaptive Quality Enhancement in Laser Additive Manufacturing: A Critical Review. J. Manuf. Syst. 2024, 74, 527–574. [Google Scholar] [CrossRef]
- Heath, J.H. An Indirect Method of Measuring Temperature. J. Phys. E Sci. Instrum. 1983, 16, 155. [Google Scholar] [CrossRef]
- Dedyulin, S.; Ahmed, Z.; Machin, G. Emerging Technologies in the Field of Thermometry. Meas. Sci. Technol. 2022, 33, 092001. [Google Scholar] [CrossRef]
- Chen, Y.P.; Karkaria, V.; Tsai, Y.K.; Rolark, F.; Quispe, D.; Gao, R.X.; Cao, J.; Chen, W. Real-time decision-making for Digital Twin in additive manufacturing with Model Predictive Control using time-series deep neural networks. J. Manuf. Syst. 2025, 80, 412. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat Transfer, 6th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fichera, C.; Carra, F.; Küchler, D.; Toivanen, V. Numerical Study of the Thermal Performance of the CERN Linac3 Ion Source Miniature Oven. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 901, 21–31. [Google Scholar] [CrossRef]
- Craeghs, T.; Bechmann, F.; Berumen, S.; Kruth, J.P. Feedback Control of Layerwise Laser Melting Using Optical Sensors. Phys. Procedia 2010, 5, 505. [Google Scholar] [CrossRef]
- Pavlov, M.; Doubenskaia, M.; Smurov, I. Pyrometric Analysis of Thermal Processes in SLM Technology. Phys. Procedia 2010, 5, 523. [Google Scholar] [CrossRef]
- Baskarana, P.; Rajasekar, M. Recent Trends and Future Perspectives of Thermoelectric Materials and Their Applications. RSC Adv. 2024, 14, 21706–21744. [Google Scholar] [CrossRef]
- Goviazin, G.G.; Nieto-Fuentes, J.C.; Rittel, D. Review: High Speed Temperature Measurements Under Dynamic Loading. Exp. Mech. 2024, 64, 295–304. [Google Scholar] [CrossRef]
- Hossain, N.; Rimon, M.I.H.; Mimona, M.A.; Mobarak, M.H.; Ghosh, J.; Islam, M.A.; Al Mahmud, M.Z. Prospects and Challenges of Sensor Materials: A Comprehensive Review, e-Prime—Advances in Electrical Engineering. Electron. Energy 2024, 7, 100496. [Google Scholar] [CrossRef]
- Mitrašinović, A.; Tomić, M. Functional and Environmental Advantage of Cleaning Ti5B1 Master Alloy. Int. J. Precis. Eng. Manuf. Technol. 2022, 9, 783. [Google Scholar] [CrossRef]
- Reverter, F. A Tutorial on Thermal Sensors in the 200th Anniversary of the Seebeck Effect. IEEE Sens. J. 2021, 21, 22122–22132. [Google Scholar] [CrossRef]
- Mitrašinović, A.M.; Momčilović, D.B.; Odanović, Z. Assessment of Grain Size and Grain Refinement Efficiency by Calculation of Released Heat Attributed to Formation of Primary Aluminum Crystals During Solidification of Al7Si4Cu Alloy. Trans. Indian Inst. Met. 2021, 74, 1917. [Google Scholar] [CrossRef]
- Beguš, S.; Bojkovski, J.; Drnovšek, J.; Geršak, G. Magnetic Effects on Thermocouples. Meas. Sci. Technol. 2014, 25, 035006. [Google Scholar] [CrossRef]
- Agarwal, S.; Sahoo, N.; Singh, R.K. Experimental Techniques for Thermal Product Determination of Coaxial Surface Junction Thermocouples during Short Duration Transient Measurements. Int. J. Heat. Mass Transf 2016, 103, 327–335. [Google Scholar] [CrossRef]
- Yan, Y.; Ren, J.; Sun, H.; Williams, R. Nondestructive Quantitative Measurement for Precision Quality Control in Additive Manufacturing Using Hyperspectral Imagery and Machine Learning. IEEE Trans. Ind. Inform. 2024, 20, 9963. [Google Scholar] [CrossRef]
- Lane, B.; Moylan, S.; Whitenton, E.; Ma, L. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST. Rapid Prototyp. J. 2016, 22, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Moylan, S.; Whitenton, E.; Lane, B.; Slotwinski, J. Infrared Thermography for Laser-Based Powder Bed Fusion Additive Manufacturing Processes. AIP Conf. Proc. 2014, 1581, 1191–1196. [Google Scholar]
- Mani, M.; Lane, B.M.; Donmez, M.A.; Feng, S.C.; Moylan, S.P.; Fesperman, R.R., Jr. Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes; US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Gerdes, N.; Hoff, C.; Hermsdorf, J.; Kaierle, S.; Overmeyer, L. Snapshot hyperspectral imaging for quality assurance in Laser Powder Bed Fusion. Procedia CIRP 2020, 94, 25. [Google Scholar] [CrossRef]
- Rodriguez, E.; Mireles, J.; Terrazas, C.A.; Espalin, D.; Perez, M.A.; Wicker, R.B. Approximation of Absolute Surface Temperature Measurements in Powder Bed Fusion Additive Manufacturing Technology Using in Situ Infrared Thermography. Addit. Manuf. 2015, 5, 1–39. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Pan, Z.; Zho, W. Recent Progress of Sensing and Machine Learning Technologies for Process Monitoring and Defects Detection in Wire Arc Additive Manufacturing. J. Manuf. Process. 2024, 125, 489–511. [Google Scholar] [CrossRef]
- Xu, S.; Younes Araghi, M.; Su, Y. Physics-Based Modeling of Metal Additive Manufacturing Processes: A Review. Int. J. Adv. Manuf. Technol. 2024, 134, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Shi, X.; Wu, B.; Corradi, D.R.; Pan, Z.; Li, H. Wire Arc Additive Manufacturing: A Review on Digital Twinning and Visualization Process. J. Manuf. Process. 2024, 116, 293–305. [Google Scholar] [CrossRef]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- Bigliardi, B.; Bottani, E.; Gianatti, E.; Monferdini, L.; Pini, B.; Petroni, A. Sustainable Additive Manufacturing in the Context of Industry 4.0: A Literature Review. Procedia Comput. Sci. 2024, 232, 766–774. [Google Scholar] [CrossRef]
- Olu-lawal, K.A.; Olajiga, O.K.; Adeleke, A.K.; Chigozie, A.E.; Montero, D.J.P. Innovative Material Processing Techniques in Precision Manufacturing: A Review. Int. J. Appl. Res. Soc. Sci. 2024, 6, 279–291. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints. CIRP Ann.-Manuf. Technol. 2016, 65, 737–760. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Lin, D.; Tang, Z.; Song, X.; He, P.; Zhang, S.; Bian, H.; Fu, W.; Song, Y. Eutectic High-Entropy Alloys and Their Applications in Materials Processing Engineering: A Review. J. Mater. Sci. Technol. 2024, 189, 211–246. [Google Scholar] [CrossRef]
- Subramani, R.; Mustafa, M.A.; Ghadir, G.K.; Al-Tmimi, H.M.; Alani, Z.K.; Rusho, M.A.; Rajeswari, N.; Haridas, D.; Rajan, A.J.; Kumar, A.P. Advancements in 3D Printing Materials: A Comparative Analysis of Performance and Applications. Appl. Chem. Eng. 2024, 7, 3867. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X. Industry 4.0 and Cloud Manufacturing: A Comparative Analysis. ASME J. Manuf. Sci. Eng. 2017, 139, 034701. [Google Scholar] [CrossRef]
- Yu, H.Z.; Li, W.; Li, D.; Wang, Y. Enhancing Additive Manufacturing with Computer Vision: A Comprehensive Review. Int. J. Adv. Manuf. Technol. 2024, 132, 5211–5229. [Google Scholar] [CrossRef]
- Gharibvand, V.; Kolamroudi, M.K.; Zeeshan, Q.; Çınar, Z.M.; Sahmani, S.; Asmael, M.; Safaei, B. Cloud Based Manufacturing: A Review of Recent Developments in Architectures, Technologies, Infrastructures, Platforms and Associated Challenges. Int. J. Adv. Manuf. Technol. 2024, 131, 93–123. [Google Scholar] [CrossRef]
- Pant, R.; Singh, R.; Gehlot, A.; Akram, S.V.; Gupta, L.R.; Thakur, A.K. A Systematic Review of Additive Manufacturing Solutions Using Machine Learning, Internet of Things, Big Data, Digital Twins and Blockchain Technologies: A Technological Perspective Towards Sustainability. Arch. Comput. Methods Eng. 2024, 31, 4601–4616. [Google Scholar] [CrossRef]
- Wang, L.; Wang, G. Big Data in Cyber-Physical Systems. Int. J. Eng. Manuf. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y. Monitoring Temperature in Additive Manufacturing with Physics-Based Compressive Sensing. J. Manuf. Syst. 2018, 48, 60–70. [Google Scholar] [CrossRef]
- Shen, T.; Li, B. Digital Twins in Additive Manufacturing: A State-of-the-Art Review. Int. J. Adv. Manuf. Technol. 2024, 131, 63–92. [Google Scholar] [CrossRef]
- Mitrašinović, A.M. On the assimilation mechanism of additives used in non-ferrous metals extraction processes. Can. Metall. Q. 2015, 54, 494. [Google Scholar] [CrossRef]
- Mitrašinović, A.M.; Nešković, J.; Polavder, S.; Petković, S.; Praštalo, Ž.; Labus, N.; Radosavljević, M. Modeling of Impurities Evaporation Reaction Order in Aluminum Alloys by the Parametric Fitting of the Logistic Function. Materials 2024, 17, 728. [Google Scholar] [CrossRef] [PubMed]
- Mitrašinović, A.M.; D’Souza, R.J.C. Effect of initial temperature on actual elemental evaporation rate in Al-Si-Cu mixture during free cooling in near-vacuum conditions. Vacuum 2016, 134, 99. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, T.; Shan, H.; Wang, Y.; Lai, H.; Chen, S. A novel deep learning model for the real-time prediction of emissivity and thermal history in metal additive manufacturing processes. J. Manuf. Process. 2025, 135, 301. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Zhang, S.; Xuan, F. Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring. J. Intell. Manuf. 2025, 36, 2079. [Google Scholar] [CrossRef]
- Mattera, G.; Caggiano, A.; Nele, L. Optimal data-driven control of manufacturing processes using reinforcement learning: An application to wire arc additive manufacturing. J. Intell. Manuf. 2025, 36, 1291. [Google Scholar] [CrossRef]
- Mishra, A.; Jatt, V.; Sefene, E.M.; Salunkhe, S.; Cep, R.; Abouel Nasr, E. Supervised Machine Learning and Physics Machine Learning approach for prediction of peak temperature distribution in Additive Friction Stir Deposition of Aluminium Alloy. PLoS ONE 2025, 20, e0309751. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mu, H.; He, F.; Yuan, L.; Zhu, H.; Ma, N.; Pan, Z. A Physics-Informed Machine Learning Approach for Temperature Field Prediction in Metallic Additive Manufacturing. J. Ind. Inf. Integr. 2025, 47, 100899. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, F.; Tashiro, S.; Chen, S.; Tanaka, A. A physics-informed and data-driven framework for robotic welding in manufacturing. Nat. Commun. 2025, 16, 4807. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; He, X.; Tang, D.; Xin, H.; Wu, B. A fatigue life prediction framework of laser-directed energy deposition Ti-6Al-4V based on physics-informed neural network. Int. J. Struct. Integr. 2025, 16, 327. [Google Scholar] [CrossRef]
- Sousa, J.; Brandau, B.; Darabi, R.; Sousa, A.; Brueckner, F.; Reis, A. Artificial Intelligence for Control in Laser-Based Additive Manufacturing: A Systematic Review. IEEE Access 2025, 13, 30845. [Google Scholar] [CrossRef]
- Ramos, A.; Angel, V.G.; Siqueiros, M.; Sahagun, T.; Gonzalez, L.; Ballesteros, R. Reviewing Additive Manufacturing Techniques: Material Trends and Weight Optimization Possibilities Through Innovative Printing Patterns. Materials 2025, 18, 1377. [Google Scholar] [CrossRef] [PubMed]
- Antony Jose, S.; Tonner, A.; Feliciano, M.; Roy, T.; Shackleford, A.; Menezes, P.L. Smart Manufacturing for High-Performance Materials: Advances, Challenges, and Future Directions. Materials 2025, 18, 2255. [Google Scholar] [CrossRef] [PubMed]
- Gajdzik, B. Digital Transformation Towards Smart Steel Manufacturing; Palgrave Macmillan: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages | Feeding Material |
---|---|---|---|
Selective Laser Melting (SLM) | Binder-free, rapid processing, high powder recyclability, high geometric precision, enhanced material utilization, localized microstructure control, allows for automatization, allows for monitoring | High equipment costs, high operational costs, time-intensive, thermal residual stresses, build volume and processing defects | Aluminum alloys, titanium alloys, stainless steels |
Electron Beam Melting (EBM) | Excellent structural properties, processing of reactive metals, rapid processing, high processing speeds, good thermal management, the ability to process refractory metals, finer microstructural features, good tensile properties, oxide-free parts | Higher costs, limited material options, preheating required, requires a vacuum, limited build size | Aluminum alloys, titanium alloys, nickel-based superalloys, cobalt–chrome alloys |
Direct Energy Deposition (DED) | High recyclability, on-site part repair, allows larger components to be printed, high deposition rates, the ability to fabricate large parts, in situ alloying, high energy efficiency, rapid prototyping and production | Surface finish, high heat input, high residual stresses, prone to processing defects, post-processing required | Aluminum alloys, titanium alloys, stainless steels, nickel-based alloys cobalt alloys, high-entropy alloys |
Binder Jets | Cost-effective, high production speeds, no residual stresses, controlled structure | Post-processing required, binder residue issues, fewer material options | Aluminum alloys, titanium alloys stainless steels, nickel alloys |
Ultrasonic Additive Manufacturing (UAM) | Joining dissimilar materials, low temperature, low residual stresses, cost-effective feedstock | Limited material compatibility, low deposition rates, limited geometrical complexity | Aluminum alloys |
Thermocouple Type | Wire Material | Operating Range, °C |
---|---|---|
T | Copper and Copper–Nickel | −250 to 350 |
J | Iron and Copper–Nickel | 0 to 750 |
E | Nickel–Chromium and Copper–Nickel | −200 to 900 |
K | Nickel–Chromium and Nickel–Aluminum | −200 to 1250 |
S | Platinum–10%Rodium and Platinum | 0 to 1450 |
B | Platinum–30%Rodium and Platinum–6%Rodium | 0 to 1700 |
Sensor | Advantage | Drawback |
---|---|---|
Photodiode | High temporal resolution Easy to integrate | No spatial resolution No spectral resolution |
High-speed camera | High spatial resolution High temporal resolution | Amount of data No spectral resolution |
Bolometer (resistance change) | LWIR sensitivity Good spatial resolution | Low temporal resolution Require specialized optics |
Spectrometer | Excellent spectral resolution Good temporal resolution | No spatial resolution Prone to chromatic aberrations |
Snapshot hyperspectral camera | Good spatial and spectral resolution | Correction/calibration necessary Amount of data |
Sensor Type | Method Type | Operational Principle | Advantages | Applications | Commercialized |
---|---|---|---|---|---|
Thermocouples | Direct | Generates voltage between two dissimilar metal junctions | Wide temperature range, fast response, diverse applications | Monitoring build plate temperatures | Yes |
Pyrometers | Indirect | Measures the intensity of infrared radiation emitted by an object | Accurate temperature readings without contact | Monitoring high-temperature processes (laser sintering or directed energy deposition) | Yes |
Infrared cameras | Indirect | Provides a spatial representation of the temperature distribution | Visualizes temperature variations across the build area | process monitoring, quality control, in situ troubleshooting | Yes |
Thermal imaging | Indirect | Measure the infrared radiation emitted by an object | Non-contact monitoring of moving objects or inaccessible areas | Monitoring melt pool temperatures, thermal gradients, and heat distributions | Yes |
Radiometry | Indirect | Measures the intensity of electromagnetic radiation | Safe non-ionizing radiation, penetrates inside the examined object | Monitoring wide areas consisting of various materials | Yes |
Mathematical modeling | Computational | Uses conservation equations and discretizes complex geometries into smaller elements | Enables a comprehensive data analysis of complex systems | Controlling industrial processes where the traditional sensors might fail | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrašinović, A.; Đurđević, T.; Nešković, J.; Radosavljević, M. Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0. Technologies 2025, 13, 317. https://doi.org/10.3390/technologies13080317
Mitrašinović A, Đurđević T, Nešković J, Radosavljević M. Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0. Technologies. 2025; 13(8):317. https://doi.org/10.3390/technologies13080317
Chicago/Turabian StyleMitrašinović, Aleksandar, Teodora Đurđević, Jasmina Nešković, and Milinko Radosavljević. 2025. "Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0" Technologies 13, no. 8: 317. https://doi.org/10.3390/technologies13080317
APA StyleMitrašinović, A., Đurđević, T., Nešković, J., & Radosavljević, M. (2025). Temperature Monitoring in Metal Additive Manufacturing in the Era of Industry 4.0. Technologies, 13(8), 317. https://doi.org/10.3390/technologies13080317